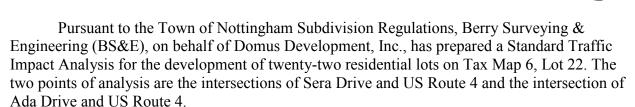


BERRY SURVEYING & ENGINEERING

335 Second Crown Point Road Barrington, NH 03825 Phone: (603) 332-2863 Fax: (603) 335-4623 www.BerrySurveying.Com

March 4th, 2019

March 4th, 2019


NEW HAMBOTTH
A.

BERRY
NO. 1427

Town of Nottingham Planning Board Attention: Chair Dirk Grotenhuis 139 Stage Road P.O. Box 114 Nottingham, NH 03290

RE: Traffic Impact Analysis & Distribution Domus Developers Inc. Old Turnpike Road / US Route 4 Nottingham, NH 03290

Mr. Grotenhuis,

The following conclusions were reached as a result Traffic Impact Analysis:

- A total of 7 vehicle trips (2 enter/5 exit) are predicted to occur at the AM peak hour and 9 vehicle trips (6 enter/3 exit) at the PM peak hour for Sera Drive.
- A total of 10 vehicle trips (3 enter/7 exit) are predicted to occur at the AM peak hour and 13 vehicle trips (8 enter/5 exit) at the PM peak hour for Ada Drive.
- The 2019 and 2029 build traffic volumes DO NOT satisfy the NCHRP 457 guidelines for the implementation of a left-turn lane for Sera Drive.
- The 2019 and 2029 build traffic volumes DO NOT satisfy the NCHRP 457 guidelines for the implementation of a right-turn lane for Sera Drive.
- The 2019 and 2029 build traffic volumes DO NOT satisfy the NCHRP 457 guidelines for the implementation of a left -turn lane for Ada Drive.
- The 2019 and 2029 build traffic volumes DO NOT satisfy the NCHRP 457 guidelines for the implementation of a right-turn lane for Ada Drive.
- It is recommended that the existing and surrounding infrastructure will be sufficient to handle the projected increase in vehicle trips and peak hour and all other hours.

Table of Contents

Table of Contents	2
List of Tables	
List of Figures	4
Proposed Development & Introduction	6
Existing Conditions	6
Existing Site Description	6
Old Concord Turnpike / US Route 4 Description	6
Existing Traffic Volumes	8
Existing Vehicle Speeds	10
Proposed Trip Generation	10
Build Traffic Projections and Turning Analysis	11
Left-Turn Warrants Analysis	
Right-Turn Warrants Analysis	
Sight Distance and Safety Analysis	17
Conclusions and Recommendations	18
Appendix A	19
US Route 4 Traffic Counts	19
Appendix B	29
Data Used in Left-Turn Bay Warrants Analysis	29
Left-Turn Bay Warrants Analysis (55 MPH)	31
Data Used in Right-Turn Bay Warrants Analysis	
Right-Turn Bay Warrants Analysis (55 MPH)	37
Appendix C	41
Trip Generation Derivation	41
Appendix D	43
Miscellaneous	43
Appendix E	46
Left-Turn Bay Warrants Analysis (60 MPH)	46
Right-Turn Bay Warrants Analysis (60 MPH)	50

List of Tables

Table 2: (Single-Family Detached Housing) Peak hour of adjacent street traffic weekdays AM,
Table 2. (Single-1 aimly Detached Housing) I can noul of adjacent street traffic weekdays Mivi,
PM, & weekday total for Sera Drive.
Table 3: (Single-Family Detached Housing) Peak hour of adjacent street traffic weekdays AM,
PM, & weekday total for Ada Drive11
Table 4: Total combined trip generation Sera Drive & Ada Drive
Table 5: Summary of AM build turning movements to and from Sera Drive
Table 6: Summary of PM build turning movements to and from Sera Drive
Table 7: Summary of AM build turning movements to and from Ada Drive
Table 8: Summary of AM build turning movements to and from Ada Drive
Table 9: Summary of AM NCHRP 457 left-turn bay analysis Sera Drive
Table 10: Summary of PM NCHRP 457 left-turn bay analysis Sera Drive
Table 11: Summary of AM NCHRP 457 left-turn bay analysis Ada Drive
Table 12: Summary of PM NCHRP 457 left-turn bay analysis Ada Drive
Table 13: Summary of AM NCHRP 457 right-turn bay analysis Sera Drive
Table 14: Summary of PM NCHRP 457 right-turn bay analysis Sera Drive
Table 15: Summary of AM NCHRP 457 right-turn bay analysis Ada Drive
Table 16: Summary of PM NCHRP 457 right-turn bay analysis Ada Drive
Table 17: Derivation of the seasonal peaking factor

List of Figures

Figure 1: US Route 4 with surrounding roadways (NHDOT)	7
Figure 2: Graph of US Route 4 two-way hourly variation with peak values	
Figure 3: Graph of US Route 4 eastbound hourly variation with peak values	
Figure 4: Graph of US Route 4 westbound hourly variation with peak values	
Figure 5: 2019 build projected traffic volumes and turning movements Ada Drive & Sera	
	12
Figure 6: 2029 build projected traffic volumes and turning movements Ada Drive & Sera	Drive
Figure 7: History of AADT values and classification for US Route 4	19
Figure 8: Tuesday August 22 nd , 2017 US Route 4 two-way hourly traffic count	
Figure 9: Tuesday August 22 nd , 2017 US Route 4 eastbound hourly traffic count	
Figure 10: Tuesday August 22 nd , 2017 US Route 4 westbound hourly traffic count	
Figure 11: Wednesday August 23 rd , 2017 US Route 4 two-way hourly traffic count	
Figure 12: Wednesday August 23 rd , 2017 US Route 4 eastbound hourly traffic count	
Figure 13: Wednesday August 23 rd , 2017 US Route 4 westbound hourly traffic count	
Figure 14: Thursday August 24 th , 2017 US Route 4 two-way hourly traffic count	
Figure 15: Thursday August 24 th , 2017 US Route 4 eastbound hourly traffic count	
Figure 16: Thursday August 24th, 2017 US Route 4 westbound hourly traffic count	
Figure 17: Data used for AM Peak hour left-turn warrant analyses Sera Drive	
Figure 18: Data used for PM Peak hour left-turn warrant analyses Sera Drive	
Figure 19: Data used for AM Peak hour left-turn warrant analyses Ada Drive	
Figure 20: Data used for PM Peak hour left-turn warrant analyses Ada Drive	
Figure 21: 2019 AM NCHRP 457 (55 MPH) left-turn bay warrant analysis Sera Drive	
Figure 22: 2029 AM NCHRP 457 (55 MPH) left-turn bay warrant analysis Sera Drive	
Figure 23: 2019 PM NCHRP 457 (55 MPH) left-turn bay warrant analysis Sera Drive	
Figure 24: 2029 PM NCHRP 457 (55 MPH) left-turn bay warrant analysis Sera Drive	
Figure 25: 2019 AM NCHRP 457 (55 MPH) left-turn bay warrant analysis Ada Drive	
Figure 26: 2029 AM NCHRP 457 (55 MPH) left-turn bay warrant analysis Ada Drive	
Figure 27: 2019 PM NCHRP 457 (55 MPH) left-turn bay warrant analysis Ada Drive	
Figure 28: 2029 PM NCHRP 457 (55 MPH) left-turn bay warrant analysis Ada Drive	
Figure 29: Data used for AM Peak hour right-turn warrant analyses Sera Drive	
Figure 30: Data used for PM Peak hour right-turn warrant analyses Sera Drive	
Figure 31: Data used for AM Peak hour right-turn warrant analyses Ada Drive	36
Figure 32: Data used for PM Peak hour right-turn warrant analyses Ada Drive	36
Figure 33: 2019 AM NCHRP 457 (55 MPH) right-turn bay warrant analysis Sera Drive	37
Figure 34: 2029 AM NCHRP 457 (55 MPH) right-turn bay warrant analysis Sera Drive	
Figure 35: 2019 PM NCHRP 457 (55 MPH) right-turn bay warrant analysis Sera Drive	
Figure 36: 2029 PM NCHRP 457 (55 MPH) right-turn bay warrant analysis Sera Drive	
Figure 37: 2019 AM NCHRP 457 (55 MPH) right-turn bay warrant analysis Ada Drive	
Figure 38: 2029 AM NCHRP 457 (55 MPH) right-turn bay warrant analysis Ada Drive	39

BERRY SURVEYING & ENGINEERING

Figure 39: 2019 PM NCHRP 457 (55 MPH) right-turn bay warrant analysis Ada Drive	40
Figure 40: 2029 PM NCHRP 457 (55 MPH) right-turn bay warrant analysis Ada Drive	40
Figure 41: ITE Trip Generation, 9 th Edition	41
Figure 42: ITE Trip Generation, 9 th Edition	42
Figure 43: Derivation of stopping sight distance requirements	44
Figure 44: Derivation of stopping sight distance requirements at grades	45
Figure 45: 2019 AM NCHRP 457 (60 MPH) left-turn bay warrant analysis Sera Drive	46
Figure 46: 2029 AM NCHRP 457 (60 MPH) left-turn bay warrant analysis Sera Drive	46
Figure 47: 2019 PM NCHRP 457 (60 MPH) left-turn bay warrant analysis Sera Drive	47
Figure 48: 2029 PM NCHRP 457 (60 MPH) left-turn bay warrant analysis Sera Drive	47
Figure 49: 2019 AM NCHRP 457 (60 MPH) left-turn bay warrant analysis Ada Drive	48
Figure 50: 2029 AM NCHRP 457 (60 MPH) left-turn bay warrant analysis Ada Drive	48
Figure 51: 2019 PM NCHRP 457 (60 MPH) left-turn bay warrant analysis Ada Drive	49
Figure 52: 2029 PM NCHRP 457 (60 MPH) left-turn bay warrant analysis Ada Drive	49
Figure 53: 2019 AM NCHRP 457 (60 MPH) right-turn bay warrant analysis Sera Drive	50
Figure 54: 2029 AM NCHRP 457 (60 MPH) right-turn bay warrant analysis Sera Drive	50
Figure 55: 2019 PM NCHRP 457 (60 MPH) right-turn bay warrant analysis Sera Drive	51
Figure 56: 2029 PM NCHRP 457 (60 MPH) right-turn bay warrant analysis Sera Drive	51
Figure 57: 2019 AM NCHRP 457 (60 MPH) right-turn bay warrant analysis Ada Drive	52
Figure 58: 2029 AM NCHRP 457 (60 MPH) right-turn bay warrant analysis Ada Drive	52
Figure 59: 2019 PM NCHRP 457 (60 MPH) right-turn bay warrant analysis Ada Drive	53
Figure 60: 2029 PM NCHRP 457 (60 MPH) right-turn bay warrant analysis Ada Drive	53

BERRY SURVEYING & ENGINEERING

Proposed Development & Introduction

The proposal is to develop Tax Map 6, Lot 22 to contain twenty-two total single-family detached housing lots with four non-building open space parcels. There are two proposed access roads, known as "Sera Drive" and "Ada Drive". Sera Drive, located on the eastern portion of the parcel, provides access to nine lots and is approximately 1,060 linear feet in length. Ada Drive, located on the western portion of the parcel, provides access to thirteen lots and is approximately 1,285 linear feet in length. Both Sera and Ada Drive are proposed to have 24 foot pavement entrance radii for emergency vehicle turning, 10 foot paved travel lanes (20 foot total paved width), and 2 foot gravel shoulders on both sides of the roadway. Both Sera and Ada Drive utilize cul-de-sacs as a dead end treatment for vehicle turn around/circulation. Off-street parking will consist of individual driveways for each lot, no additional parking areas are proposed to be provided. The intersections of Sera Drive and Ada Drive with US Route 4 are located approximately 400 feet apart and are considered the points of analysis. The purpose of this analysis is to determine the maximum number of trips coming to and leaving Sera Drive and Ada Drive during certain peak periods of the day. This information is then used in determining the impact on safety as it relates to the existing roadway infrastructure. The following components of the analysis are typical for a project of this size pursuant to the Institute of Traffic Engineers (ITE) manual.

Existing Conditions

Existing Site Description

The existing site consists of Tax Map 6, Lot 22 containing 2,600,133 Sq. Ft. (59.69 Ac.) of land. Tax Map 6, Lot 22 is a vacant lot that is primarily wooded. The lot is proposed to be subdivided into twenty-two lots containing single-family detached homes and four non-building open space lots. Tax Map 6, Lot 22 is located in two zones, the Commercial/Industrial zone, which extends 1,000 feet from US Route 4, and the remainder of the lot is in the Residential/Agricultural zone. There is a residential driveway cut 275 feet to the west of the site in addition to five residential driveways across from the site and a vehicle pull off location towards the western side of the site.

Old Concord Turnpike / US Route 4 Description

US Route 4 is a two lane principal arterial road, according to the NHDOT MS2 Transportation Management System (NHDOT). This road provides access to NH Route 125/Lee to the east and NH Route 202/ Northwood to the west. It has an Average Annual Daily Traffic (AADT) of approximately 11,324 (2017) divided between east and west, also as shown by the NHDOT.

US Route 4 in the area of the project is composed of a forty two foot wide paved surface with twelve foot travel lanes and variable width gravel shoulders on the north and south side of the road. There is centerline delineation and fog / edge lines provided. The posted speed limit of the roadway is 50 miles per hour (MPH). The geometry of US Route 4 is relatively flat and straight

BERRY SURVEYING & ENGINEERING

in the project location. There are no existing sidewalks, crosswalks, or other pedestrian amenities in the area of the project.

Approximately 0.5 miles to the east of the project site is the two-way stop controlled intersection of US Route 4 and Hall Road/Smoke Street. Hall Road and Smoke Street are local collector roads. Due to the minimal trip generation of the proposed site and the distance from the intersection, it is not likely that this intersection would be negatively affected by the proposed development.

Approximately 0.5 miles to the west of the project site is the two-way stop controlled intersection of US Route 4 and Sofia Way/Mendum's Landing Road. Sofia Way and Mendum's Landing Road are local collector roads. Due to the minimal trip generation of the proposed site and the distance from the intersection, it is also not likely that this intersection would be negatively affected by the proposed development.

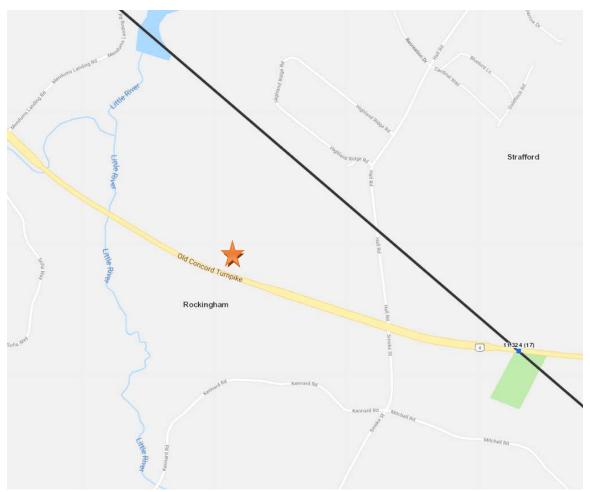


Figure 1: US Route 4 with surrounding roadways (NHDOT)

Existing Traffic Volumes

According to traffic counts recorded by the NHDOT for August 22nd - August 24th 2017, the US Route 4 AM and PM two-way peaks were 938 trips and 1,166 trips, respectively. It was found that US Route 4 has an AADT of 11,324 vehicles.

The highest peak hour traffic volume on this section of US Route 4 eastbound occurred from 7-8 AM with 640 vehicles and from 4-5 PM with 446 vehicles. Westbound highest peak hour traffic volume occurred from 7-8 AM with 305 vehicles and from 4-5 PM with 742 vehicles. Table #1 shows the traffic direction breakdown of US Route 4 and Figures #1-3 are graphical representations of the traffic variations occurring throughout the day. It can be seen from the directional percent distribution that the primary direction of travel during the AM peak hour is eastbound towards Lee and the Lee Traffic Circle. The primary direction of travel during the PM peak hour is westbound towards Northwood and NH Route 202. Traffic counts of US Route 4 are provided in Appendix A as Figures 7-16.

Traffic Distribution US Route 4									
Date	Eastk	oound	Westb	ound	Two-Way				
8/22/2017	AM Peak	640	AM Peak	267	AM Peak	898			
0/22/2017	PM Peak	446	PM Peak	705	PM Peak	1113			
8/23/2017	AM Peak	633	AM Peak	305	AM Peak	938			
0/23/2017	PM Peak	423	PM Peak	708	PM Peak	1120			
8/24/2017	AM Peak	632	AM Peak	283	AM Peak	915			
0/24/2017	PM Peak	424	PM Peak	742	PM Peak	1166			
Average Peak	AM Peak	635.0	AM Peak	285.0	AM Peak	917.0			
Hour Traffic	PM Peak	431.0	PM Peak	718.3	PM Peak	1133.0			
% Distribution	AM Peak	69.0	AM Peak	31.0					
70 DISTIBUTION	PM Peak	37.5	PM Peak	62.5					

Table 1: Directional breakdown of trips occurring on US Route 4

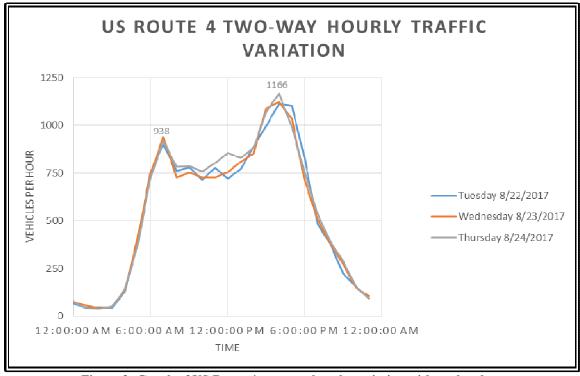


Figure 2: Graph of US Route 4 two-way hourly variation with peak values

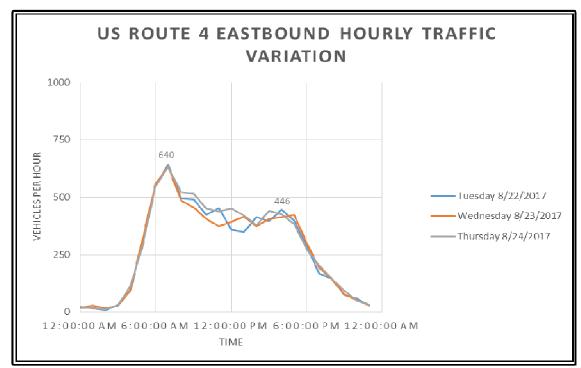


Figure 3: Graph of US Route 4 eastbound hourly variation with peak values

BERRY SURVEYING & ENGINEERING

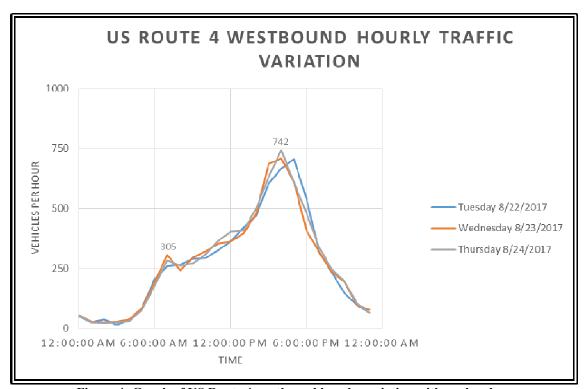


Figure 4: Graph of US Route 4 westbound hourly variation with peak values

Existing Vehicle Speeds

As previously mentioned, the posted speed limit of US Route 4 is 50 MPH. For the purposes of the safety analysis, the 85th percentile of speed is required. This particular section of US Route 4 was observed by Berry Surveying & Engineering to analyze the pass by traffic, reviewing speed. Excessive speeds were rare, and most operators obeyed the posted speed limits within a deviation of 5 MPH. This is consistent with speeds found on urban roads. The 85th percentile derived by observation and consistency with general practice is assumed to be 55 MPH. To be conservative, included for purposes of the turn-bay warrants analysis, 60 MPH is included in addition to 55 MPH. This is shown in Appendix E and does not change the results of the analyses.

Proposed Trip Generation

The 9th Edition ITE Trip Generation Manual was used to determine the proposed volume of trips, as well as the percentage of entrance-to-exit traffic experienced at the AM & PM peak hours between 7 and 9 AM and 4 and 6 PM, as well as the weekday total volume. Single-Family Detached Housing (210) was used in deriving the proposed trip generation for the Sera Drive and Ada Drive. Tables 2 and 3 provide average trip rate, total trips generated, enter to exit ratio, and the enter to exit distribution for Sera Drive and Ada Drive. Table 4 shows the combined

BERRY SURVEYING & ENGINEERING

proposed trip generation. As the use of the site will be single family residences, the primary vehicle trips generated will be two axel cars and trucks.

Single-Family Detached Housing Trip Generation Sera Drive:

Time	Week	day Total (Pa	ge 296)	Time	AM Peak Adj. Street (Page 297) Time		e 297) Time PM Peak		Adj. Street (I	Page 298)	
Method	[Dwelling Units		Method	hod Dwelling Units		Method		welling Unit	S	
# Units		9		# Units	9		# Units		9		
Avg. Rate		9.52		Avg. Rate	0.75		Avg. Rate		1.00		
Total Trips		85.7		Total Trips	6.8		Total Trips		9.0		
% Enter	50.0	Total Enter	42.8	% Enter	25.0	Total Enter	1.7	% Enter	63.0	Total Enter	5.7
% Exit	50.0	Total Exit	42.8	% Exit	75.0	Total Exit	5.1	% Exit	37.0	Total Exit	3.3

Table 2: (Single-Family Detached Housing) Peak hour of adjacent street traffic weekdays AM, PM, & weekday total for Sera Drive.

Single-Family Detached Housing Trip Generation Ada Drive:

Time	Week	day Total (Pag	ge 296)	Time	AM Peak Adj. Street (Page 297)		Time	PM Peak	Adj. Street (I	Page 298)	
Method		Dwelling Units		Method	Dwelling Units		Method	ı	Owelling Unit	S	
# Units		13		# Units	13		# Units		13		
Avg. Rate		9.52		Avg. Rate	0.75		Avg. Rate		1.00		
Total Trips		123.8		Total Trips	9.8		Total Trips		13.0		
% Enter	50.0	Total Enter	61.9	% Enter	25.0	Total Enter	2.4	% Enter	63.0	Total Enter	8.2
% Exit	50.0	Total Exit	61.9	% Exit	75.0	Total Exit	7.3	% Exit	37.0	Total Exit	4.8

Table 3: (Single-Family Detached Housing) Peak hour of adjacent street traffic weekdays AM, PM, & weekday total for Ada Drive.

Total Proposed Trip Generation Sera Drive & Ada Drive

Time	Wee	Weekday Total Generation			AM Peak Hour Total Generation		Time	PM Peak Ho	ur Total Gene	eration	
Total Trips		209.4		Total Trips		16.5		Total Trips		22.0	
% Enter	50	Total Enter	104.7	% Enter	25.0	Total Enter	4.1	% Enter	63.0	Total Enter	13.9
% Exit	50	Total Exit	104.7	% Exit	75.0	Total Exit	12.4	% Exit	37.0	Total Exit	8.1

Table 4: Total combined trip generation Sera Drive & Ada Drive

Build Traffic Projections and Turning Analysis

Traffic data obtained from the NHDOT's Transportation Data Management System from 2017 has been projected to 2019 and ten years further to 2029. This has been done using an August peak seasonal adjustment factor of 1.03 (AM & PM) and using an annual growth rate of 1%, compounded annually. The derivation of the peak seasonal adjustment factor comes from an average series of values from other urban highways from across New Hampshire, which can be found as Table 17 in Appendix D. Figures 5 and 6 show the build turning movements to and from Sera Drive and Ada Drive during AM and PM peak hours. These figures also show the projected volume of traffic eastbound and westbound on US Route 4 in 2019 and the projected 2029 volumes. This data is then used to preform NCHRP 457 right-turn and left-turn bay warrant

BERRY SURVEYING & ENGINEERING

US ROUTE 4 / OLD CONCORD TURNPIKE

analyses. It is important to note that there are enter and exit trips for Sera and Ada Drive that influence the pass-by traffic of each roadway. Appendix B shows the data that was used to conduct the analyses. In this data, the pass-by trips that influence the advancing and opposing volumes are accounted for in the total advancing volumes and total opposing volumes. These are denoted as Sera Drive Pass-by Generation (SBP) and Ada Drive Pass-by Generation (ABP).

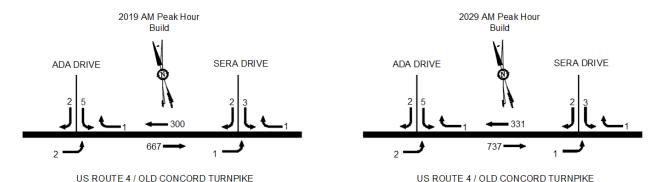


Figure 5: 2019 build projected traffic volumes and turning movements Ada Drive & Sera Drive

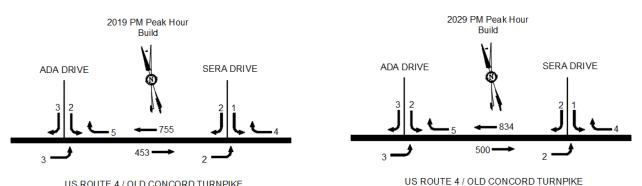


Figure 6: 2029 build projected traffic volumes and turning movements Ada Drive & Sera Drive

Tables 5-8 show in a tabular format the total trips that are calculated to occur to and from Sera Drive and Ada Drive are shown at AM and PM weekday peak hours in a build situation. These trips are further broken down into enter and exit to and from the site as well as percentage of left and right turns.

Time	AM Peak Hour Sera Drive	#Trips	Turn Type	% Distribution
Total Trips	6.8			
Trips l	Enter from US Route 4 Eastbound	1.2	Left	17.3
Trips E	inter from US Route 4 Westbound	0.5	Right	7.7
Trip	s Exit to US Route 4 Eastbound	3.5	Left	51.8
Trips	s Exit to US Route 4 Westbound	1.6	Right	23.2

Table 5: Summary of AM build turning movements to and from Sera Drive

BERRY SURVEYING & ENGINEERING

Time	PM Peak Hour Sera Drive	#Trips	Turn Type	% Distribution
Total Trips	9.0			
Trips	Enter from US Route 4 Eastbound	2.1	Left	23.6
Trips	Enter from US Route 4 Westbound	3.5	Right	39.4
Tri	ps Exit to US Route 4 Eastbound	1.2	Left	13.9
Trip	os Exit to US Route 4 Westbound	2.1	Right	23.1

Table 6: Summary of PM build turning movements to and from Sera Drive

Time	AM Peak Hour Ada Drive	#Trips	Turn Type	% Distribution
Total Trips	9.8			
Trips 8	Enter from US Route 4 Eastbound	1.7	Left	17.3
Trips E	nter from US Route 4 Westbound	0.8	Right	7.7
Trip	s Exit to US Route 4 Eastbound	5.0	Left	51.8
Trips	Exit to US Route 4 Westbound	2.3	Right	23.2

Table 7: Summary of AM build turning movements to and from Ada Drive

Time	PM Peak Hour Ada Drive	#Trips	Turn Type	% Distribution
Total Trips	13.0			
Trips	Enter from US Route 4 Eastbound	3.1	Left	23.6
Trips	Enter from US Route 4 Westbound	5.1	Right	39.4
Tri	ps Exit to US Route 4 Eastbound	1.8	Left	13.9
Tri	ps Exit to US Route 4 Westbound	3.0	Right	23.1

Table 8: Summary of AM build turning movements to and from Ada Drive

Left-Turn Warrants Analysis

Depending on vehicle speed, advancing vehicular volumes, opposing vehicular volumes, and the percent of left turns that vehicles are predicted to make, certain roadways may require special treatment for vehicles making left turning maneuvers. The determination of this special treatment is determined by the NCHRP 457 left-turn bay guidelines. Calibration constants of 3.0 seconds are used for average left turn time, 5.0 seconds for critical headway, and 1.9 seconds for vehicles to clear the advancing lane. If warranted, the left turn bay would allow for deceleration of vehicles and storage in the queue to wait safely for advancing traffic to pass.

The AM and PM peak traffic volumes from 2017 projected to 2019 and 2029 were used to determine if a left-turn bay is warranted to safely enter the site. For Sera Drive, it has been

BERRY SURVEYING & ENGINEERING

calculated that approximately 1 trip is to occur turning left into the site during the AM peak hour and 2 trips during the PM peak hour. For Ada Drive, it has been calculated that approximately 2 trips are to occur turning left into the site during the AM peak hour and 3 trips during the PM peak hour. The projection of the traffic volumes for AM and PM peak hours and data used to conduct the left-turn bay warrant analyses are included in Appendix B as Figures 18-21. The full warrant analyses can be found in Appendix B as Figures 22-29. Tables 9-12 are summaries of the left-turn bay warrant analyses for Sera Drive and Ada Drive. Using the 85th percentile speed of 55 MPH, it was determined that a left-turn bay is not warranted to safely enter Sera Drive or Ada Drive. It is important to note that the pass-by traffic generated by Sera Drive and Ada Drive influence the advancing and opposing volumes used in the analysis. These values are included in the advancing and opposing volumes shown in Tables 9-12. The results of the 60 MPH left-turn bay warrants analyses for Ada Drive and Sera Drive can be found in Appendix E as Figures 45-52.

Left-Turn Lane Warrants Analysis US Route 4 (Sera Drive)				
Factors	2019 AM Build Volume	2029 AM Build Volume		
Left-Turn Volume (EB)	1	1		
Advancing Volume (EB) (L+TR)	673	743		
Opposing Volume (WB) (TR+R)	301	332		
Percent Lefts	0%	0%		
85th Percentile Speed (MPH)	55	55		
Limiting Adv. Volume (veh/hr)	2,336	2,372		
Left Turn Bay Warranted	NO	NO		

Table 9: Summary of AM NCHRP 457 left-turn bay analysis Sera Drive

Left-Turn Lane Warra	nts Analysis US Route 4 ((Sera Drive)
Factors	2019 PM Build Volume	2029 PM Build Volume
Left-Turn Volume (EB)	2	2
Advancing Volume (EB) (L+TR)	457	504
Opposing Volume (WB) (TR+R)	763	842
Percent Lefts	0%	0%
85th Percentile Speed (MPH)	55	55
Limiting Adv. Volume (veh/hr)	885	860
Left Turn Bay Warranted	NO	NO

Table 10: Summary of PM NCHRP 457 left-turn bay analysis Sera Drive

Left-Turn Lane Warra	nts Analysis US Route 4	(Ada Drive)
Factors	2019 AM Build Volume	2029 AM Build Volume
Left-Turn Volume (EB)	2	2
Advancing Volume (EB) (L+TR)	670	740
Opposing Volume (WB) (TR+R)	302	333
Percent Lefts	0%	0%
85th Percentile Speed (MPH)	55	55
Limiting Adv. Volume (veh/hr)	1,937	1,967
Left Turn Bay Warranted	NO	NO

Table 11: Summary of AM NCHRP 457 left-turn bay analysis Ada Drive

Left-Turn Lane Warra	ants Analysis US Route 4	(Ada Drive)
Factors	2019 PM Build Volume	2029 PM Build Volume
Left-Turn Volume (EB)	3	3
Advancing Volume (EB) (L+TR)	458	505
Opposing Volume (WB) (TR+R)	762	841
Percent Lefts	1%	1%
85th Percentile Speed (MPH)	55	55
Limiting Adv. Volume (veh/hr)	739	684
Left Turn Bay Warranted	NO	NO

Table 12: Summary of PM NCHRP 457 left-turn bay analysis Ada Drive

Right-Turn Warrants Analysis

Depending on vehicle speed, advancing vehicular volumes, and the percent of right turns that vehicles are predicted to make, certain roadways may require special treatment for vehicles making right turning maneuvers. The determination of this special treatment is determined by the NCHRP 457 right turn bay guidelines. If warranted, the right-turn bay would allow for deceleration of vehicles and storage in the queue to wait safely for right turning traffic to clear.

The AM and PM peak traffic volumes from 2017 projected to 2019 and 2029 were used to determine if a right-turn bay is warranted to safely enter the site. For Sera Drive, it has been calculated that approximately 1 trip is to occur turning right into the site during the AM peak hour and 4 trips during the PM peak hour. For Ada Drive, it has been calculated that approximately 1 trip is to occur turning right into the site during the AM peak hour and 5 trips during the PM peak hour. The projection of the traffic volumes for AM and PM peak hours and data used to conduct the right-turn bay warrant analyses are included in Appendix B as Figures 30-33. The full warrant analyses can be found in Appendix B as Figures 34-41. Tables 13-16 are summaries of the right-turn bay warrant analyses for Sera Drive and Ada Drive. Using the 85th percentile speed of 55 MPH, it was determined that a right-turn bay is not warranted to safely

enter Sera Drive or Ada Drive. It is important to note that the pass-by traffic generated by Sera Drive and Ada Drive influence the advancing volumes used in the analysis. These values are included in the advancing and opposing volumes shown in Tables 13-16. The results of the 60 MPH right-turn bay warrants analyses for Ada Drive and Sera Drive can be found in Appendix E as Figures 53-60.

Right-Turn Lane Warrants Analysis US Route 4 (Sera Drive)				
Factors	2019 AM Build Volume	2029 AM Build Volume		
Right-Turn Volume (WB)	1	1		
Advancing Volume (WB) (TR+R)	301	332		
85th Percentile Speed (MPH)	55	55		
Limiting Adv. Volume (veh/hr)	23	22		
Right-Turn Bay Warranted	NO	NO		

Table 13: Summary of AM NCHRP 457 right-turn bay analysis Sera Drive

Right-Turn Lane Warrants Analysis US Route 4 (Sera Drive)				
Factors	2019 PM Build Volume	2029 PM Build Volume		
Right-Turn Volume (WB)	4	4		
Advancing Volume (WB) (TR+R)	308	339		
85th Percentile Speed (MPH)	55	55		
Limiting Adv. Volume (veh/hr)	23	21		
Right-Turn Bay Warranted	NO	NO		

Table 14: Summary of PM NCHRP 457 right-turn bay analysis Sera Drive

Right-Turn Lane Warrants Analysis US Route 4 (Ada Drive)				
Factors	2019 AM Build Volume	2029 AM Build Volume		
Right-Turn Volume (WB)	1	1		
Advancing Volume (WB) (TR+R)	302	333		
85th Percentile Speed (MPH)	55	55		
Limiting Adv. Volume (veh/hr)	23	22		
Right-Turn Bay Warranted	NO	NO		

Table 15: Summary of AM NCHRP 457 right-turn bay analysis Ada Drive

Right-Turn Lane Warrants Analysis US Route 4 (Ada Drive)				
Factors	2019 PM Build Volume	2029 PM Build Volume		
Right-Turn Volume (WB)	5	5		
Advancing Volume (WB) (TR+R)	762	841		
85th Percentile Speed (MPH)	55	55		
Limiting Adv. Volume (veh/hr)	11	11		
Right-Turn Bay Warranted	NO	NO		

Table 16: Summary of PM NCHRP 457 right-turn bay analysis Ada Drive

Sight Distance and Safety Analysis

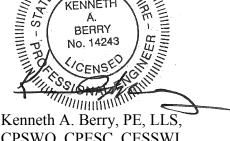
Sight distance on US Route 4 to the east and west, as well as roadway alignment are the two determining factors of safety. For Sera Drive, sight distance to the east un-obstructed for well over 550 feet (measured), while sight distance to the west is un-obstructed for well over 500 feet (measured). Using Exhibit 3-1 (Stopping Sight Distance) (Figure 44) and Exhibit 3-2 (Stopping Sight Distance on Grades) (Figure 45) in the Geometric Design Manual, and a 55 mph 85th percentile speed, requires a stopping sight distance of 495 feet for eastbound traffic (0-3% upgrade) and 542 feet for westbound (5% downgrade (interpolation)). The standard sight distance required by NHDOT is 400 feet. In this instance both the easterly and westerly sight distances meet the design required warrant as well as the standard practice of NHDOT of 400 feet. There are no improvements required to obtain this sight distance.

For Ada Drive, sight distance to the east un-obstructed for well over 500 feet (measured), while sight distance to the west is un-obstructed for well over 500 feet (measured). Using Exhibit 3-1 (Stopping Sight Distance) (Figure 44) and Exhibit 3-2 (Stopping Sight Distance on Grades) (Figure 45) in the Geometric Design Manual, and a 55 mph 85th percentile speed, requires a stopping sight distance of 495 feet for eastbound traffic (0-3% upgrade) and 495 feet for westbound traffic ((0-3% downgrade)). The standard sight distance required by NHDOT is 400 feet. In this instance both the easterly and westerly sight distances meet the design required warrant as well as the standard practice of NHDOT of 400 feet. There are no improvements required to obtain this sight distance.

With respect to general safety of US Route 4 in relation to the peak hour trip generation and AADT, it is our assessment that the cross section of pavement and shoulder widths are appropriate.

*AASHTO Geometric Design of Highways and Streets (2011)

Conclusions and Recommendations


- 1.) A total of 7 vehicle trips (2 enter/5 exit) are predicted to occur at the AM peak hour and 9 vehicle trips (6 enter/3 exit) at the PM peak hour for Sera Drive.
- 2.) A total of 10 vehicle trips (3 enter/7 exit) are predicted to occur at the AM peak hour and 13 vehicle trips (8 enter/5 exit) at the PM peak hour for Ada Drive.
- 3.) The 2019 and 2029 build traffic volumes DO NOT satisfy the NCHRP 457 guidelines for the implementation of a left-turn lane for Sera Drive.
- 4.) The 2019 and 2029 build traffic volumes DO NOT satisfy the NCHRP 457 guidelines for the implementation of a right-turn lane for Sera Drive.
- 5.) The 2019 and 2029 build traffic volumes DO NOT satisfy the NCHRP 457 guidelines for the implementation of a left-turn lane for Ada Drive.
- 6.) The 2019 and 2029 build traffic volumes DO NOT satisfy the NCHRP 457 guidelines for the implementation of a right-turn lane for Ada Drive.
- 7.) It is recommended that the existing and surrounding infrastructure will be sufficient to handle the projected increase in vehicle trips and peak hour and all other hours.

Respectfully Submitted,

BERRY SURVEYING & ENGINEERING

Christopher R. Berry, SIT Principal, President

KRP/krp

CPSWQ, CPESC, CESSWI Principal, VP-Technical Operations

BERRY SURVEYING & ENGINEERING 335 Second Crown Pt. Rd., Barrington, NH 03825 (603) 332-2863 / (603) 335-4623 FAX www.BerrySurveying.Com

Appendix A

US Route 4 Traffic Counts

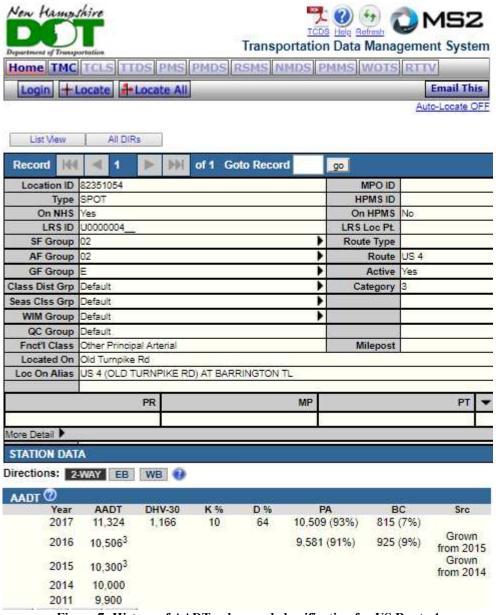


Figure 7: History of AADT values and classification for US Route 4

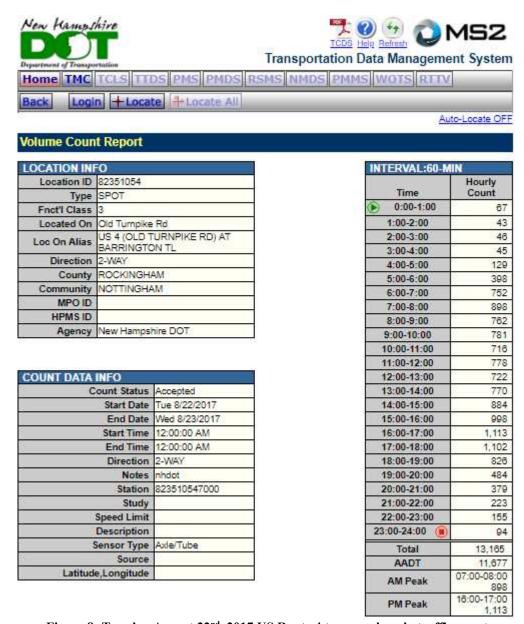


Figure 8: Tuesday August 22nd, 2017 US Route 4 two-way hourly traffic count

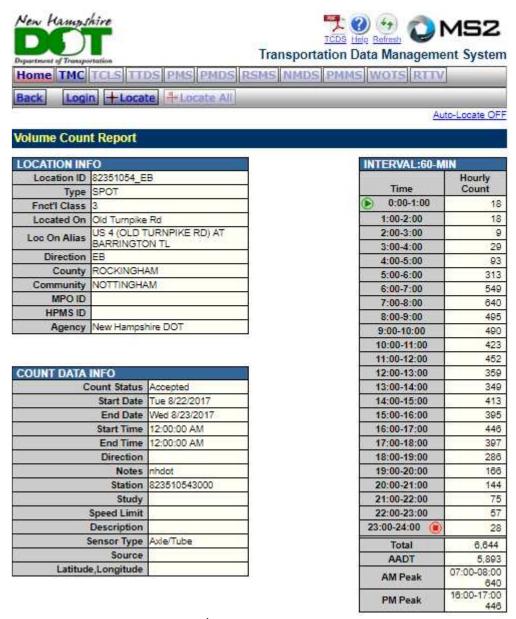


Figure 9: Tuesday August 22nd, 2017 US Route 4 eastbound hourly traffic count

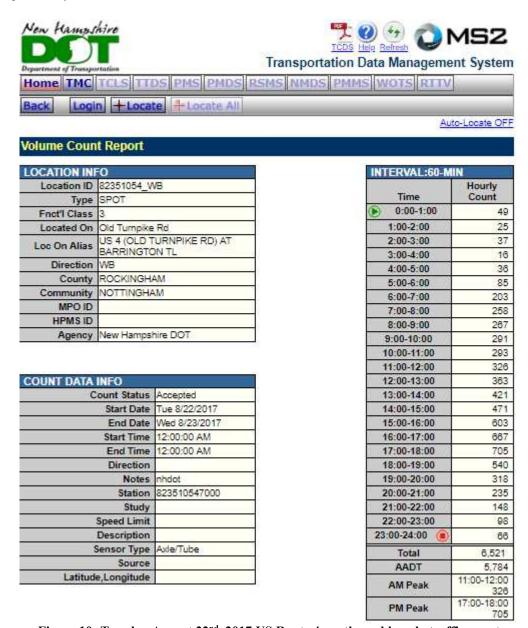


Figure 10: Tuesday August 22nd, 2017 US Route 4 westbound hourly traffic count

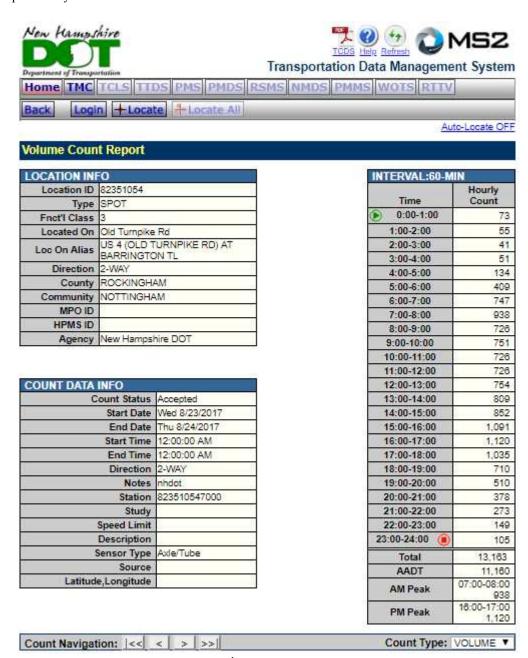


Figure 11: Wednesday August 23rd, 2017 US Route 4 two-way hourly traffic count

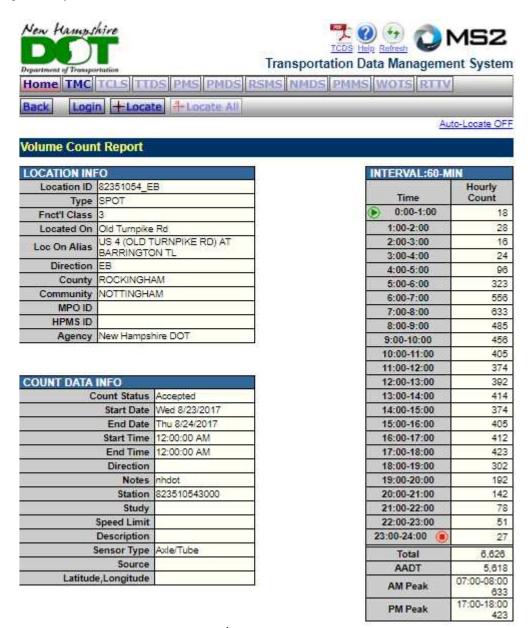


Figure 12: Wednesday August 23rd, 2017 US Route 4 eastbound hourly traffic count

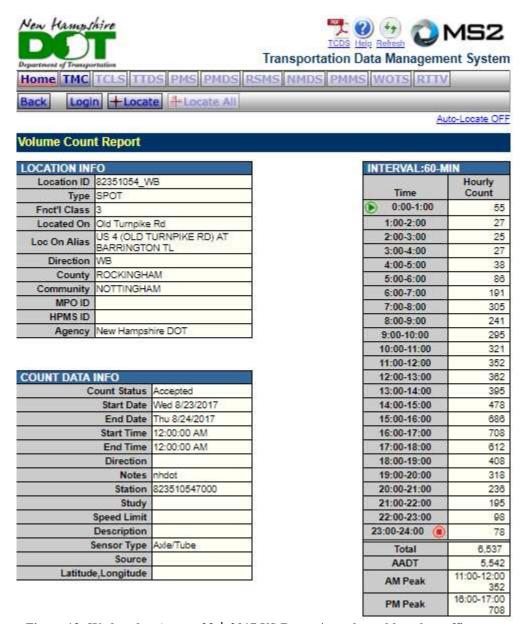


Figure 13: Wednesday August 23rd, 2017 US Route 4 westbound hourly traffic count

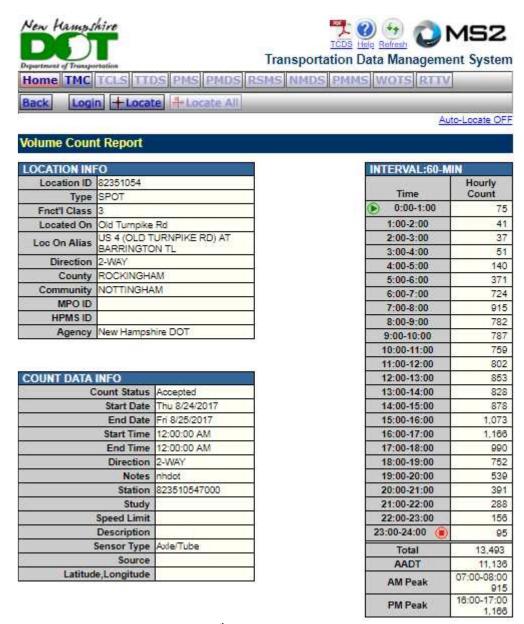


Figure 14: Thursday August 24th, 2017 US Route 4 two-way hourly traffic count

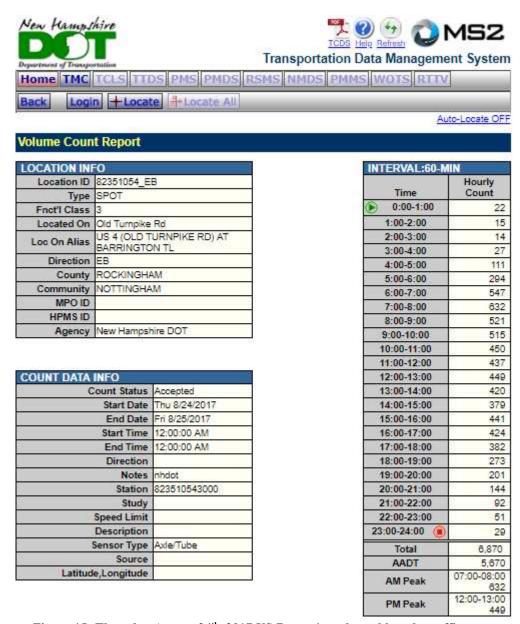


Figure 15: Thursday August 24th, 2017 US Route 4 eastbound hourly traffic count



Figure 16: Thursday August 24th, 2017 US Route 4 westbound hourly traffic count

Appendix B

Data Used in Left-Turn Bay Warrants Analysis

Year	Advancing Volume	Advancing Volume Peaked	Ada Drive Exit Pass-by Generation (APB)	Left Turns	Total Advancing Volume (L+TR+APB)
2017	635	654.1	5.0	1.2	660.3
2018	641	660.6	5.0	1.2	666.8
2019	648	667.2	5.0	1.2	673.4
2020	654	673.9	5.0	1.2	680.1
2021	661	680.6	5.0	1.2	686.8
2022	667	687.4	5.0	1.2	693.6
2023	674	694.3	5.0	1.2	700.5
2024	681	701.2	5.0	1.2	707.4
2025	688	708.2	5.0	1.2	714.5
2026	694	715.3	5.0	1.2	721.5
2027	701	722.5	5.0	1.2	728.7
2028	708	729.7	5.0	1.2	735.9
2029	716	737.0	5.0	1.2	743.2
Year	Opposing Volume				Total Opposing Volume (TR+R+APB)
2017	285	293.6	0.8	0.5	294.8
2018	288	296.5	0.8	0.5	297.8
2019	291	299.5	0.8	0.5	300.7
2020	294	302.4	0.8	0.5	303.7
2021	297	305.5	0.8	0.5	306.7
2022	300	308.5	0.8	0.5	309.8
2023	303	311.6	0.8	0.5	312.9
2024	306	314.7	0.8	0.5	316.0
2025	309	317.9	0.8	0.5	319.2
2026	312	321.1	0.8	0.5	322.3
2027	315	324.3	0.8	0.5	325.5
2028	318	327.5	0.8	0.5	328.8
2029	321	330.8	0.8	0.5	332.1
Seasonal Peak	ing Factor (August)	1.03			

Figure 17: Data used for AM Peak hour left-turn warrant analyses Sera Drive

Year	Advancing Volume	Advancing Volume Peaked	Ada Drive Exit Pass-by Generation (APB)	Left Turns	Total Advancing Volume (L+TR+APB)
2017	431	443.9	1.8	2.1	447.9
2018	435	448.4	1.8	2.1	452.3
2019	440	452.9	1.8	2.1	456.8
2020	444	457.4	1.8	2.1	461.3
2021	449	462.0	1.8	2.1	465.9
2022	453	466.6	1.8	2.1	470.5
2023	458	471.2	1.8	2.1	475.2
2024	462	476.0	1.8	2.1	479.9
2025	467	480.7	1.8	2.1	484.6
2026	471	485.5	1.8	2.1	489.4
2027	476	490.4	1.8	2.1	494.3
2028	481	495.3	1.8	2.1	499.2
2029	486	500.2	1.8	2.1	504.2
Year	Opposing Volume	Opposing Volume Peaked	Ada Drive Enter Pass-by Generation (APB)	Right Turns	Total Opposing Volume (TR+R+APB)
2017	718	739.9	5.1	3.5	748.5
2018	726	747.3	5.1	3.5	755.9
2019	733	754.8	5.1	3.5	763.4
2020	740	762.3	5.1	3.5	771.0
2021	748	769.9	5.1	3.5	778.6
2022	755	777.6	5.1	3.5	786.3
2023	763	785.4	5.1	3.5	794.1
2024	770	793.3	5.1	3.5	801.9
2025	778	801.2	5.1	3.5	809.9
2026	786	809.2	5.1	3.5	817.9
2027	793	817.3	5.1	3.5	826.0
2028	801	825.5	5.1	3.5	834.1
2029	809	833.7	5.1	3.5	842.4
Seasonal Peak	ring Factor (August)	1.03			

Figure 18: Data used for PM Peak hour left-turn warrant analyses Sera Drive

Year	Advancing Volume	Advancing Volume Peaked	Sera Drive Enter Pass-by Generation (SPB)	Left Turns	Total Advancing Volume (L+TR+SPB)
2017	635	654.1	1.2	1.7	656.9
2018	641	660.6	1.2	1.7	663.4
2019	648	667.2	1.2	1.7	670.0
2020	654	673.9	1.2	1.7	676.7
2021	661	680.6	1.2	1.7	683.5
2022	667	687.4	1.2	1.7	690.3
2023	674	694.3	1.2	1.7	697.1
2024	681	701.2	1.2	1.7	704.1
2025	688	708.2	1.2	1.7	711.1
2026	694	715.3	1.2	1.7	718.2
2027	701	722.5	1.2	1.7	725.3
2028	708	729.7	1.2	1.7	732.6
2029	716	737.0	1.2	1.7	739.8
Year	Opposing Volume	Opposing Volume Peaked	Sera Drive Exit Pass-by Generation (SPB)	Right Turns	Total Opposing Volume (TR+R+SPB)
2017	285	293.6	1.6	8.0	295.9
2018	288	296.5	1.6	0.8	298.8
2019	291	299.5	1.6	8.0	301.8
2020	294	302.4	1.6	0.8	304.8
2021	297	305.5	1.6	0.8	307.8
2022	300	308.5	1.6	0.8	310.8
2023	303	311.6	1.6	0.8	313.9
2024	306	314.7	1.6	8.0	317.0
2025	309	317.9	1.6	0.8	320.2
2026	312	321.1	1.6	8.0	323.4
2027	315	324.3	1.6	8.0	326.6
2028	318	327.5	1.6	0.8	329.8
2029	321	330.8	1.6	8.0	333.1
Seasonal Pea	king Factor (August)	1.03			

Figure 19: Data used for AM Peak hour left-turn warrant analyses Ada Drive

Year	Advancing Volume	Advancing Volume Peaked	Sera Drive Enter Pass-by Generation (SPB)	Left Turns	Total Advancing Volume (L+TR+SPB)
2017	431	443.9	2.1	3.1	449.1
2018	435	448.4	2.1	3.1	453.6
2019	440	452.9	2.1	3.1	458.1
2020	444	457.4	2.1	3.1	462.6
2021	449	462.0	2.1	3.1	467.2
2022	453	466.6	2.1	3.1	471.8
2023	458	471.2	2.1	3.1	476.4
2024	462	476.0	2.1	3.1	481.2
2025	467	480.7	2.1	3.1	485.9
2026	471	485.5	2.1	3.1	490.7
2027	476	490.4	2.1	3.1	495.6
2028	481	495.3	2.1	3.1	500.5
2029	486	500.2	2.1	3.1	505.4
Year	Opposing Volume	Opposing Volume Peaked	Sera Drive Exit Pass-by Generation (SPB)		Total Opposing Volume (TR+R+SPB)
Year 2017	718	739.9	Sera Drive Exit Pass-by Generation (SPB) 2.1	5.1	Total Opposing Volume (TR+R+SPB) 747.1
2017 2018	718 726	739.9 747.3	2.1 2.1	5.1 5.1	747.1 754.5
2017	718 726 733	739.9	2.1 2.1 2.1	5.1 5.1 5.1	747.1
2017 2018 2019 2020	718 726 733 740	739.9 747.3 754.8 762.3	2.1 2.1 2.1 2.1	5.1 5.1 5.1 5.1	747.1 754.5 762.0 769.5
2017 2018 2019	718 726 733 740 748	739.9 747.3 754.8	2.1 2.1 2.1	5.1 5.1 5.1	747.1 754.5 762.0
2017 2018 2019 2020	718 726 733 740 748 755	739.9 747.3 754.8 762.3 769.9 777.6	2.1 2.1 2.1 2.1 2.1 2.1 2.1	5.1 5.1 5.1 5.1 5.1 5.1	747.1 754.5 762.0 769.5 777.1 784.8
2017 2018 2019 2020 2021 2022 2023	718 726 733 740 748 755	739.9 747.3 754.8 762.3 769.9 777.6 785.4	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	5.1 5.1 5.1 5.1 5.1 5.1 5.1	747.1 754.5 762.0 769.5 777.1 784.8 792.6
2017 2018 2019 2020 2021 2022	718 726 733 740 748 755 763 770	739.9 747.3 754.8 762.3 769.9 777.6 785.4 793.3	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	747.1 754.5 762.0 769.5 777.1 784.8
2017 2018 2019 2020 2021 2022 2023 2024 2025	718 726 733 740 748 755 763 770	739.9 747.3 754.8 762.3 769.9 777.6 785.4 793.3 801.2	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	747.1 754.5 762.0 769.5 777.1 784.8 792.6 800.5
2017 2018 2019 2020 2021 2022 2023 2024	718 726 733 740 748 755 763 770 778 786	739.9 747.3 754.8 762.3 769.9 777.6 785.4 793.3 801.2 809.2	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	747.1 754.5 762.0 769.5 777.1 784.8 792.6 800.5 808.4 816.4
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027	718 726 733 740 748 755 763 770 778 786 793	739.9 747.3 754.8 762.3 769.9 777.6 785.4 793.3 801.2 809.2 817.3	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	747.1 754.5 762.0 769.5 777.1 784.8 792.6 800.5 808.4 816.4
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028	718 726 733 740 748 755 763 770 778 786 793 801	739.9 747.3 754.8 762.3 769.9 777.6 785.4 793.3 801.2 809.2 817.3 825.5	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	747.1 754.5 762.0 769.5 777.1 784.8 792.6 800.5 808.4 816.4 824.5 832.7
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029	718 726 733 740 748 755 763 770 778 786 793	739.9 747.3 754.8 762.3 769.9 777.6 785.4 793.3 801.2 809.2 817.3 825.5 833.7	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	747.1 754.5 762.0 769.5 777.1 784.8 792.6 800.5 808.4 816.4 824.5

Figure 20: Data used for PM Peak hour left-turn warrant analyses Ada Drive

Left-Turn Bay Warrants Analysis (55 MPH)

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English) INPUT Variable Value veh/h 800 85th percentile speed, mph: Left-turn treatment Percent of left-turns in advancing volume (VA), %: 700 673 Advancing volume (VA), veh/h: 600 Opposing Volume (V_o), Opposing volume (V_O), veh/h: 500 OUTPUT 400 Variable Value 300 Limiting advancing volume (VA), veh/h Left turn treatment no 200 Guidance for determining the need for a major-road left-turn bay: 100 Left-turn treatment NOT warranted varranted: 0 0 100 300 400 500 600 700 Advancing Volume (VA), veh/h CALIBRATION CONSTANTS Variable Value Average time for making left-turn, s: Critical headway, s 5.0 Average time for left-turn vehicle to clear the advancing lane, s:

Figure 21: 2019 AM NCHRP 457 (55 MPH) left-turn bay warrant analysis Sera Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English) INPUT Variable Value veh/h 800 85th percentile speed, mph: Left-turn treatment Percent of left-turns in advancing volume (VA), % 0% 700 Advancing volume (VA), veh/h: 743 Opposing Volume (Vo), 600 Opposing volume (V_O), veh/h: 500 OUTPUT 400 Variable Value 300 Limiting advancing volume (VA), veh/h 2372 200 Left turr Guidance for determining the need for a major-road left-turn bay: 100 Left-turn treatment NOT warranted. 0 0 100 200 300 400 500 600 700 Advancing Volume (VA), veh/h CALIBRATION CONSTANTS Value Average time for making left-turn, s: 5.0 Critical headway, s Average time for left-turn vehicle to clear the advancing lane, s:

Figure 22: 2029 AM NCHRP 457 (55 MPH) left-turn bay warrant analysis Sera Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English) **INPUT** Variable Value veh/h 800 85th percentile speed, mph: Left-turn treatment 0% Percent of left-turns in advancing volume (V_A), %: 700 Advancing volume (V_A), veh/h: 457 Volume (V_○), 600 Opposing volume (V_O), veh/h: 500 OUTPUT 400 Variable Value 300 imiting advancing volume (VA), veh/h 885 Opposing 200 Left turn----treatment no Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted 100 0 0 100 200 300 400 500 600 700 Advancing Volume (VA), veh/h CALIBRATION CONSTANTS Variable Value Average time for making left-turn, s: Critical headway, s: 5.0 Average time for left-turn vehicle to clear the advancing lane, s:

Figure 23: 2019 PM NCHRP 457 (55 MPH) left-turn bay warrant analysis Sera Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

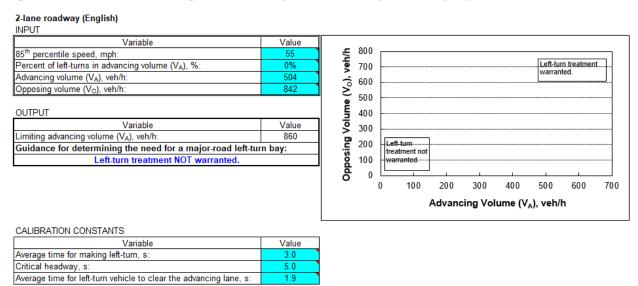


Figure 24: 2029 PM NCHRP 457 (55 MPH) left-turn bay warrant analysis Sera Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

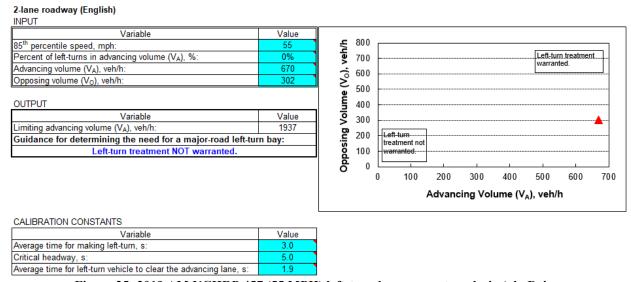


Figure 25: 2019 AM NCHRP 457 (55 MPH) left-turn bay warrant analysis Ada Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

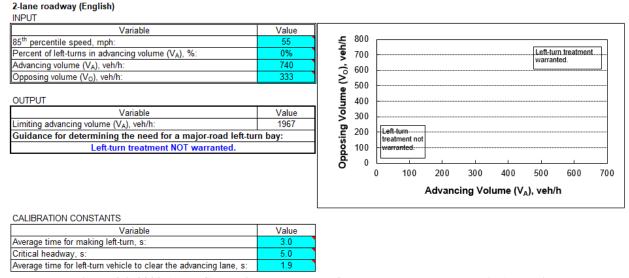


Figure 26: 2029 AM NCHRP 457 (55 MPH) left-turn bay warrant analysis Ada Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English) **INPUT** Variable Value 800 85th percentile speed, mph: Left-turn treatment... 700 Percent of left-turns in advancing volume (V_A), %: 1% warranted. Advancing volume (V_A), veh/h: 458 Opposing Volume (Vo), 600 762 Opposing volume (Vo), veh/h: 500 OUTPUT 400 Value Variable 300 Limiting advancing volume (V_A), veh/h: 739 200 Left turn treatment no Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted. 100 0 100 300 600 700 0 200 400 500 Advancing Volume (VA), veh/h CALIBRATION CONSTANTS Variable Value Average time for making left-turn, s: Critical headway, s: Average time for left-turn vehicle to clear the advancing lane, s: 1.9

Figure 27: 2019 PM NCHRP 457 (55 MPH) left-turn bay warrant analysis Ada Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

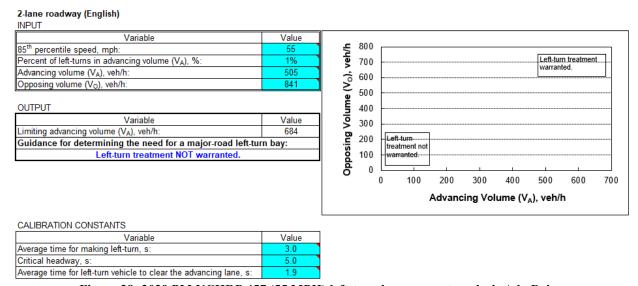


Figure 28: 2029 PM NCHRP 457 (55 MPH) left-turn bay warrant analysis Ada Drive

Data Used in Right-Turn Bay Warrants Analysis

Year	Advancing Volume	Advancing Volume Peaked	Right Turns	Ada Drive Enter Pass-by Generation (APB)	Total Advancing Volume (TR+R+APB)
2017	285	293.6	0.5	0.8	294.8
2018	288	296.5	0.5	0.8	297.8
2019	291	299.5	0.5	0.8	300.7
2020	294	302.4	0.5	0.8	303.7
2021	297	305.5	0.5	0.8	306.7
2022	300	308.5	0.5	0.8	309.8
2023	303	311.6	0.5	0.8	312.9
2024	306	314.7	0.5	0.8	316.0
2025	309	317.9	0.5	0.8	319.2
2026	312	321.1	0.5	0.8	322.3
2027	315	324.3	0.5	0.8	325.5
2028	318	327.5	0.5	0.8	328.8
2029	321	330.8	0.5	0.8	332.1
Seasonal Peaking Factor (August)		1.03			·

Figure 29: Data used for AM Peak hour right-turn warrant analyses Sera Drive

Year	Advancing Volume	Advancing Volume Peaked	Right Turns	Ada Drive Enter Pass-by Generation (APB)	Total Advancing Volume (TR+R+APB)
2017	285	293.6	3.5	5.1	302.2
2018	288	296.5	3.5	5.1	305.1
2019	291	299.5	3.5	5.1	308.1
2020	294	302.4	3.5	5.1	311.1
2021	297	305.5	3.5	5.1	314.1
2022	300	308.5	3.5	5.1	317.2
2023	303	311.6	3.5	5.1	320.3
2024	306	314.7	3.5	5.1	323.4
2025	309	317.9	3.5	5.1	326.5
2026	312	321.1	3.5	5.1	329.7
2027	315	324.3	3.5	5.1	332.9
2028	318	327.5	3.5	5.1	336.2
2029	321	330.8	3.5	5.1	339.4
Seasonal Peaking Factor (August)		1.03		·	

Figure 30: Data used for PM Peak hour right-turn warrant analyses Sera Drive

Year	Advancing Volume	Advancing Volume Peaked	Right Turns	Sera Drive Exit Pass-by Generation (SPB)	Total Advancing Volume (TR+R+SBP)
2017	285	293.6	0.8	1.6	295.9
2018	288	296.5	0.8	1.6	298.8
2019	291	299.5	0.8	1.6	301.8
2020	294	302.4	0.8	1.6	304.8
2021	297	305.5	0.8	1.6	307.8
2022	300	308.5	0.8	1.6	310.8
2023	303	311.6	0.8	1.6	313.9
2024	306	314.7	0.8	1.6	317.0
2025	309	317.9	0.8	1.6	320.2
2026	312	321.1	0.8	1.6	323.4
2027	315	324.3	0.8	1.6	326.6
2028	318	327.5	0.8	1.6	329.8
2029	321	330.8	0.8	1.6	333.1
Seasonal Peaking Factor (August)		1.03			

Figure 31: Data used for AM Peak hour right-turn warrant analyses Ada Drive

Year	Advancing Volume	Advancing Volume Peaked	Right Turns	Sera Drive Exit Pass-by Generation (SPB)	Total Advancing Volume (TR+R+SBP)
2017	718	739.9	5.1	2.1	747.1
2018	726	747.3	5.1	2.1	754.5
2019	733	754.8	5.1	2.1	762.0
2020	740	762.3	5.1	2.1	769.5
2021	748	769.9	5.1	2.1	777.1
2022	755	777.6	5.1	2.1	784.8
2023	763	785.4	5.1	2.1	792.6
2024	770	793.3	5.1	2.1	800.5
2025	778	801.2	5.1	2.1	808.4
2026	786	809.2	5.1	2.1	816.4
2027	793	817.3	5.1	2.1	824.5
2028	801	825.5	5.1	2.1	832.7
2029	809	833.7	5.1	2.1	840.9
Seasonal Peaking Factor (August)		1.03			

Figure 32: Data used for PM Peak hour right-turn warrant analyses Ada Drive

Right-Turn Bay Warrants Analysis (55 MPH)

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

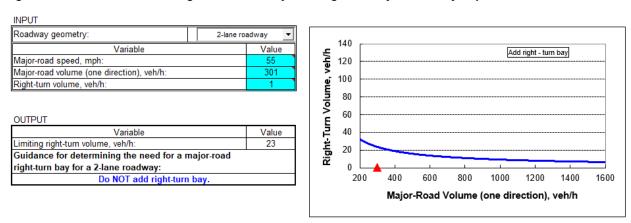


Figure 33: 2019 AM NCHRP 457 (55 MPH) right-turn bay warrant analysis Sera Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

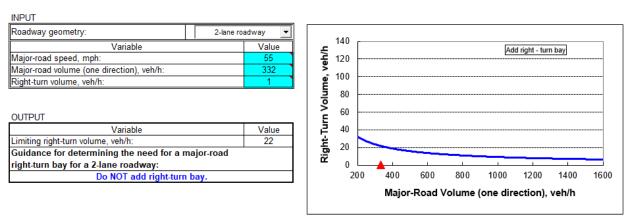


Figure 34: 2029 AM NCHRP 457 (55 MPH) right-turn bay warrant analysis Sera Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

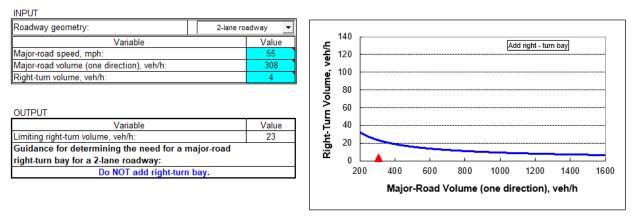


Figure 35: 2019 PM NCHRP 457 (55 MPH) right-turn bay warrant analysis Sera Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

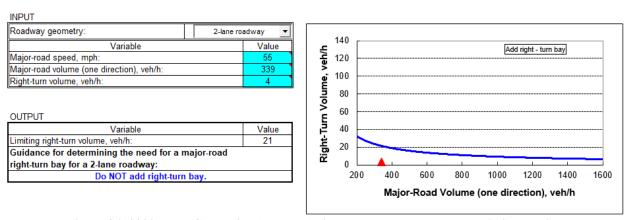


Figure 36: 2029 PM NCHRP 457 (55 MPH) right-turn bay warrant analysis Sera Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

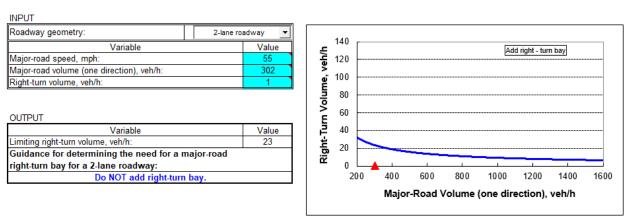


Figure 37: 2019 AM NCHRP 457 (55 MPH) right-turn bay warrant analysis Ada Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.



Figure 38: 2029 AM NCHRP 457 (55 MPH) right-turn bay warrant analysis Ada Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

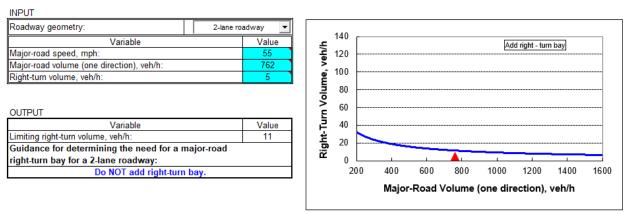


Figure 39: 2019 PM NCHRP 457 (55 MPH) right-turn bay warrant analysis Ada Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

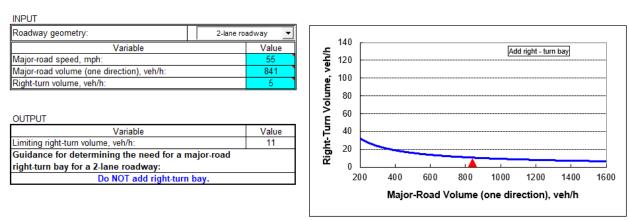


Figure 40: 2029 PM NCHRP 457 (55 MPH) right-turn bay warrant analysis Ada Drive

Appendix C

Trip Generation Derivation

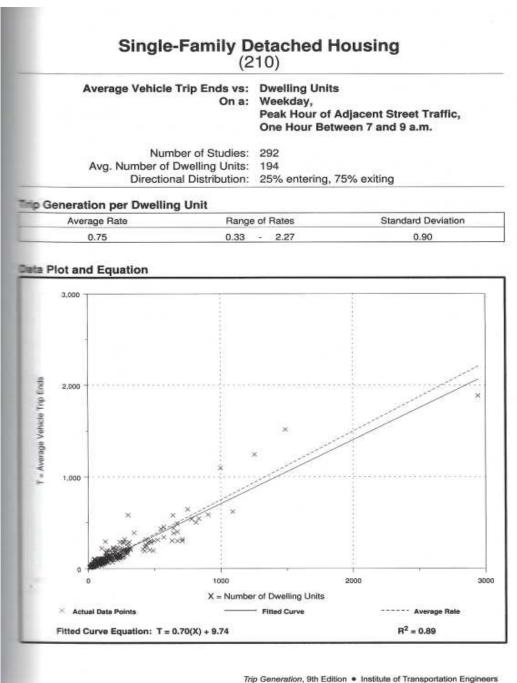


Figure 41: ITE Trip Generation, 9th Edition

335 Second Crown Pt. Rd., Barrington, NH 03825 (603) 332-2863 / (603) 335-4623 FAX www.BerrySurveying.Com

Single-Family Detached Housing

(210)

Average Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 321 Avg. Number of Dwelling Units: 207

Directional Distribution: 63% entering, 37% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation		
1.00	0.42 - 2.98	1.05		

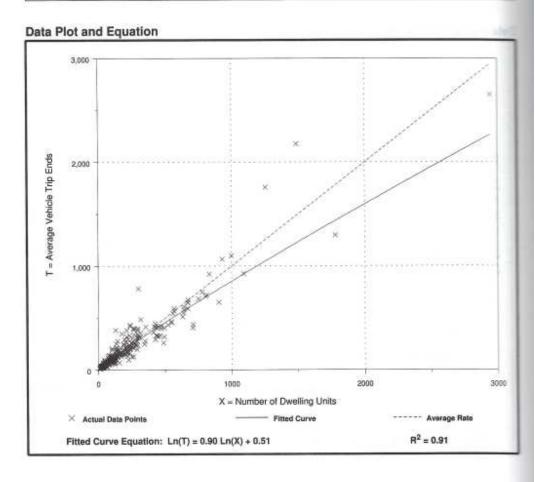


Figure 42: ITE Trip Generation, 9th Edition

Trip Generation, 9th Edition . Institute of Transportation Engineers

298

335 Second Crown Pt. Rd., Barrington, NH 03825 (603) 332-2863 / (603) 335-4623 FAX www.BerrySurveying.Com

Appendix D

Miscellaneous

Year 2016 Monthly Data								
Group 4 Averages:	Urban Highways							
	Adjustment t	:0						
<u>Month</u>	<u>ADT</u>	<u>Average</u>	<u>Peak</u>					
January	13,573	1.16	1.25					
February	14,038	1.12	1.21					
March	15,731	1.00	1.08					
April	16,139	0.97	1.05					
May	15,705	1.00	1.08					
June	16,766	0.94	1.01					
July	15,752	1.00	1.08					
August	16,529	0.95	1.03					
September	17,007	0.92	1.00					
October	16,598	0.94	1.02					
November	15,649	1.00	1.09					
December	14,638	1.07	1.16					
Average ADT:	15,677							
Peak ADT:	17,007							

Table 17: Derivation of the seasonal peaking factor

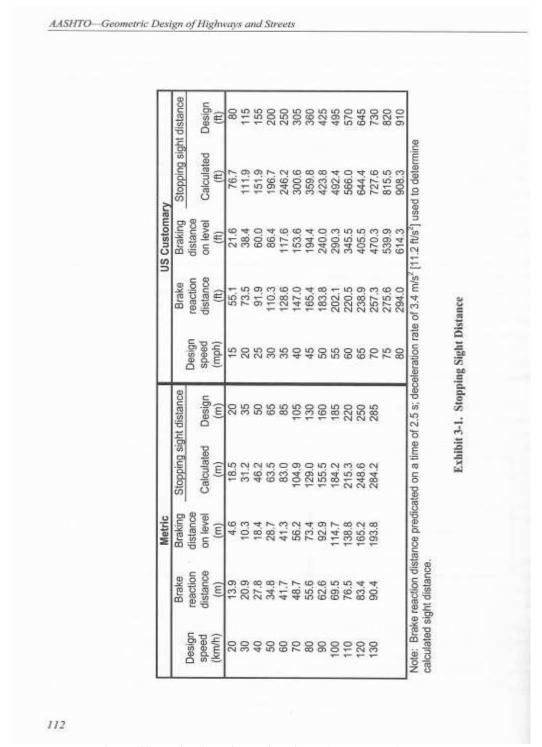


Figure 43: Derivation of stopping sight distance requirements

Elements of Design

Metric									USC	ustom	ary						
Design	Stopping sight distance (m)					Design	Stopping sight distance (ft)										
speed (km/h)	Downgrades			Upgrades		speed	Downgrades		Upgrades								
	3 %	6 %	9 %	3 %	6 %	9 %	(mph)	3 %	6 %	9 %	3 %	6 %	9 %				
20	20	20	20	19	18	18	15	80	82	85	75	74	73				
30	32	35	35	31	30	29	20	116	120	126	109	107	104				
40	50	50	53	45	44	43	25	158	165	173	147	143	140				
50	66	70	74	61	59	58	30	205	215	227	200	184	179				
60	87	92	97	80	77	75	35	257	271	287	237	229	222				
70	110	116	124	100	97	93	40	315	333	354	289	278	269				
80	136	144	154	123	118	114	45	378	400	427	344	331	320				
90	164	174	187	148	141	136	50	446	474	507	405	388	375				
100	194	207	223	174	167	160	55	520	553	593	469	450	433				
110	227	243	262	203	194	186	60	598	638	686	538	515	495				
120	263	281	304	234	223	214	65	682	728	785	612	584	561				
130	302	323	350	267	254	243	70	771	825	891	690	658	631				
							75	866	927	1003	772	736	704				
							80	965	1035	1121	859	817	782				

Exhibit 3-2. Stopping Sight Distance on Grades

Figure 44: Derivation of stopping sight distance requirements at grades

Appendix E

Left-Turn Bay Warrants Analysis (60 MPH)

The data used for the 55 MPH left and right-turn bay warrants analysis (shown in Appendix B), has been utilized for the 60 MPH left and right-turn bay warrants analysis.

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English) Variable Value 800 veh/h 85th percentile speed, mph: Left-turn treatment ... warranted. Percent of left-turns in advancing volume (V_A), % 700 Advancing volume (V_A), veh/h: Opposing Volume (Vo), 600 Opposing volume (Vo), veh/h: 30. 500 OUTPUT 400 Value Variable 300 2089 imiting advancing volume (VA), veh/h 200 Left-turn-Guidance for determining the need for a major-road left-turn bay: treatment no 100 Left-turn treatment NOT warranted 0 0 100 200 300 400 500 600 700 Advancing Volume (VA), veh/h CALIBRATION CONSTANTS Variable Value Average time for making left-turn, s Critical headway, s: 5.0 Average time for left-turn vehicle to clear the advancing lane, s:

Figure 45: 2019 AM NCHRP 457 (60 MPH) left-turn bay warrant analysis Sera Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

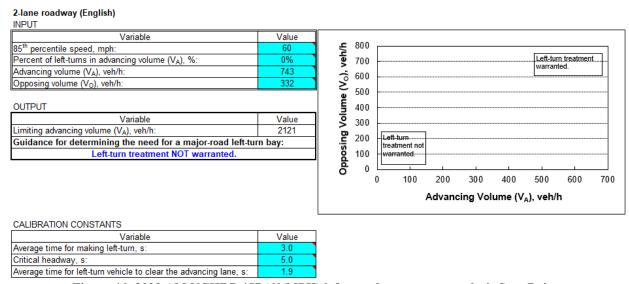


Figure 46: 2029 AM NCHRP 457 (60 MPH) left-turn bay warrant analysis Sera Drive

BERRY SURVEYING & ENGINEERING

335 Second Crown Pt. Rd., Barrington, NH 03825 (603) 332-2863 / (603) 335-4623 FAX www.BerrySurveying.Com Average time for left-turn vehicle to clear the advancing lane, s:

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English) **INPUT** Variable Value veh/h 800 85th percentile speed, mph: Percent of left-turns in advancing volume (VA), % 700 Left-turn treatment 457 Advancing volume (V_A), veh/h: 600 Opposing Volume (Vo), Opposing volume (V_O), veh/h: 763 500 OUTPUT 400 Variable Value 300 imiting advancing volume (VA), veh/h Left-turn-----treatment not 200 Guidance for determining the need for a major-road left-turn bay: Left-turn treatment NOT warranted. 100 arranted-0 0 100 300 400 500 600 700 Advancing Volume (VA), veh/h CALIBRATION CONSTANTS Value Variable Average time for making left-turn, s: Critical headway, s 5.0

Figure 47: 2019 PM NCHRP 457 (60 MPH) left-turn bay warrant analysis Sera Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

1.9

2-lane roadway (English) **INPUT** Variable Value veh/h 800 85th percentile speed, mph: Percent of left-turns in advancing volume (VA), % 0% 700 Left-turn treatment Advancing volume (V_A), veh/h: 504 %), 600 842 Opposing volume (V_O), veh/h: 500 Volume OUTPUT 400 Variable Value 300 Limiting advancing volume (VA), veh/h: Opposing Left-turn-----treatment no 200 Guidance for determining the need for a major-road left-turn bay: 100 Left-turn treatment NOT warranted. 0 0 100 200 300 400 500 600 700 Advancing Volume (VA), veh/h CALIBRATION CONSTANTS Variable Value

Figure 48: 2029 PM NCHRP 457 (60 MPH) left-turn bay warrant analysis Sera Drive

5.0

Average time for making left-turn, s:

Average time for left-turn vehicle to clear the advancing lane, s:

Critical headway, s:

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

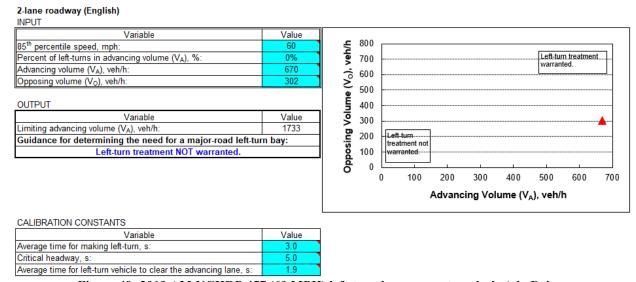


Figure 49: 2019 AM NCHRP 457 (60 MPH) left-turn bay warrant analysis Ada Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English) **INPUT** Variable Value 800 Opposing Volume (V_O), veh/h 85th percentile speed, mph: Left-turn treatment warranted. 0% Percent of left-turns in advancing volume (VA), %: 700 740 Advancing volume (V_A), veh/h: 600 Opposing volume (Vo), veh/h: 500 OUTPUT 400 Variable Value 300 1760 Limiting advancing volume (V_A), veh/h Left turn 200 Guidance for determining the need for a major-road left-turn bay: treatment no 100 Left-turn treatment NOT warranted. varranted 0 0 100 200 300 400 500 600 700 Advancing Volume (VA), veh/h CALIBRATION CONSTANTS Variable Value

Figure 50: 2029 AM NCHRP 457 (60 MPH) left-turn bay warrant analysis Ada Drive

5.0

Average time for making left-turn, s:

Average time for left-turn vehicle to clear the advancing lane, s:

Critical headway, s:

BERRY SURVEYING & ENGINEERING

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

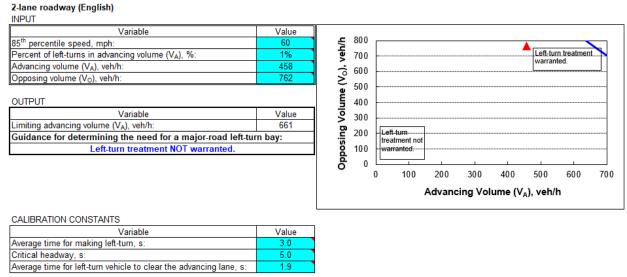


Figure 51: 2019 PM NCHRP 457 (60 MPH) left-turn bay warrant analysis Ada Drive

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English) INPUT Value Variable 800 veh/h 85th percentile speed, mph: 60 Left-turn treatment warranted. Percent of left-turns in advancing volume (VA), % 700 Advancing volume (V_A), veh/h: Opposing Volume (V_o), 600 Opposing volume (V_O), veh/h: 841 500 OUTPUT 400 Value Variable 300 643 Limiting advancing volume (VA), veh/h Left turn 200 Guidance for determining the need for a major-road left-turn bay: treatment not Left-turn treatment NOT warranted 100 0 0 100 200 300 400 500 600 700 Advancing Volume (VA), veh/h CALIBRATION CONSTANTS Variable Value Average time for making left-turn, s: Critical headway, s 5.0 Average time for left-turn vehicle to clear the advancing lane, s:

Figure 52: 2029 PM NCHRP 457 (60 MPH) left-turn bay warrant analysis Ada Drive

Right-Turn Bay Warrants Analysis (60 MPH)

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

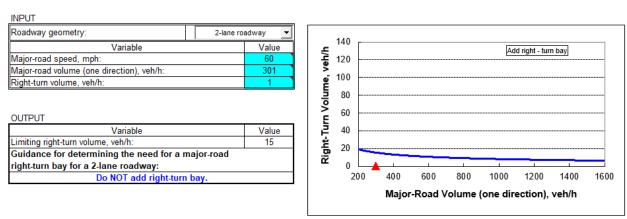


Figure 53: 2019 AM NCHRP 457 (60 MPH) right-turn bay warrant analysis Sera Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

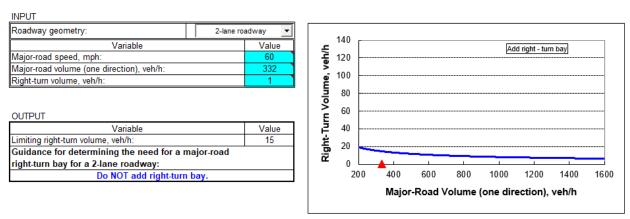


Figure 54: 2029 AM NCHRP 457 (60 MPH) right-turn bay warrant analysis Sera Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

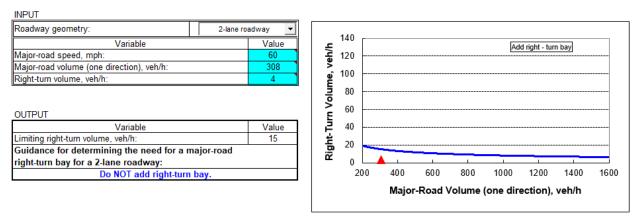


Figure 55: 2019 PM NCHRP 457 (60 MPH) right-turn bay warrant analysis Sera Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

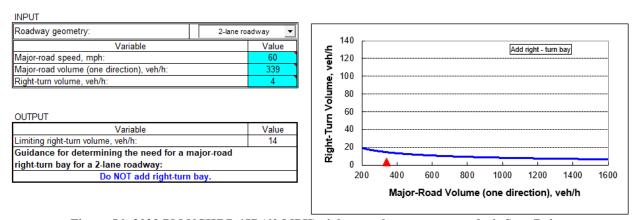


Figure 56: 2029 PM NCHRP 457 (60 MPH) right-turn bay warrant analysis Sera Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

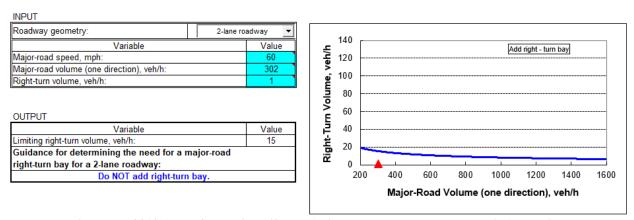


Figure 57: 2019 AM NCHRP 457 (60 MPH) right-turn bay warrant analysis Ada Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

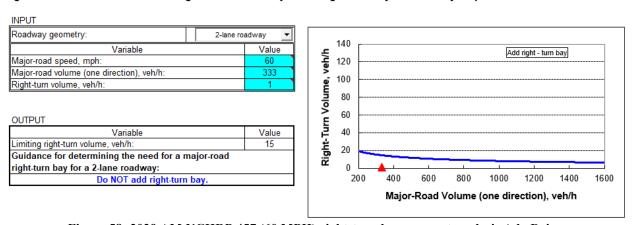


Figure 58: 2029 AM NCHRP 457 (60 MPH) right-turn bay warrant analysis Ada Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

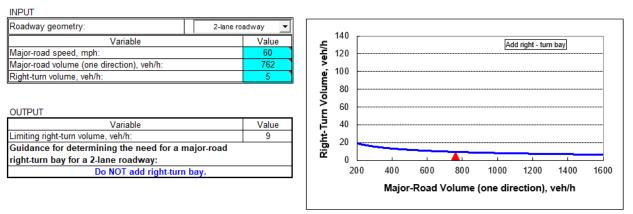


Figure 59: 2019 PM NCHRP 457 (60 MPH) right-turn bay warrant analysis Ada Drive

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.



Figure 60: 2029 PM NCHRP 457 (60 MPH) right-turn bay warrant analysis Ada Drive

