STORMWATER REPORT

SHEA CONCRETE PRODUCTS SITE EXPANSION 160 OLD TURNPIKE ROAD NOTTINGHAM, NEW HAMPSHIRE

> JUNE 29, 2022 Revised: April 4, 2023

Prepared For:

87 Haverhill Road Amesbury, MA 01913

BSC Job Number: 13602.01

Prepared by:

300 Brickstone Square Andover, MA 01810

TABLE OF CONTENTS

1.0 PROJECT NARRATIVE

- 1.01 **PROJECT DESCRIPTION**
- 1.02 METHODOLOGY
- 1.03 PRE-DEVELOPMENT DRAINAGE CONDITIONS
- 1.04 POST-DEVELOPMENT DRAINAGE CONDITIONS
- 2.0 LONG-TERM POLLUTION PREVENTION & OPERATION & MAINTENANCE PLAN
- 3.0 CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL (STORM WATER POLLUTION PREVENTION PLAN - SWPPP)
- 4.0 PEAK RUNOFF RATE CALCULATIONS
 - 4.01 PRE-DEVELOPMENT HYDROLOGY WATERSHED PLAN
 - 4.02 PRE-DEVELOPMENT HYDROLOGY CALCULATIONS (HYDROCAD PRINTOUTS)
 - 4.03 POST DEVELOPMENT HYDROLOGY WATERSHED PLAN
 - 4.04 POST DEVELOPMENT HYDROLOGY CALCULATIONS (HYDROCAD PRINTOUTS)
- 5.0 ADDITIONAL DRAINAGE CALCULATIONS
 - 5.01 TSS REMOVAL CALCULATIONS
 - 5.02 PIPE OUTLET PROTECTION CALCULATION

APPENDICES

USGS LOCUS MAP EXTREME PRECIPITATION TABLES SOIL SURVEY MAP SOIL EVALUATOR FORMS

SECTION 1.0

PROJECT NARRATIVE

1.01 PROJECT DESCRIPTION

Shea Concrete Products the "Applicant", is proposing to expand their existing facility on their property located at 160 160 Old Turnpike Road in Nottingham, New Hampshire. The existing property, approximately 25.1 acres, is currently occupied by a 6,800+/- sf structure, part of which is used as office space and part used as industrial space to produce pre-cast concrete structures. The subject property is bordered on the south by an existing wetland and several existing homes to the north. The applicant owns abutting parcels on the northwest (Nottingham Assessor's Map 3 Lot 4) and southeast (Nottingham Assessor's Map 3 Lot 1) which are largely undeveloped. Currently, approximately 6.7 acres of the property is being utilized for the manufacturing and storage of the pre-cast concrete structures and related equipment. This portion of the property consists of primarily gravel surfacing aside from a paved asphalt driveway which provides access to the site from Old Concord Turnpike.

At this time, the applicant has determined that expansion of the existing site is necessary to keep up with product demand while providing a safe, efficient facility for its employees. The applicant proposes to expand the site by constructing a 90' x 250' building with space for offices and manufacturing. The proposed building will be surrounded by a 50' wide concrete apron to allow for safe and efficient maneuvering for employees and equipment. With very little designated parking area available on the existing property, the proposed site improvements include designating space for parking for up to 24 vehicles on the eastern side of the property. This area will remain a gravel surface and will not contribute to the site's impervious area. Additional proposed site features include a landscape buffer along the property line on the north side of the proposed building, a proposed septic system to accommodate additional flow from the proposed building and associated grading and retaining walls to support the site buildout. To mitigate the increase of impervious area, the proposal is to construct a stormwater management area on the southern side of the proposed building.

The proposed project has been designed to comply with the New Hampshire Department of Environmental Services' Stormwater Manual, Env-Wq 1500: Alteration of Terrain Permitting Guidelines as well as local standards and By Laws.

1.02 METHODOLOGY

The existing and proposed watersheds were modeled utilizing HydroCad stormwater software. Both existing and proposed watersheds were analyzed using the SCS TR-20 method for hydrograph creation and the Storage-Indication + Translation Method was used for reach routing. A Type III, 24-hour storm hydrograph for the 2-year, 10-year, 25-year and 50-year storm events. Rainfall amounts for these storm events were found using the Cornell Rainfall Data site which is a collaboration between the Northeast Regional Climate Center (NRCC) and the Natural Resources Conservation Service (NRCS). Rainfall amounts for each storm event total 3.02", 4.55", 5.75" and 6.86" respectively. The Cornell Rainfall Data is provided in an Appendix to this report.

Existing topography and site features were obtained through survey by BSC Group and aerial imagery. Existing soil conditions were obtained using the NRCS Web Soil Survey and soil test pits conducted by BAG Land Consultants.

1.03 PRE-DEVELOPMENT DRAINAGE CONDITIONS

In its current condition, approximately 6.7 acres has been previous developed for the manufacturing and storage of pre-cast concrete structures. This portion of the property generally slopes from the northern end of the property (approaching Old Turnpike Road) to the existing wetlands on the southern side of the property. Smaller areas of this previously developed part of the property slope generally from the paved driveway to the southeast property line and from the front portion of the lot into smaller wetland areas at the entrance to the site which are connected by an existing RCP culvert. The majority of this developed portion of the site consists of gravel surfaces. Stormwater that

does not infiltrate into the ground drains overland to the low areas described above. In its existing condition, the site can be divided into five (5) subcatchments based on the existing topography (see existing watershed map).

The undeveloped portion of the property (approximately 18.4 acres) is largely comprised of wooded areas and wetlands. The majority of this land slopes from the northern side of the property to the existing wetlands at the southern property lines. There is also a smaller portion of this undeveloped land that slopes towards the properties to the north of the subject property. There are no known stormwater structures on this undeveloped portion of the property and stormwater drains overland to the low areas described above.

1.04 POST-DEVELOPMENT DRAINAGE CONDITIONS

The proposed development of a 22,500 square foot manufacturing building surrounded by a 44,000 square foot concrete apron. The addition of impervious area to a previously undeveloped portion of the site causes a decrease in infiltration and reduction in time of concentration. This combination causes a potential increase in peak runoff rates from the site. To mitigate the potential for increased stormwater runoff rates and treat stormwater runoff from the site, the following Best Management Practices (BMP's) will be utilized on site.

Stormwater runoff from the landscaped hill on the northeast side of the proposed building (Subcatchments 6 and 7) will be collected via grassed swales and area drain catch basins. This water will then be conveyed via pipe to manholes 105 and 207 before discharge to their respective analysis points. Stormwater runoff generated from the proposed concrete building apron will be collected using concrete trench drains, each connected to a drain manhole fitted with a minimum 3' deep sump for removal of suspended solids and LeBaron "Snout" Trap (or approved equal) for removing floatable debris or liquids. Stormwater is then routed through Oil/Particle separator tanks before discharging into one of the onsite StormTrap infiltration systems (or approved equal). Roof runoff from the proposed building will be collected using a roof drain system and discharged, through an outlet control structure, to a StormTrap system or directly to one of the level spreader discharge points depending on flow conditions. Stormwater from remaining disturbed areas onsite will flow overland to one of the four (4) points of analysis used for this model.

The proposed StormTrap systems on site, each embedded in a gravel field, are designed to both infiltrate and provide attenuation to inflowing stormwater. This proposed system is a combination of ST2 2-6 (30" floor to ceiling height) and ST2 3-0 (36" floor to ceiling height) units arranged to reduce the system footprint while also maintaining the required separation from groundwater. Their shallow profile, yet high strength capabilities make them an ideal fit for the proposed use of this site.

Specifics of the proposed site stormwater management are as follows:

Stormwater Peak Runoff Rates

The stormwater management system has been designed such that the post-development conditions result in a decrease in the peak runoff rates for the entire site. The reduction in peak runoff rates is achieved using stormwater Best Management Practices such as careful site grading combined with infiltration and peak flow attenuation.

	Existing Conditions (cfs)	Proposed Improvements (cfs)	Peak Runoff Decrease (cfs)
2-year Peak Runoff	0.29	0.26	0.03
10-year Peak Runoff	2.19	1.69	0.50
25-year Peak Runoff	4.65	3.89	0.76
50-year Peak Runoff	7.34	6.64	0.70

Table 1.1 – Peak Flow Rates Summary to Wetland at southwest side of site (EX-2R/PR-2R)

Table 1.2 – Peak Flow Rates Summary to Wetland at south end of site (EX-4R/PR-4R)

	Existing Conditions (cfs)	Proposed Improvements (cfs)	Peak Runoff Decrease (cfs)
2-year Peak Runoff	4.75	4.38	0.37
10-year Peak Runoff	11.30	10.90	0.40
25-year Peak Runoff	17.08	16.77	0.31
50-year Peak Runoff	22.73	22.64	0.09

	Existing Conditions (cfs)	Proposed Improvements (cfs)	Peak Runoff Decrease (cfs)
2-year Peak Runoff	7.18	7.14	0.04
10-year Peak Runoff	13.06	13.00	0.06
25-year Peak Runoff	17.92	17.84	0.08
50-year Peak Runoff	22.52	22.42	0.10

Table 1.3 – Peak Flow Rates Summary to Southeastern Wetland (EX-1R/PR-1R)

Table 1.4 – Peak Flow Rates Summary to North Side of Site (EX-3R/PR-3R)

	Existing Conditions (cfs)	Proposed Improvements (cfs)	Peak Runoff Decrease (cfs)
2-year Peak Runoff	0.09	0.09	0.00
10-year Peak Runoff	0.93	0.91	0.02
25-year Peak Runoff	2.15	2.09	0.06
50-year Peak Runoff	3.53	3.44	0.07

Groundwater Recharge

The existing ground water recharge is estimated based on the New Hampshire Department of Environmental Services Groundwater Recharge Volume Worksheet (attached).

Rv = F x impervious area

Rv = Required Recharge Volume, expressed in Ft³, cubic yards, or acre-feet F = Target Depth Factor associated with each Hydrologic Soil Group*Impervious Area*= pavement and rooftop area on site

NRCS	APPROX.	TARGET DEPTH
HYDROLOGIC	SOIL	FACTOR (F)
SOIL TYPE	TEXTURE	
А	sand	0.40-inch
В	loam	0.25-inch
C	silty loam	0.10-inch
D	clay	0.00-inch

Table: Recharge Target Depth by Hydrologic Soil Group

The Natural Resources Conservation Service (NRCS) classified the site as Canton Fine Sandy Loam, 0 to 8 percent slopes, very stony. This soil type is typically associated with hills, shoulder of slopes and back slopes with parent material described as coarse-loamy over sandy melt out till derived from gneiss, granite and/or schist. This soil is classified as well drained.

BAG Land Consultants evaluated test pits on site in April and May of 2022. Test pits were logged in proposed septic areas, proposed stormwater areas and within the footprint of the proposed building. Exact locations can be seen on the project site plan. As seen in the soil logs attached in this report, the soils on site are largely fine sandy loams which is consistent with the NRCS soil survey's classification of a "B" soil, Canton Fine Sandy Loam.

Based on the above, the following worksheet summaries the prescribed stormwater runoff volume required to be recharged to the groundwater based on the existing site soil conditions determined from current soils maps of the area along with onsite soil evaluations performed by a State of New Hampshire Certified Soil Scientist.

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

	ас	Area of HSG A soil that was replaced by impervious cover	0.40"
1.56	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.25	inches	Rd = Weighted groundwater recharge depth	
0.39	ac-in	GRV = AI * Rd	
1,416	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

Stormtrap Infiltration Basin 1P: Infiltration Volume Provided = 1,478 cf Stormtrap Infiltration Basin 2P: Infiltration Volume Provided = 5,460 cf Stormtrap Infiltration Basin 3P: Infiltration Volume Provided = 2,934 cf Total = 9,872 cf

NHDES Alteration of Terrain

Last Revised December 2017

Infiltration Practices & Water Quality

To meet/exceed the prescribed stormwater runoff volume to be recharged to the groundwater, the project proposes the construction of multiple subsurface StormTrap infiltration systems on site (or approved equal). These can be identified as 1P, 2P and 3P. As shown on the following New Hampshire Department of Environmental Services Infiltration Practice worksheets, this combination of chambers will allow the project to meet recharge requirements. Drawdown time is also specified on these worksheets to prove that each practice will drain within 72 hours of a storm event.

The stormwater management system has been designed to provide treatment for stormwater runoff from concrete areas around the proposed building. Manholes fitted with deep sumps are proposed at each trench drain location. Oil particle separators are proposed for additional treatment. Water quality volumes for each practice are provided on the NHDES worksheets below.

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Stormtrap Infiltration #2P

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

	in the type of initiation practice (e.g., basin, trench) and the node name in the dramage a	•
Yes	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes
0.94 ac	A = Area draining to the practice	
0.94 ac	A _I = Impervious area draining to the practice	
1.00 decimal	I = Percent impervious area draining to the practice, in decimal form	
0.95 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
0.89 ac-in	WQV= 1" x Rv x A	
3,224 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
806 cf	25% x WQV (check calc for sediment forebay volume)	
Sump & O/S Sep.	Method of pretreatment? (not required for clean or roof runoff)	
N/A cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
5,460 cf	V = Volume ¹ (attach a stage-storage table)	<u>></u> WQV
6,005 sf	A _{SA} = Surface area of the bottom of the pond	
1.00 iph	Ksat _{DESIGN} = Design infiltration rate ²	
6.4 hours	T_{DRAIN} = Drain time = V / ($A_{SA} * I_{DESIGN}$)	<u><</u> 72-hrs
394.00 feet	E _{BTM} = Elevation of the bottom of the basin	
391.00 feet	E _{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	oit)
9.50 feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	t pit)
3.00 feet	D _{SHWT} = Separation from SHWT	<u>></u> * ³
384.5 feet	D _{ROCK} = Separation from bedrock	<u>></u> * ³
N/A ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	<u>></u> 24"
N/A ft	D_T = Depth of trench, if trench proposed	4 - 10 ft
Yes Yes/No	If a trench or underground system is proposed, has observation well been provid	ed? ←yes
N/A	_If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements.	← yes
N/A Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
N/A :1	If a basin is proposed, pond side slopes.	<u>></u> 3:1
396.01 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
396.46 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
397.75 ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES	10 peak elevation \leq Elevation of the top of the trench?	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes: Contributing area includes 100% of runoff from Back half of building roof. Some of this flow bypass' Pond 2P in larger storm events.

Last Revised: March 2019

Prepared by BSC Group HydroCAD® 10.00-22 s/n 00904 © 2018 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft) (cubic-feet)
394.00	6,005	0	396.65	6,005	9,882
394.05	6,005	120	396.70	6,005	10,128
394.10	6,005	240	396.75	6,005	10,373
394.15	6,005	360	396.80	6,005	10,619
394.20	6,005	480	396.85	6,005	10,865
394.25	6,005	601	396.90	6,005	11,110
394.30	6,005	721	396.95	6,005	11,356
394.35	6,005	841	397.00	6,005	11,602
394.40	6,005	961	397.05	6,005	11,848
394.45	6,005	1,081	397.10	6,005	12,093
394.50	6,005	1,201	397.15	6,005	12,339
394.55	6,005	1,321	397.20	6,005	12,585
394.60	6,005	1,441	397.25	6,005	12,830
394.65	6,005	1,561	397.30	6,005	13,076
394.70	6,005	1,682	397.35	6,005	13,322
394.75	6,005	1,802	397.40	6,005	13,567
394.80	6,005	1,922	397.45	6,005	13,813
394.85	6,005	2,042	397.50	6,005	14,059
394.90	6,005	2,042	397.55	6,005	14,304
394.95	6,005	2,102	397.60	6,005	14,550
395.00	6,005	2,202	397.65	6,005	14,796
395.05	6,005	2,402	397.70	6,005	15,041
395.10	6,005	2,522	397.75	6,005	15,287
395.15	6,005	2,763	397.80	6,005	15,207
395.20	6,005	2,703	397.85	6,005	15,302
395.25	6,005	3,003	397.90	6,005	15,330
395.30	6,005	3,248	397.95	6,005	15,345
395.35	6,005	3,240 3,494	398.00	6,005	15,345
395.40	6,005	3,740	398.00	6,005	15,373
395.45	6,005	3,985	398.10	6,005	15,373
395.50	6,005	4,231	398.15	6,005	15,300
395.55	6,005	4,231 4,477	398.20	6,005	15,402
395.60	6,005	4,723	398.25	6,005	15,431
395.65	6,005	4,723	390.25	0,005	15,451
395.70	6,005	4,900 5,214			
395.75	6,005	5,460			
395.80	6,005	5,705		st Outlet = 395.75	
395.85	6,005	5,951		' Required = 3,224 (
395.90	6,005	6,197	WQV	' Provided = 5,460 d	of
395.95	6,005	6,442			
396.00	6,005	6,688			
396.05	6,005	6,934			
396.10	6,005	7,179			
396.15	6,005	7,425			
396.20	6,005	7,423			
396.25	6,005	7,917			
396.30	6,005	8,162			
396.35	6,005	8,408			
396.40	6,005	8,654			
396.45	6,005	8,899			
396.50	6,005	9,145			
396.55	6,005	9,145 9,391			
396.60	6,005	9,636			
030.00	0,000	3,000			

Stage-Area-Storage for Pond 2P: Storm Trap

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Stormtrap Infiltration #1P & 3P

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

			, , , , ,
Yes		Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes
0.38		A = Area draining to the practice	
0.38		A _I = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
0.36		WQV= 1" x Rv x A	
1,310		WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
328		25% x WQV (check calc for sediment forebay volume)	
Sump & C		Method of pretreatment? (not required for clean or roof runoff)	
N/A		V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
4,401		V = Volume ¹ (attach a stage-storage table)	<u>></u> WQV
2,879		A _{SA} = Surface area of the bottom of the pond	
1.00 i	•	Ksat _{DESIGN} = Design infiltration rate ²	
	hours	T _{DRAIN} = Drain time = V / (A _{SA} * I _{DESIGN})	<u><</u> 72-hrs
Varies		E _{BTM} = Elevation of the bottom of the basin	
Varies		E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	
Varies		E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	• •
#VALUE! 1	feet	D _{SHWT} = Separation from SHWT	<u>></u> * ³
#VALUE! 1	feet	D _{ROCK} = Separation from bedrock	<u>></u> * ³
N/A 1	ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	<u>></u> 24"
N/A	ft	D _T = Depth of trench, if trench proposed	4 - 10 ft
Yes	Yes/No	If a trench or underground system is proposed, has observation well been provid	ed? ←yes
N/.	'A	_If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements. ⁴	← yes
	Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
N/A :	:1	If a basin is proposed, pond side slopes.	<u>></u> 3:1
395.94		Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
396.42		Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
396.45	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES		10 peak elevation < Elevation of the top of the trench?	← yes
YES		If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:1. Area draining to practice includes 18% of roof square footage. Because of proposed outletcontrol structure, DMH 102, 18% of the roof runoff flow is the highest percentage that contributes to the inflow ofponds 1P & 3P.

2. Depth to groundwater varies based on location but minimum 3' was held for design. See plans for details.

NHDES Alteration of Terrain

Prepared by BSC Group HydroCAD® 10.00-22 s/n 00904 © 2018 HydroCAD Software Solutions LLC

		-	-		-	
Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
394.00	1,241	0	396.65	1,241	1,940	
394.05	1,241	25	396.70	1,241	1,987	
394.10	1,241	50	396.75	1,241	2,035	
394.15	1,241	74	396.80	1,241	2,082	
394.20	1,241	99	396.85	1,241	2,129	
394.25	1,241	124	396.90	1,241	2,176	
394.30	1,241	149	396.95	1,241	2,223	
394.35	1,241	174	397.00	1,241	2,270	
394.40	1,241	199	397.05	1,241	2,317	
394.45	1,241	223	397.10	1,241	2,365	
394.50	1,241	248	397.15	1,241	2,412	
394.55	1,241	273	397.20	1,241	2,459	
394.60	1,241	298	397.25	1,241	2,506	
394.65	1,241	323	397.30	1,241	2,553	
394.70	1,241	347	397.35	1,241	2,600	
394.75	1,241	372	397.40	1,241	2,647	
394.80	1,241	397	397.45	1,241	2,695	
394.85	1,241	422	397.50	1,241	2,742	
394.90	1,241	447	397.55	1,241	2,789	
394.95	1,241	471	397.60	1,241	2,836	
395.00	1,241	496	397.65	1,241	2,883	
395.05	1,241	521	397.70	1,241	2,930	
395.10	1,241	546	397.75	1,241	2,977	
395.15	1,241	571	397.80	1,241	2,983	
395.20	1,241	596	397.85	1,241	2,989	
395.25	1,241	620	397.90	1,241	2,994	
395.30	1,241	667	397.95	1,241	3,000	
395.35	1,241	715	398.00	1,241	3,005	
395.40	1,241	762	398.05	1,241	3,011	
395.45	1,241	809	398.10	1,241	3,016	
395.50	1,241	856	398.15	1,241	3,022	
395.55	1,241	903	398.20	1,241	3,028	
395.60	1,241	950	398.25	1,241	3,033	
395.65	1,241	997				
395.70	1,241	1,045				
395.75	1,241	1,092				
395.80	1,241	1,139				
395.85	1,241	1,186				
395.90 395.95	1,241 1,241	1,233 1,280				
396.00	1,241	1,200				
396.05	1,241	1,375				
396.10	1,241	1,422	Lawa	A Outlet 200 1	0	
396.15	1,241			st Outlet = 396.1		
396.20	1,241	1,469 1,516			0 cf (For 1P & 3P	Combined)
396.25	1,241	1,563	WQV	Provided = 1,478	8 cf (1P Only)	
396.30	1,241	1,610				
396.35	1,241	1,657				
396.40	1,241	1,705				
396.45	1,241	1,752				
396.50	1,241	1,799				
396.55	1,241	1,846				
396.60	1,241	1,893				
	,	,				

Stage-Area-Storage for Pond 1P: Storm Trap

Prepared by BSC Group HydroCAD® 10.00-22 s/n 00904 © 2018 HydroCAD Software Solutions LLC

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
393.30 1,638 33 395.95 1,638 2,667 393.35 1,638 66 396.00 1,638 2,731 393.40 1,638 98 396.05 1,638 2,794 393.45 1,638 131 396.10 1,638 2,858 393.50 1,638 164 396.15 1,638 2,922 393.55 1,638 197 396.20 1,638 2,985 393.60 1,638 229 396.25 1,638 3,049 393.65 1,638 295 396.35 1,638 3,113 393.70 1,638 295 396.35 1,638 3,113 393.75 1,638 328 396.40 Lowest Outlet = 396.16 WQV Required = 1,310 cf (For 1P & 3P Combine 396.50 WQV Required = 1,310 cf (For 1P & 3P Combine 393.85 1,638 393 396.50 WQV Provided = 2,934 cf (3P Only)	
393.30 1,638 33 395.95 1,638 2,667 393.35 1,638 66 396.00 1,638 2,731 393.40 1,638 98 396.05 1,638 2,794 393.45 1,638 131 396.10 1,638 2,858 393.50 1,638 164 396.15 1,638 2,922 393.55 1,638 197 396.20 1,638 2,985 393.60 1,638 229 396.25 1,638 3,049 393.65 1,638 295 396.35 1,638 3,113 393.70 1,638 295 396.35 1,638 3,113 393.75 1,638 328 396.40 Lowest Outlet = 396.16 WQV Required = 1,310 cf (For 1P & 3P Combine 396.50 WQV Required = 1,310 cf (For 1P & 3P Combine 393.85 1,638 393 396.50 WQV Provided = 2,934 cf (3P Only)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
393.40 1,638 98 396.05 1,638 2,794 393.45 1,638 131 396.10 1,638 2,858 393.50 1,638 164 396.15 1,638 2,922 393.55 1,638 197 396.20 1,638 2,985 393.60 1,638 229 396.25 1,638 3,049 393.65 1,638 262 396.30 1,638 3,113 393.70 1,638 295 396.35 1,638 3,113 393.75 1,638 328 396.40 Lowest Outlet = 396.16 393.80 1,638 360 396.45 WQV Required = 1,310 cf (For 1P & 3P Combine WOV Provided = 2,934 cf (3P Only)	
393.45 1,638 131 396.10 1,638 2,858 393.50 1,638 164 396.15 1,638 2,922 393.55 1,638 197 396.20 1,638 2,985 393.60 1,638 229 396.25 1,638 3,049 393.65 1,638 262 396.30 1,638 3,113 393.70 1,638 295 396.35 1,638 3,113 393.75 1,638 328 396.40 1,638 3,177 393.80 1,638 360 396.45 WQV Required = 1,310 cf (For 1P & 3P Combine WOV Provided = 2,934 cf (3P Only)	
393.50 1,638 164 396.15 1,638 2,922 393.55 1,638 197 396.20 1,638 2,985 393.60 1,638 229 396.25 1,638 3,049 393.65 1,638 262 396.30 1,638 3,113 393.70 1,638 295 396.35 1,638 3,113 393.75 1,638 328 396.40 Lowest Outlet = 396.16 393.80 1,638 360 396.45 WQV Required = 1,310 cf (For 1P & 3P Combine 393.85 1,638 393 396.50 WOV Provided = 2,934 cf (3P Only)	
393.55 1,638 197 396.20 1,638 2,985 393.60 1,638 229 396.25 1,638 3,049 393.65 1,638 262 396.30 1,638 3,113 393.70 1,638 295 396.35 1,638 3,113 393.75 1,638 328 396.40 1,638 3,177 393.80 1,638 360 396.45 Lowest Outlet = 396.16 393.85 1,638 393 396.50 WQV Required = 1,310 cf (For 1P & 3P Combine	
393.60 1,638 229 396.25 1,638 3,049 393.65 1,638 262 396.30 1,638 3,113 393.70 1,638 295 396.35 1,638 3,113 393.75 1,638 328 396.40 1,638 3,177 393.80 1,638 360 396.45 WQV Required = 1,310 cf (For 1P & 3P Combine 396.50 393.85 1,638 393 396.50 WOV Provided = 2,934 cf (3P Only)	
393.65 1,638 262 396.30 1,638 3,113 393.70 1,638 295 396.35 1,638 3,113 393.75 1,638 328 396.40 1,638 3,177 393.80 1,638 360 396.40 1,638 3,113 393.85 1,638 360 396.45 WQV Required = 1,310 cf (For 1P & 3P Combine WOV Provided = 2,934 cf (3P Only))	
393.70 1,638 295 396.35 1,638 3,177 393.75 1,638 328 396.40 Lowest Outlet = 396.16 393.80 1,638 360 396.45 WQV Required = 1,310 cf (For 1P & 3P Combined 2) 393.85 1,638 393 396.50 WOV Provided = 2,934 cf (3P Only)	
393.75 1,638 328 396.40 393.80 1,638 360 396.45 393.85 1,638 393 396.50	
393.80 1,638 360 396.45 393.85 1,638 393 396.50 WQV Required = 1,310 cf (For 1P & 3P Combine WOV Provided = 2,934 cf (3P Only)	
393.85 1,638 393 396.50 WOV Required = 1,510 cf (101 FP & 5P combine	
	a)
393.90 1,638 420 390.55 <u>1,638</u> 3,61	
394.00 1,638 491 396.65 1,638 3,559	
394.05 1,638 524 396.70 1,638 3,623	
394.10 1,638 557 396.75 1,638 3,686	
394.15 1,638 590 396.80 1,638 3,750	
394.20 1,638 622 396.85 1,638 3,814	
394.25 1,638 655 396.90 1,638 3,878	
394.20 1,638 688 396.95 1,638 3,941	
394.35 1,638 721 397.00 1,638 4,005	
394.40 1,638 753 397.05 1,638 4,069	
394.45 1,638 786 397.10 1,638 4,132	
394.50 1,638 819 397.15 1,638 4,196	
394.55 1,638 883 397.20 1,638 4,260	
394.60 1,638 946 397.25 1,638 4,324	
394.65 1,638 1,010 397.30 1,638 4,387	
394.70 1,638 1,074 397.35 1,638 4,451	
394.75 1,638 1,137 397.40 1,638 4,515	
394.80 1,638 1,201 397.45 1,638 4,578	
394.85 1,638 1,265 397.50 1,638 4,642	
394.90 1,638 1,329 397.55 1,638 4,649	
394.95 1,638 1,392 397.60 1,638 4,656	
395.00 1,638 1,456 397.65 1,638 4,663	
395.05 1,638 1,520 397.70 1,638 4,669	
395.10 1,638 1,584 397.75 1,638 4,676	
395.15 1,638 1,647 397.80 1,638 4,683	
395.20 1,638 1,711 397.85 1,638 4,690	
395.25 1,638 1,775 397.90 1,638 4,697	
395.30 1,638 1,838 397.95 1,638 4,704	
395.35 1,638 1,902 398.00 1,638 4,710	
395.40 1,638 1,966	
395.45 1,638 2,030	
395.50 1,638 2,093	
395.55 1,638 2,157	
395.60 1,638 2,221	
395.65 1,638 2,284	
395.70 1,638 2,348	
395.75 1,638 2,412	
395.80 1,638 2,476	
395.85 1,638 2,539	

Stage-Area-Storage for Pond 3P: Storm Trap

1.05 CONCLUSIONS

The proposed site development is an effort for the applicant to provide a more efficient, safe and technologically advanced facility to support their employees and future business. The measures that will be taken to mitigate the adverse effects of increased stormwater runoff as part of this project are in line with local and state practices and guidelines and should prove effective in protecting the property, abutting properties, existing wetland areas and other nearby undeveloped lands. The post construction peak runoff rates will decrease or remain the same at each point of analysis for all analyzed storm events. Appropriate steps, including the use of temporary erosion controls, drainage swales, deep sump manholes, oil particle separators, infiltration/attenuation chambers, outlet control structures, level spreaders and proposed site grading inline with stormwater control Best Management Practices, will be taken to control erosion and sedimentation both during and post construction. The applicant will also be provided with information on the guidelines for inspection, operation and maintenance of these systems to ensure they are operating effectively for the future.

SECTION 2.0

LONG-TERM POLLUTION PREVENTION & OPERATION & MAINTENANCE PLAN

LONG-TERM POLLUTION PREVENTION & OPERATION & MAINTENANCE PLAN

As recommended by the New Hampshire Department of Environmental Services Stormwater Manual, this Long-Term Pollution Prevention Plan has been developed for source control and pollution prevention at the site after construction.

MAINTENANCE RESPONSIBILITY

The enforcement of the Long-Term Operation and Maintenance Plan will be the responsibility of the Owner, Shea Concrete, who is the owner and occupant of 160 Old Turnpike Road, Nottingham, New Hampshire.

GOOD HOUSEKEEPING PRACTICES

The site is to be kept clean of trash and debris at all times. Trash, junk, etc. is not to be left outside and will be subject to removal at the owner's expense.

VEHICLE WASHING CONTROLS

The following BMP's, or equivalent measures, methods or practices are required if you are engaged in vehicle washing and/or steam cleaning:

It is allowable to rinse down the body or a vehicle, including the bed of a truck, with just water without doing any wash water control BMP's.

If you wash (with mild detergents) on an area that infiltrates water, such as gravel, grass, or loose soil, it is acceptable to let the wash water infiltrate as long as you only wash the body of vehicles.

However, if you wash on a paved area and use detergents or other cleansers, or if you wash/rinse the engine compartment or the underside of vehicles, you must take the vehicles to a commercial vehicle wash.

REQUIREMENTS FOR ROUTINE INSPECTIONS AND MAINTENANCE OF STORMWATER BEST MANAGEMENT PRACTICES

All stormwater Best Management Practices (BMP's) are to be inspected and maintain as follows. Each inspection report should include photos of each BMP and Inspection & Maintenance Reports shall be provided to NHDES upon request.

Haybales, Silt Fences, and Other Temporary Measures

The temporary erosion control measures will be installed up gradient of any wetland resource area where any disturbance or alteration might otherwise allow for erosion or sedimentation. They will be regularly inspected to ensure that they are functioning adequately. Additional supplies of these temporary measures will be stockpiled on site for any immediate needs or routine replacement. Accumulated sediment shall be removed when it reaches a depth of half the height of the TEC measure or one foot, whichever is less.

Construction Entrance

Stone used for the construction entrance should be large enough so that it does not get picked up and tracked off of the site by the vehicle traffic. Sharp edged stone should not be used to avoid puncturing tires. Additional stone may have to be added to maintain effectiveness.

If vehicles will be turning onto paved road or drive from the stabilized construction entrance, then an apron should be provided so that vehicles do not go off of the stabilized construction entrance before they leave the site.

The temporary construction entrance may be provided with a vehicle wash rack which drains to a temporary sediment trap or other sediment removing measure. This will allow vehicle tires to be washed prior to leaving the site and ensure that wash water sediments are removed and can be properly disposed of.

Trench Drains

Trench drains are proposed on site to collect stormwater runoff from the concrete building apron and convey it to the deep sump manholes attached to the outlet of each drain. Regular inspection for sediment and/or leaf/litter buildup is essential for this structure to ensure proper functionality. Remove any build-up of debris that may restrict water flow to the deep sump manholes.

Area Drains/Deep Sump Manholes

Regular maintenance is essential. Area drains & deep sump manholes remain effective at removing pollutants only if they are cleaned out frequently. Inspect or clean area drains and deep sump manholes at least four times per year and at the end of the foliage and snow removal seasons. Sediments must also be removed four times per year or whenever the depth of the deposits in the area drain and manhole sump is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe.

Pipe Outlet Protection

The outlet protection should be checked at least annually and after every major storm. If the riprap has been displaced, undermined or damaged, it should be repaired immediately. The channel immediately below the outlet should be checked to see that erosion is not occurring. The downstream channel should be kept clear of obstructions such as fallen trees, debris, and sediment that could change flow patterns and/or tailwater depths on the pipes. Repairs must be carried out immediately to avoid additional damage to the outlet protection apron.

Oil/Particle Separators

Sediments and associated pollutants and trash are removed only when inlets or sumps are cleaned out, so regular maintenance is essential. Most studies have linked the failure of oil grit separators to the lack of regular maintenance. The more frequent the cleaning, the less likely sediments will be resuspended and subsequently discharged. In addition, frequent cleaning also makes more volume available for future storms and enhances overall performance. Cleaning includes removal of accumulated oil and grease and sediment using a vacuum truck or other ordinary catch basin cleaning device. In areas of high sediment loading, inspect and clean inlets after every major storm. At a minimum, inspect oil grit separators monthly, and clean them out at least twice per year. Polluted water or sediments removed from an oil grit separator should be disposed of in accordance with all applicable local, state and federal laws.

Grass Swale

Incorporate a maintenance and inspection schedule into the design to ensure the effectiveness of water quality swales. Inspect swales during the first few months after installation to make sure that the vegetation in the swales becomes adequately established. Thereafter, inspect swales twice a

year. During the inspections, check the swales for slope integrity, soil moisture, vegetative health, soil stability, soil compaction, soil erosion, ponding and sedimentation.

Regular maintenance includes mowing, fertilizing, liming, watering, pruning, and weed and pest control. Mow swales at least once per year. Do not cut the grass shorter than three to four inches, otherwise the effectiveness of the vegetation in reducing flow velocity and removing pollutants may be reduced. Do not let grass height exceed 6 inches.

Invasive species management of swales shall have a common goal of preventing and controlling the spread of invasive plant, insect, and fungal species. Such that all prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable.

Manually remove sediment and debris at least once per year, and periodically re-seed, if necessary, to maintain a dense growth of vegetation. Take care to protect grass swales from snow removal and disposal practices and off-street parking. When grass swales are located on private residential property, the operation and maintenance plan must clearly identify the property owner who is responsible for carrying out the required maintenance.

Subsurface Infiltration Areas

Maintenance is required for the proper operation of the underground infiltration systems. Infiltration systems are prone to failure due to clogging if the upstream water quality units are not maintained. The use of pretreatment BMPs will minimize failure and maintenance requirements.

After construction, the infiltration systems should be inspected after every major storm for the first few months to ensure proper stabilization and function. Water levels in the access ports should be recorded over several days to check the drainage of the systems. It is recommended that a logbook be maintained showing the depth of water in the detention/infiltration systems at each observation in order to determine the rate at which the system dewaters after runoff producing storm events. Standing water within the infiltration areas 48 to 72 hours after a storm indicates that the infiltration capacity may have been overestimated or clogging may be occurring. Once the performance characteristics of the detention/infiltration have been verified, the monitoring schedule can be reduced to a bi-annual basis, unless the performance data suggests that a more frequent schedule is required.

Preventive maintenance on subsurface infiltration systems should be performed at least twice a year, and sediment should be removed from any and all pretreatment and collection structures. Sediment should be removed when deposits approach within six inches of the invert heights of connecting pipes, or in sumped inlet structures. Follow StormTrap guidelines and recommendations for additional infiltration system inspection and maintenance guidance.

Level Spreaders

Inspect level spreaders regularly, especially after large rainfall events. Note and repair any erosion or low spots in the spreader. Keep level spreader areas clean of debris.

Deep Sump Manhole Inserts (SNOUT Trap or Approved Equal)

Inspect deep sump manhole Inserts per the manufacturer's schedule, and especially after large rainfall events. Inspect the anti-siphon vent and access hatch annually, at a minimum. Flush vent,

or rod gently with flexible wire to maintain anti siphon properties. Refer to SNOUT Trap maintenance guidelines for additional information.

SNOW DISPOSAL AND PLOWING PLANS

The purpose of the snow and snowmelt management plan is to provide guidelines regarding snow disposal site selection, site preparation and maintenance that are acceptable to the Department of Environmental Services. For the areas that require snow removal, snow storage onsite will largely be accomplished by using pervious upland areas away from wetlands as designated on the Site Plans. There are adequate snow storage areas located within parking lot islands and edges of paved areas away from the wetland resource areas for small frequent snowfall events. For larger snowfall events or for additional snow storage space, snowfall will be required to be hauled offsite to a snow stockpile area meeting DES requirements.

Snow disposal areas have been identified on the Site Plans. The key to selecting effective snow disposal sites is to locate them adjacent to or on pervious surfaces in upland areas away from water resources and wells. At these locations, the snow meltwater can filter into the soil, leaving behind sand and debris, which can be removed in the springtime. The following areas should be avoided:

- Avoid dumping of snow into any waterbody, including rivers, the ocean, reservoirs, ponds, or wetlands. In addition to water quality impacts and flooding, snow disposed of in open water can cause navigational hazards when it freezes into ice blocks.
- Avoid disposing of snow on top of storm drain catch basins or in stormwater drainage swales or ditches. Snow combined with sand and debris may block a storm drainage system, causing localized flooding. A high volume of sand, sediment, and litter released from melting snow also may be quickly transported through the system into surface water.

WINTER ROAD SALT AND/OR SAND USE AND STORAGE RESTRICTIONS

Road salt and sand is prohibited from being stored onsite. All deicing activities are to be monitored and documented in the deicing log, attached at the end of this section.

STREET SWEEPING SCHEDULES

Effective sweeping requires access to the areas to be swept. It is essential that applicants or those responsible for stormwater maintenance have the ability to impose parking regulations to facilitate proper sweeping, particularly in densely populated or heavily traveled areas, so that sweepers can get as close to curbs as possible. Residents are to be notified prior to street sweeping operations so that paved areas can be clear of vehicles and any other items.

There are three types of sweepers: Mechanical, Regenerative Air, and Vacuum Filter. Each has a different ability to remove TSS.

- 1) Mechanical: Mechanical sweepers use brooms or rotary brushes to scour the pavement. Although most of the sweepers currently in use in New Hampshire are mechanical sweepers, they are not effective at removing TSS (from 0% to 20% removal). Mechanical sweepers are especially ineffective at picking up fine particles ("fines") (less than 100 microns).
- 2) Regenerative Air: These sweepers blow air onto the road or parking lot surface, causing fines to rise where they are vacuumed. Regenerative air sweepers may blow fines off the vacuumed portion of the roadway or parking lot, where they contaminate stormwater when it rains.
- 3) Vacuum filter: These sweepers remove fines along roads. Two general types of vacuum filter sweepers are available wet and dry. The dry type uses a broom in combination with the vacuum. The wet type uses water for dust suppression. Research indicates vacuum sweepers are highly effective in removing TSS.

Regardless of the type chosen, the efficiency of street sweeping is increased when sweepers are operated in tandem. The following table summarizes the frequency of the site street sweeping based on the type of sweeper used.

Reuse and Disposal of Street Sweepings

Once removed from paved surfaces, the sweeping must be handled and disposed of properly. Street sweeping waste must be disposed of or reused in accordance with NHDES Environmental Fact Sheet WMD-SW-32, Management of Street Wastes.

TRAINING OF STAFF OR PERSONNEL INVOLVED WITH IMPLEMENTING LONG-TERM POLLUTION PREVENTION & OPERATION & MAINTENANCE PLAN

The Long-Term Pollution Prevention & Operation & Maintenance Plan is to be implemented by property owner of the site. Trained and, if required, licensed Professionals are to be hired by the owner as applicable to implement the Long-Term Pollution Prevention Plan.

LIST OF EMERGENCY CONTACTS FOR IMPLEMENTING LONG-TERM POLLUTION PREVENTION & OPERATION & MAINTENANCE PLAN

The Owner along with the Lease holder, if applicable, will be required to maintain an updated list of Emergency Contacts for the site.

SECTION 3.0

CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL PLAN (STORM WATER POLLUTION PREVENTION PLAN - SWPPP)

CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL PLAN (STORM WATER POLLUTION PREVENTION PLAN - SWPPP)

This Section specifies requirements and suggestions for implementation of a Storm Water Pollution Prevention Plan (SWPPP) for the development of **160 Old Turnpike Road in Nottingham, New Hampshire.**

The storm water pollution prevention measures contained in this SWPPP shall be at least the minimum required by Local Regulations. The Contractor shall provide additional measures to prevent pollution from stormwater discharges in compliance with the Environmental Protection Agency's (EPA) National Pollution Discharge Elimination System (NPDES) 2022 Construction General Permit requirements and all other local, state and federal requirements.

The Contractor shall NOT begin construction without submitting evidence that a NPDES Notice of Intent (NOI) governing the discharge of storm water from the construction site for the entire construction period has been filed at least fourteen days prior to construction. It is the Contractor's responsibility to complete and file the NOI.

The cost of any fines, construction delays and remedial actions resulting from the Contractor's failure to comply with all provisions of local regulations and Federal NPDES permit requirements shall be paid for by the Contractor at no additional cost to the Owner.

As a requirement of the EPA's NPDES permitting program, each Contractor and Subcontractor responsible for implementing and maintaining stormwater Best Management Practices shall execute a Contractor's Certification form.

The SWPPP shall include provisions for, but not be limited to, the following:

- 1. Construction Trailers
- 2. Lay-down Areas
- 3. Equipment Storage Areas
- 4. Stockpile Areas
- 5. Disturbed Areas

1.0 Erosion and Sedimentation Control

The Contractor shall be solely responsible for erosion and sedimentation control at the site. The Contractor shall utilize a system of operations and all necessary erosion and sedimentation control measures, even if not specified herein or elsewhere, to minimize erosion damage at the site to prevent the migration of sediment into environmentally sensitive areas. Environmentally sensitive areas include all wetland resource areas within, and downstream of, the site, and those areas of the site that are not being altered.

Erosion and sedimentation control shall be in accordance with this Section, the design drawings, and the following:

□ "Storm Water Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices" (EPA 832-R92-005, Sept. 1992).

□ "Storm Water Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices – Summary Guidance" (EPA 833-R92-001, Oct. 1992).

□ New Hampshire Stormwater Manual (Volumes II & III) issued by the New Hampshire Department of Environmental Services, December, 2008.

The BMP's presented herein should be used as a guide for erosion and sedimentation control and are <u>not</u> intended to be considered specifications for construction. The most important BMP is maintaining a rapid construction process, resulting in prompt stabilization of surfaces, thereby reducing erosion potential. Given the primacy of rapid

construction, these guidelines have been designed to allow construction to progress with essentially no hindrance by the erosion control methods prescribed. These guidelines have also been designed with sufficient flexibility to allow the contractor to modify the suggested methods as required to suit seasonal, atmospheric, and site-specific physical constraints.

Another important BMP is the prevention of concentrated water flow. Sheet flow does not have the erosive potential of a concentrated rivulet. These guidelines recommend construction methods that allow localized erosion control and a system of construction, which inhibits the development of shallow concentrated flow. These BMP's shall be maintained throughout the construction process.

2.0 CONTACT INFORMATION AND RESPONSIBLE PARTIES

The following is a list of all project-associated parties:

Owner/Applicant Shea Concrete 87 Haverhill Avenue Amesbury, Massachusetts, 01950 Phone: 978-988-3900

Contact: George Saurman

Contractor To Be Determined

Environmental Consultant BSC Group 803 Summer Street Boston, MA 02127

Contact: Taylor Dowdy Phone: (617) 896 – 4300 Email: tdowdy@bscgroup.com

3.0 Procedural Conditions of the Construction General Permit (CGP)

The following list outlines the Storm Water responsibilities for all construction operators working on the Project. The operators below agree through a cooperative agreement to abide by the following conditions throughout the duration of the construction project, effective the date of signature of the required SWPPP. These conditions apply to all operators on the project site.

4.0 Project Description and Intended Construction Sequence

The applicant is planning expand their existing precast concrete production facility on site. The site is currently comprised of a 6,800 square foot building and gravel storage and parking areas. The development will include a proposed 90'x250' manufacturing facility surrounded by a 50' concrete building apron on all sides. A proposed septic system is also proposed to accommodate the new building.

- Construction of a 90'x250' precast concrete structure manufacturing facility
- Construction of a concrete building apron that extends 50' from the proposed building in all directions
- Landscaping, grading and utility installation
- Installation of a 30,000 gallon fire cistern and paved access pad
- Construction of a new septic system to accommodate the proposed building

Soil disturbing activities will include site clearing & grubbing, installing stabilized construction exits, installation of erosion and sedimentation controls, grading, storm drain inlets, utilities, building foundations, final seeding, mulching and landscaping. Please refer to Table 1 for the projects anticipated construction timetable. A description of BMP's associated with project timetable and construction-phasing elements is provided in section 4.2 of this SWPPP.

Table 1 – Anticipated Construction Timetable	
Construction Phasing Activity	Anticipated Timetable
Grubbing and Stripping of Limits of Construction Phase	To be determined
Rough Site Grading and Site Utilities	To be determined
Installation of drainage features	To be determined
Building Foundation and Shell	To be determined
Landscaping	To be determined
Final Clean-up	To be determined

5.0 Potential Sources of Pollution

Any project site activities that have the potential to add pollutants to runoff are subject to the requirements of this sample SWPPP. Listed below is a description of potential sources of pollution from both sedimentation to Storm Water runoff, and pollutants from sources other than sedimentation.

Table 2 – Potential Sources of Sediment to Storm water Runoli	
Activities/Comments	
Vehicles leaving the site can track soils onto public	
roadways. Site Vehicles can readily transport exposed soils	
throughout the site and off-site areas.	
Exposed soils have the potential for erosion and discharge of	
sediment to off-site areas.	
Stockpiling of materials during excavation and relocation of	
soils can contribute to erosion and sedimentation. In addition	
fugitive dust from stockpiled material, vehicle transport and	
site grading can be deposited in wetlands and waterway.	
Landscaping operations specifically associated with exposed	
soils can contribute to erosion and sedimentation.	
Hydroseeding if not properly applied can runoff to adjacent	
wetlands and waterways.	

Table 5 – Potential Pollutants and Sources, other than Seatment to Storm Water Runojj	
Potential Source	Activities/Comments
Staging Areas and Construction	Vehicle refueling, minor equipment maintenance, sanitary
Vehicles	facilities and hazardous waste storage
Materials Storage Area	General building materials, solvents, adhesives, paving materials, paints, aggregates, trash, etc.
Construction Activities	Construction, paving, curb/gutter installation, concrete pouring/mortar/stucco

Table 3 – Potential Pollutants and Sources, other than Sediment to Storm Water Runoff

6.0 Erosion and Sedimentation Control Best Management Practices

The project site is characterized by a mix of gravel parking and storage areas, proposed impervious surface and forested areas. All construction activities will implement Best Management Practices (BMP's) in order to minimize overall site disturbance and impacts to the sites natural features. Please refer to the following sections for a detailed

description of site specific BMP's. In addition, an Erosion and Sedimentation Control Plan is provide in the Site Plans.

7.0 Timetable and Construction Phasing

This section provides the Owner and Contractor with a suggested order of construction that shall minimize erosion and the transport of sediments. The individual objectives of the construction techniques described herein shall be considered an integral component of the project design intent of each project phase. The construction sequence is not intended to prescribe definitive construction methods and should not be interpreted as a construction specification document. However, the Contractor shall follow the general construction phase principles provided below:

- Protect and maintain existing vegetation wherever possible.
- Minimize the area of disturbance.
- To the extent possible, route unpolluted flows around disturbed areas.
- Install mitigation devices as early as possible.
- Minimize the time disturbed areas are left unstabilized.
- Maintain siltation control devices in proper condition.
- The contractor should use the suggested sequence and techniques as a general guide and modify the suggested methods and procedures as required to best suit seasonal, atmospheric, and site specific physical constraints for the purpose of minimizing the environmental impact of construction.

Demolition, Grubbing and Stripping of Limits of Construction Phase

- Install TEC devices as required to prevent sediment transport into resource areas.
- Place a ring of silt socks and/or hay bales around stockpiles.
- Stabilize all exposed surfaces that will not be under immediate construction.
- Store and/or dispose all pavement and building demolition debris as indicated in accordance with all applicable local, state, and federal regulations.

Paved Areas Sub-base Construction

- Install temporary culverts and diversion ditches and additional TEC devices as required by individual construction area constraints to direct potential runoff toward detention areas designated for the current construction phase.
- Compact gravel as work progresses to control erosion potential.
- Apply water to control air suspension of dust.
- Avoid creating an erosive condition due to over-watering.
- Install piped utility systems as required as work progresses, keeping all inlets sealed until all downstream drainage system components are functional.

Binder Construction

- Fine grade gravel base and install processed gravel to the design grades.
- Compact pavement base as work progresses.
- Install pavement binder coat starting from the downhill end of the site and work toward the top.

<u>Finish Paving</u>

- Repair and stabilize damaged side slopes.
- Clean inverts of drainage structures.
- Install final top coat of pavement.

Final Clean-up

- Clean inverts of culverts and catch basins.
- Remove sediment and debris form rip-rap outlet areas.
- Remove TEC devices only after permanent vegetation and erosion control has been fully established.

8.0 Site Stabilization

Grubbing Stripping and Grading

- Erosion control devices shall be in place as shown on the design plans before grading commences.
- Stripping shall be done in a manner, which will not concentrate runoff. If precipitation is expected, earthen berms shall be constructed around the area being stripped, with a silt sock, silt fence or hay bale dike situated in an arc at the low point of the berm.
- If intense precipitation is anticipated, silt socks, hay bales, dikes and /or silt fences shall be used as required to prevent erosion and sediment transport. The materials required shall be stored on site at all time.
- If water is required for soil compaction, it shall be added in a uniform manner that does not allow excess water to flow off the area being compacted.
- Dust shall be held at a minimum by sprinkling exposed soil with an appropriate amount of water.

Maintenance of Disturbed Surfaces

- Runoff shall be diverted from disturbed side slopes in both cut and fill.
- Mulching may be used for temporary stabilization.
- Silt sock, hay bale or silt fences shall be set where required to trap products of erosion and shall be maintained on a continuing basis during the construction process.

Loaming and Seeding

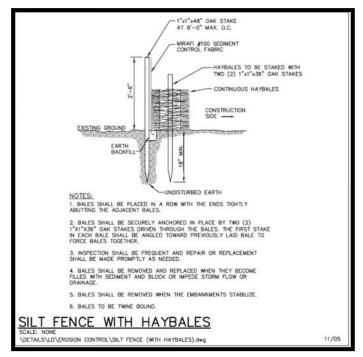
- Loam shall not be placed unless it is to be seeded directly thereafter.
- All disturbed areas shall have a minimum of 4" of loam placed before seeded and mulched.
- Consideration shall be given to hydro-mulching, especially on slopes in excess of 3 to 1.
- Loamed and seeded slopes shall be protected from washout by mulching or other acceptable slope protection until vegetation begins to grow.

Storm Water Collection System Installation

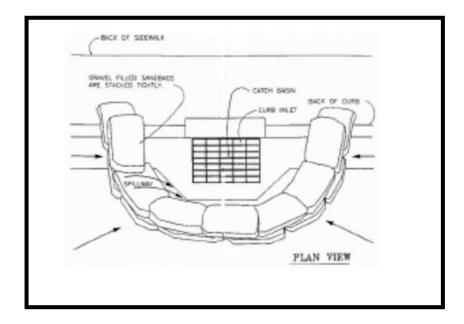
- The Storm Water drainage system shall be installed from the downstream end up and in a manner which will not allow runoff from disturbed areas to enter pipes.
- Excavation for the drainage system shall not be left open when rainfall is expected overnight. If left open under other circumstances, pipe ends shall be closed by a staked board or by an equivalent method.
- All catch basin openings shall be covered by a silt bag between the grate and the frame or protected from sediment by silt fence surrounding the catch basin grate.

Completion of Paved Areas

- During the placement of sub-base and pavement, the entrance to the Storm Water drainage systems shall be sealed when rain is expected. When these entrances are closed, consideration must be given to the direction of run-off and measures shall be undertaken to minimize erosion and to provide for the collection of sediment.
- In some situations it may be necessary to keep catch basins open.
- Appropriate arrangements shall be made downstream to remove all sediment deposition. <u>Stabilization of Surfaces</u>
- Stabilization of surfaces includes the placement of pavement, rip-rap, wood bark mulch and the establishment of vegetated surfaces.
- Upon completion of construction, all surfaces shall be stabilized even though it is apparent that future construction efforts will cause their disturbance.
- Vegetated cover shall be established during the proper growing season and shall be enhanced by soil adjustment for proper pH, nutrients and moisture content.
- Surfaces that are disturbed by erosion processes or vandalism shall be stabilized as soon as possible.
- Areas where construction activities have permanently or temporarily ceased shall be stabilized within 14 days from the last construction activity, except when construction activity will resume within 21 days (e.g., the total time period that construction activity is temporarily ceased is less than 21 days).

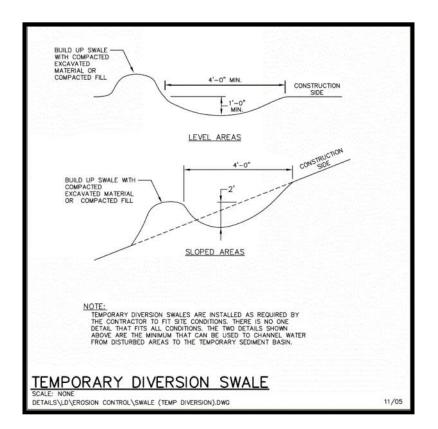

- Hydro-mulching of grass surfaces is recommended, especially if seeding of the surfaces is required outside the normal growing season.
- Hay mulch is an effective method of temporarily stabilizing surfaces, but only if it is properly secured by branches, weighted snow fences or weighted chicken wire.

9.0 Temporary Structural Erosion Control Measures

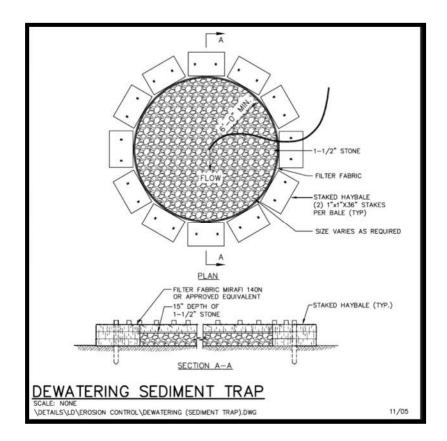

Temporary erosion control measures serve to minimize construction-associated impacts to wetland resource and undisturbed areas. Please refer to the following sections for a description of temporary erosion control measures implemented as part of the project and this sample SWPPP.

9.01 Silt Socks, Haybales, and Silt Fencing

Siltation barriers composed of silt socks and double-staked hay bales and trenched silt fence will be installed within the 100-foot buffer zone along the upland side of delineated wetland resources. The siltation barriers will demarcate the limit of work, form a work envelope and provide additional assurance that construction equipment will not enter the adjacent wetlands or undisturbed portions of the site. All barriers will remain in place until disturbed areas are stabilized.



9.02 Temporary Storm Water Diversion Swale


A temporary diversion swale is an effective practice for temporarily diverting Storm Water flows and to reduce Storm Water runoff velocities during storm events. The swale channel can be installed before infrastructure construction begins at the site, or as needed throughout the construction process. The diversion swale should be routinely compacted or seeded to minimize the amount of exposed soil.

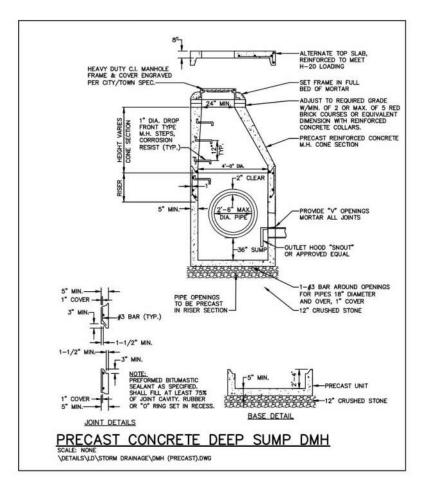
9.03 Dewatering Basins

Dewatering may be required during Storm Water system, foundation construction and utility installation. Should the need for dewatering arise, groundwater will be pumped directly into a temporary settling basin, which will act as a sediment trap during construction. All temporary settling basins will be located within close proximity of daily work activities. Prior to discharge, all groundwater will be treated by means of the settling basin or acceptable substitute. Discharges from sediment basins will be free of visible floating, suspended and settleable solids that would impair the functions of a wetland or degrade the chemical composition of the wetland resource area receiving ground or surface water flows and will be to the combined system.

9.04 Material Stockpiling Locations

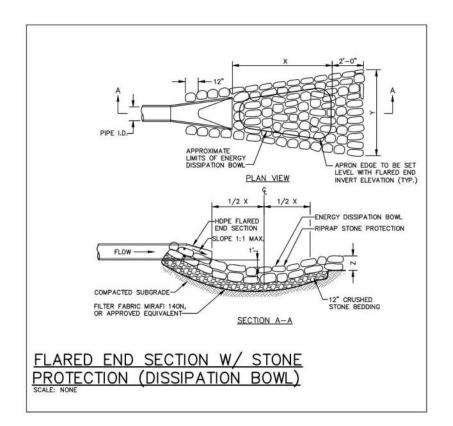
There will be no storage of soil, gravel or construction debris within the 100-foot buffer zone to wetland resource areas. It is anticipated that all excavated material will be placed in a dump truck and stockpiled outside the 100-foot buffer zone during construction activities. Piping and trench excavate associated with the subsurface utility work will be contained with a single row of silt socks and/or hay bales.

10.0 Permanent Structural Erosion Control Measures


Permanent erosion control measures serve to minimize post-construction impacts to wetland resource areas and undisturbed areas. Please refer to the following sections for a description of permanent erosion control measures implemented as part of the project and this SWPPP.

10.01 Trench Drains with Deep Sump Manholes

Impervious areas will provided with trench drains, connected to deep sump manholes to collect and treat runoff. The drainage system for the project will be installed in the early phases of the project. The collection system will be installed from the downstream end up, and in a manner which will not allow runoff from disturbed areas to enter the pipes. The deep sump manholes will be inspected and cleaned as necessary when sediment depth of equal to one half the height from the sump to the lowest pipe invert or at least two times per year. Trench drains will be inspected and cleaned at least four times per year and whenever accumulated sediment or debris restricts stormwater flow. The optimum time for cleaning is during the period just after the snowmelt of late winter and prior to the onset of heavy spring precipitation. All sediments and hydrocarbons will be properly handled and disposed of in accordance with local state and federal guidelines and regulations.



10.02 Flared End Section w/Stone Protection (Dissipation Bowl)

Inspect dissipation bowls regularly, especially after large rainfall events. Note and repair any erosion or low spots in the dissipation bowl. Inspect for and remove any debris, leaf or trash collected in dissipation bowl.

11.0 Good Housekeeping Best Management Practices

11.01 Material Handling and Waste Management

Solid waste generation during the construction period will be primarily construction debris. The debris will include scrap lumber (used forming and shoring pallets and other shipping containers), waste packaging materials (plastic sheeting and cardboard), scrap cable and wire, roll-off containers (or dumpsters) and will be removed by a contract hauler to a properly licensed landfill. The roll-off containers will be covered with a properly secured tarp before the hauler exists the site. In addition to construction debris, the construction work force will generate some amount of household-type wastes (food packing, soft drink containers, and other paper). Trash containers for these wastes will be located around the site and will be emptied regularly so as to prevent wind-blown litter. This waste will also be removed by a contract hauler.

All hazardous waste material such as oil filters, petroleum products, paint and equipment maintenance fluids will be stored in structurally sound and sealed shipping containers in the hazardous-materials storage area and segregated from other non-waste materials. Secondary containment will be provided for all materials in the hazardous materials storage area and will consist of commercially available spill pallets. Additionally, all hazardous materials will be disposed of in accordance with federal, state and municipal regulations.

Two temporary sanitary facilities (portable toilets) will be provided at the site in the combined staging area. The toilets will be away form a concentrated flow path and traffic flow and will have collection

pans underneath as secondary treatment. All sanitary waste will be collected from an approved party at a minimum of three times per week.

11.02 Building Material Staging Areas

Construction equipment and maintenance materials will be stored at the combined staging area and materials storage areas. Silt fence will be installed around the perimeter to designate the staging and materials storage area. A watertight shipping container will be used to store hand tools, small parts and other construction materials.

Non-hazardous building materials such as packaging material (wood, plastic and glass) and construction scrap material (brick, wood, steel, metal scraps, and pine cuttings) will be stored in a separate covered storage facility adjacent other stored materials. All hazardous-waste materials such as oil filters, petroleum products, paint and equipment maintenance fluids will be stored in structurally sound and sealed containers under cover within the hazardous materials storage area.

Large items such as framing materials and stockpiled lumber will be stored in the open storage area. Such materials will be elevated on wood blocks to minimize contact with runoff. The combined storage areas are expected to remain clean, well organized and equipped with ample cleaning supplies as appropriate for the materials being stored. Perimeter controls such as containment structures, covers and liners will be repaired or replaced as necessary to maintain proper function.

11.03 Designated Washout Areas

Designated temporary, below-ground concrete washout areas will be constructed, as required, to minimize the pollution potential associated with concrete, paint, stucco, mixers etc. Signs will, if required, be posted marking the location of the washout area to ensure that concrete equipment operators use the proper facility. Concrete pours will not be conducted during or before an anticipated precipitation event. All excess concrete and concrete washout slurries from the concrete mixer trucks and chutes will be discharged to the washout area or hauled off-site for disposal.

11.04 Equipment/Vehicle Maintenance and Fueling Areas

Several types of vehicles and equipment will be used on-site throughout the project including graders, scrapers, excavators, loaders, paving equipment, rollers, trucks and trailers, backhoes and forklifts. All major equipment/vehicle fueling and maintenance will be performed off-site. A small, 20-gallon pickup bed fuel tank will be kept on-site in the combined staging area. When vehicle fueling must occur on-site, the fueling activity will occur in the staging area. Only minor equipment maintenance will occur on-site. All equipment fluids generated from maintenance activities will be disposed of into designated drums stored on spill pallets. Absorbent, spill-cleanup materials and spill kits will be available at the combined staging and materials storage area. Drip pans will be placed under all equipment receiving maintenance and vehicles and equipment parked overnight.

11.05 Equipment/Vehicle Wash down Area

All equipment and vehicle washing will be performed off-site.

11.06 Spill Prevention Plan

A spill containment kit will be kept on-site in the Contractors trailer and/or the designated staging area throughout the duration of construction. Should there be an accidental release of petroleum product into a wetland (or within 100-feet of a wetland), the appropriate agencies will be immediately notified.

12.0 Inspections

Maintenance of existing and proposed BMP's to address Storm Water management facilities during construction is an on-going process. The purpose of the inspections is to observe all sources of Storm Water or non-Storm Water discharge as identified in the SWPPP as well as the status of the receiving waters and fulfill the requirements of the Order of Conditions. The following sections describe the appropriate inspection measures to adequately implement the projects SWPPP. A blank inspection form is provided at the end of this section. Completed inspection forms are to be maintained on site.

12.01 Inspection Personnel

The owners appointed representative will be responsible for performing regular inspections of erosion controls and ordering repairs as necessary.

12.02 Inspection Frequency

Inspections will be performed by qualified personnel once every 7 days and within 24-hours after a storm event of greater than one-half inch, in accordance with the CGP and as required by the OOC. The inspections must be documented on the inspection form provided at the end of this section, and completed forms will be provided to the on-site supervisor and maintained at the Owners office throughout the entire duration of construction.

12.03 Inspection Reporting

Each inspection report will summarize the scope of the inspection, name(s) and qualifications of personnel making the inspection, and major observations relating to the implementation of the SWPPP, including compliance and non-compliance items. Completed inspection reports will remain with the completed SWPPP on site.

SWPPP INSPECTION AND MAINTENANCE REPORT

160 Old Turnpike Road Nottingham, New Hampshire

TO BE COMPLETED AT LEAST EVERY 7 DAYS OR EVERY 14 DAYS AND WITHIN 24 HOURS OF A STORM EVENT OF AT LEAST 0.25 INCHES. AFTER SITE STABILIZATION, TO BE COMPLETED AT LEAST ONCE PER MONTH FOR THREE YEARS OR UNTIL A NOTICE OF TERMINATION IS FILED.

INSPECTOR NAME /TITLE:	S		
Type of Inspection	During storm event	Post-storm event (inches)
Construction Activities:			
Weather at Time of Inspection:			
Has it rained since the last inspection:			
If yes, provide: Storm Start Date & Time:	_Storm Duration (hrs):	Approximate Rainfall (in):	
Do you suspect that discharges may h □Yes □No	ave occurred since the last in	spection?	

Are there any discharges at the time of inspection? $\square N_{23}$

□Yes □No

BMP Description	In Conformance	Effective	Notes
Construction	□Yes □No	□Yes □No	
Entrance	□NA	□NA	
Haybales and Silt	□Yes □No	□Yes □No	
Fencing	□NA	□NA	
Storage/Disposal	□Yes □No	□Yes □No	
Areas	□NA	□NA	
Subsurface	□Yes □No	□Yes □No	
Infiltration System	□NA	□NA	
Catch Basins	□Yes □No □NA	□Yes □No □NA	
Other	□Yes □No □NA	□Yes □No	
Other	Yes No	Yes No	

SITE STABILIZATION STATUS:

BMP/Activity	Implemented	Maintained	Status/Actions Required
All Slopes and disturbed areas not actively being worked properly stabilized?	□Yes □ No	□Yes □ No	
Are natural resource areas e.g., stream, wetlands, mature trees, etc.) protected with barriers or similar BMP's?	□Yes □ No	□Yes □ No	
Are perimeter controls and sediment barriers adequately installed and maintained?	□Yes □ No	□Yes □ No	
Are discharge points and receiving waters free of sediment deposits?	□Yes □ No	∐Yes □ No	
Are Storm drain inlets properly protected?	□Yes □ No	□Yes □ No	
Is there evidence of sediment being tracked into the street?	□Yes • □ No	∐Yes □ No	
Is trash/littler from work areas collected and placed in covered dumpsters?	□Yes □ No	□Yes □ No	
Are washout facilities available, clearly marked, and maintained?	□Yes □ No	□Yes □ No	
Are vehicle and equipment fueling, cleaning and maintenance areas free of spills, leaks or any other deleterious material?	□Yes □ No	∐Yes □ No	
Are materials that are potential stormwater contaminants stored inside or under cover?	□Yes □ No	□Yes □ No	
Are non-stormwater discharges (e.g., wash water, dewatering) properly controlled?	□Yes □ No	□Yes □ No	
Other - specify:	□Yes □ No	□Yes □ No	
Other - specify:	□Yes □ No	□Yes □ No	

ADDITIONAL OBSERVATIONS:

NEXT INSPECTON **TO BE PERFORMED BY:**

ON OR BEFORE:

Certification statement:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in • accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Print name:

Signature: _____ Date: _____

CONSTRUCTON PHASE INSPECTION SCHEDULE AND EVALUATION CHECKLIST

Inspection Date	Inspector	BMP Inspected	Inspection Frequency Requirements	Comments	Recommendation	Follow-up Inspection Required (yes/no)
		Haybale & Silt Fence	Weekly and After Major Storm Events			
		Construction Entrance	Weekly and After Major Storm Events			
		Trench Drains & Deep Sump Manholes	Weekly and After Major Storm Events			
		Oil/Particle Separators	Weekly and After Major Storm Events			
		Subsurface Infiltration/Dete ntion System	Weekly and After Major Storm Events			
		Soil Stockpiles Areas	Weekly and After Major Storm Events			

1. Refer to the New Hampshire Stormwater Manual: Volumes 2 & 3 (December 2008) for recommendations regarding frequency for inspections and maintenance of specific BMP's

2. Inspections to be conducted by a qualified professional such as an environmental scientist or civil engineer.

3. Limited or no use of sodium chloride salts, fertilizers or pesticides recommended.

Other Notes: (Include deviations form Conservation Commission Orders of Conditions, Planning Board Approvals and Approved Plans)

POST CONSTRUCTON PHASE INSPECTION SCHEDULE AND EVALUATION CHECKLIST

Inspection Date	Inspector	BMP Inspected	Inspection Frequency Requirements	Comments	Recommendation	Follow-up Inspection Required (yes/no)
	Manholes		Regular inspections neccessary			
		Oil/Particle Separators	Twice Year and After Major Storm Events			
	Subsurface Infiltration/Dete ntion System		Twice Year and After Major Storm Events			
		Pipe Outlet	Twice Year and After Major Storm Events			

- 1. Refer to the New Hampshire Stormwater Manual: Volumes 2 & 3 (December 2008) for recommendations regarding frequency for inspections and maintenance of specific BMP's
- 2. Inspections to be conducted by a qualified professional such as an environmental scientist or civil engineer.
- 3. Limited or no use of sodium chloride salts, fertilizers or pesticides recommended.

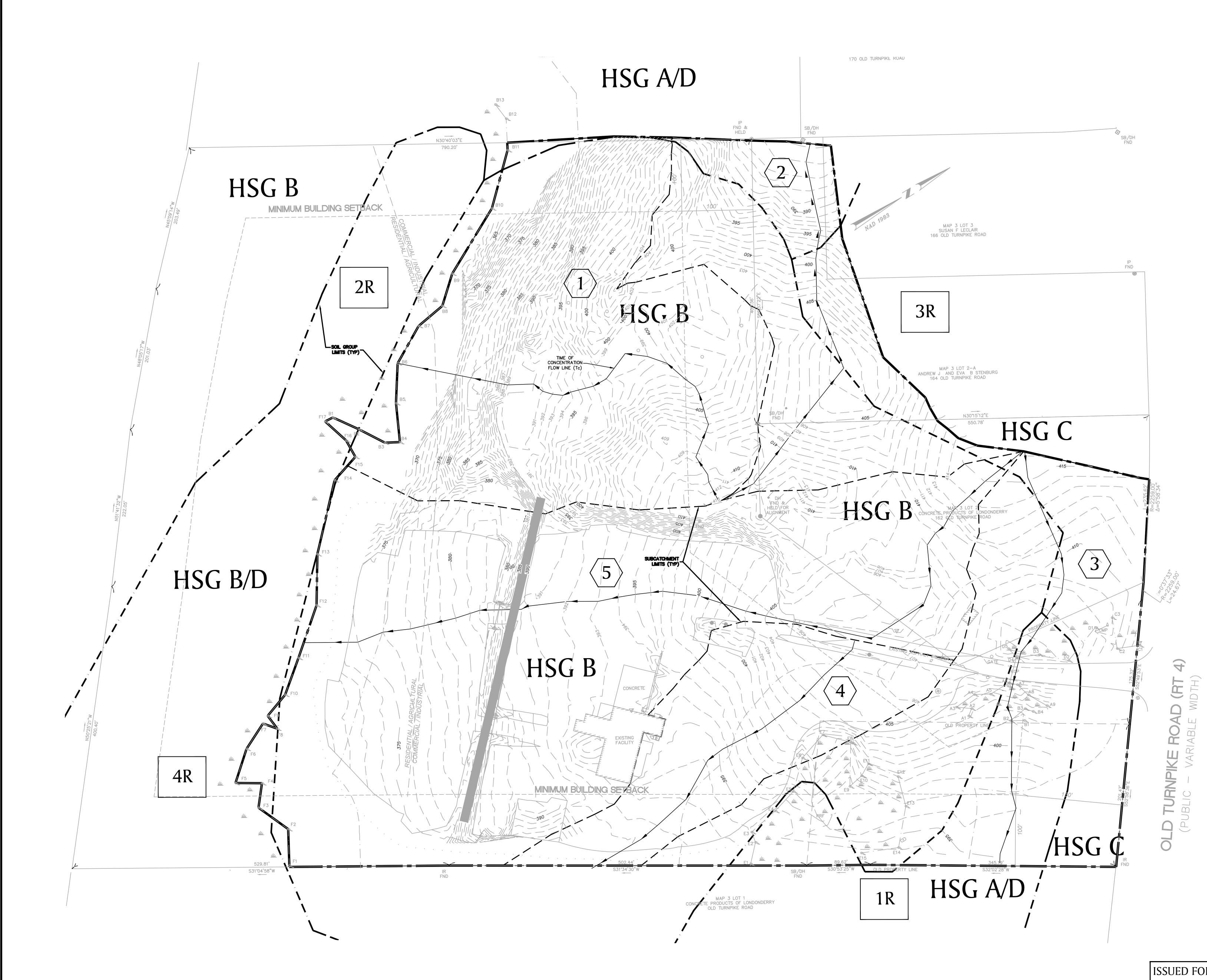
Other Notes: (Include deviations form Conservation Commission Orders of Conditions, Planning Board Approvals and Approved Plans)

SECTION 4.0

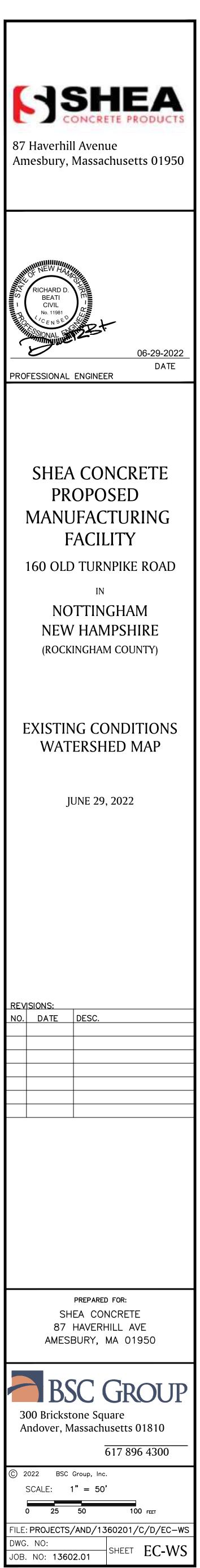
PEAK RUNOFF RATE CALCULATIONS

4.01 PRE-DEVELOPMENT HYDROLOGY WATERSHED PLAN

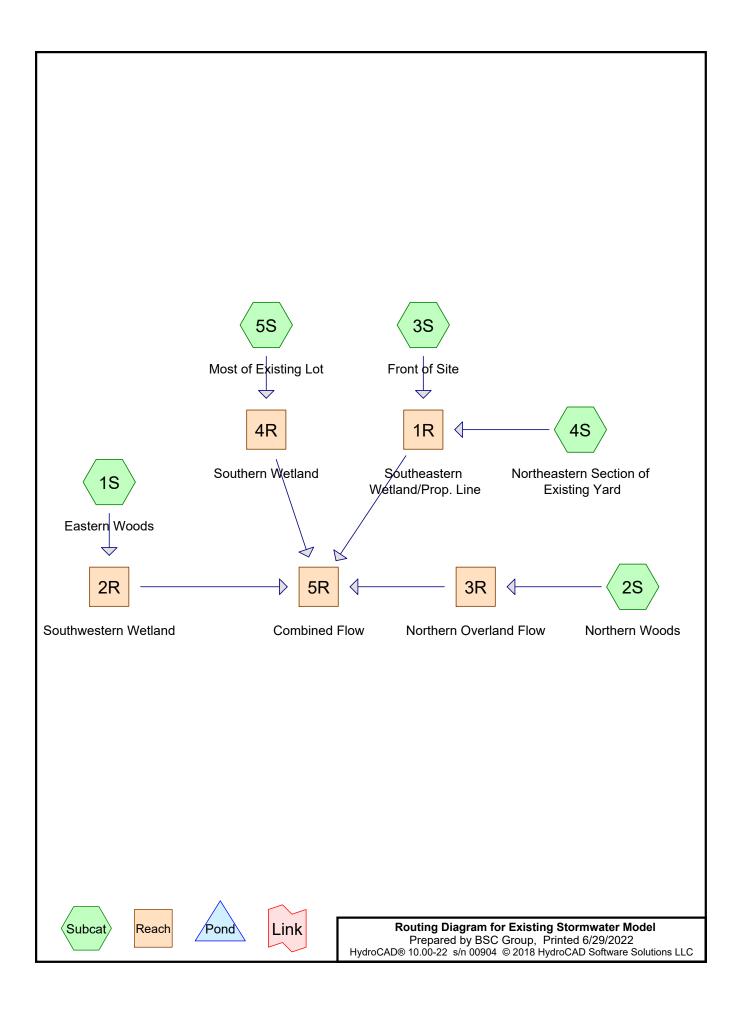
4.02 Pre-Development Hydrology Calculations (HydroCAD Printouts)


4.03 Post Development Hydrology Watershed Plan

4.04 Post Development Hydrology Calculations (HydroCAD Printouts)



4.01 PRE-DEVELOPMENT HYDROLOGY WATERSHED PLAN


ISSUED FOR PERMITTING NOT FOR CONSTRUCTION

^{\\}BSCBOS\AND\PROJECTS-AND\1360201\CIVIL_DRAINAGE DESIGN\1360201-EC WSHED.DWG_6/29/2022_JJWF

4.02 Pre-Development Hydrology Watershed Calculations (HydroCAD Printouts)

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
123,224	61	>75% Grass cover, Good, HSG B (3S, 5S)
20,473	74	>75% Grass cover, Good, HSG C (3S)
179,421	85	Gravel roads, HSG B (3S, 5S)
76,938	96	Gravel surface, HSG B (4S)
9,975	98	Paved parking, HSG B (3S, 4S, 5S)
3,311	98	Paved parking, HSG C (3S)
2,614	98	Paved parking, HSG D (3S)
12,110	98	Unconnected roofs, HSG B (5S)
16,335	98	Water Surface, HSG B (3S, 4S)
7,754	98	Water Surface, HSG C (3S)
17,163	98	Water Surface, HSG D (3S)
22,711	30	Woods, Good, HSG A (1S, 2S)
364,997	55	Woods, Good, HSG B (1S, 2S, 3S, 4S, 5S)
22,225	70	Woods, Good, HSG C (2S, 5S)
41,725	77	Woods, Good, HSG D (1S, 3S, 5S)
28,406	77	Woods, Poor, HSG C (3S)
949,382	70	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
22,711	HSG A	1S, 2S
783,000	HSG B	1S, 2S, 3S, 4S, 5S
82,169	HSG C	2S, 3S, 5S
61,502	HSG D	1S, 3S, 5S
0	Other	
949,382		TOTAL AREA

Existing Stormwater Model Prepared by BSC Group HydroCAD® 10.00-22 s/n 00904 © 2018 HydroCAD Software Solutions LLC

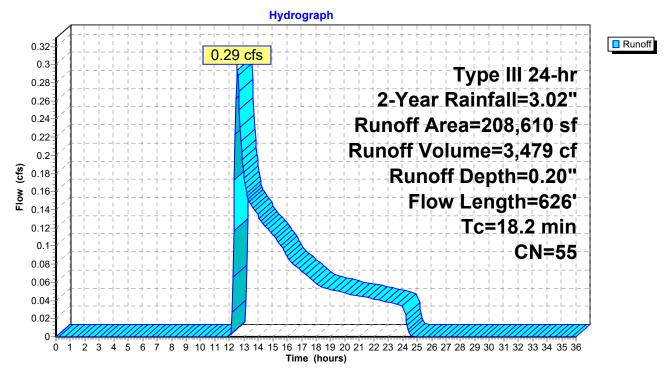
Printed 6/29/2022 Page 4

Sub	Ground	Total	Other	HSG-D	HSG-C	HSG-B	HSG-A
Nur	Cover	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)
	>75% Grass	143,697	0	0	20,473	123,224	0
	cover, Good						
	Gravel roads	179,421	0	0	0	179,421	0
	Gravel surface	76,938	0	0	0	76,938	0
	Paved parking	15,900	0	2,614	3,311	9,975	0
	Unconnected	12,110	0	0	0	12,110	0
	roofs						
	Water Surface	41,252	0	17,163	7,754	16,335	0
	Woods, Good	451,658	0	41,725	22,225	364,997	22,711
	Woods, Poor	28,406	0	0	28,406	0	0
	TOTAL AREA	949,382	0	61,502	82,169	783,000	22,711

Ground Covers (all nodes)

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Eastern Woods	Runoff Area=208,610 sf 0.00% Impervious Runoff Depth=0.20" Flow Length=626' Tc=18.2 min CN=55 Runoff=0.29 cfs 3,479 cf
Subcatchment 2S: Northern Woods	Runoff Area=111,181 sf 0.00% Impervious Runoff Depth=0.15" Flow Length=575' Tc=17.6 min CN=53 Runoff=0.09 cfs 1,423 cf
Subcatchment3S: Front of Site	Runoff Area=194,497 sf 24.46% Impervious Runoff Depth=1.08" Flow Length=619' Tc=19.0 min CN=77 Runoff=3.73 cfs 17,584 cf
Subcatchment 4S: Northeastern Section	nof Runoff Area=85,694 sf 4.63% Impervious Runoff Depth=2.37" Flow Length=496' Tc=6.0 min CN=94 Runoff=5.14 cfs 16,921 cf
Subcatchment 5S: Most of Existing Lot Flow Length=	Runoff Area=349,400 sf 5.07% Impervious Runoff Depth=0.87" 1,175' Tc=23.1 min UI Adjusted CN=73 Runoff=4.75 cfs 25,322 cf
Reach 1R: Southeastern Wetland/Prop.	Line Inflow=7.18 cfs 34,505 cf Outflow=7.18 cfs 34,505 cf
Reach 2R: Southwestern Wetland	Inflow=0.29 cfs 3,479 cf Outflow=0.29 cfs 3,479 cf
Reach 3R: Northern Overland Flow	Inflow=0.09 cfs 1,423 cf Outflow=0.09 cfs 1,423 cf
Reach 4R: Southern Wetland	Inflow=4.75 cfs 25,322 cf Outflow=4.75 cfs 25,322 cf
Reach 5R: Combined Flow	Inflow=10.57 cfs 64,729 cf Outflow=10.57 cfs 64,729 cf


Total Runoff Area = 949,382 sf Runoff Volume = 64,729 cf Average Runoff Depth = 0.82" 92.70% Pervious = 880,120 sf 7.30% Impervious = 69,262 sf

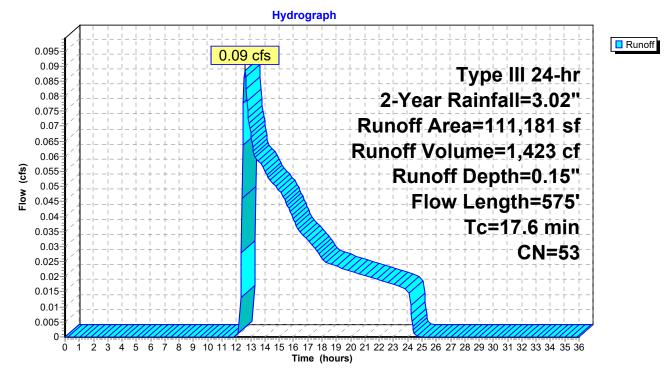
Summary for Subcatchment 1S: Eastern Woods

Runoff = 0.29 cfs @ 12.55 hrs, Volume= 3,479 cf, Depth= 0.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.02"

Α	rea (sf)	CN E	Description		
2	205,711		,	od, HSG B	
	806			od, HSG D	
	2,093		,	od, HSG A	
	208,610		Veighted A		
2	208,610	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
10.5	68	0.0600	0.11		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
1.3	103	0.0680	1.30		Shallow Concentrated Flow,
1.0	70	0 0 0 0 0 0	0.07		Woodland Kv= 5.0 fps
1.3	78	0.0380	0.97		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
2.2	95	0.0210	0.72		Shallow Concentrated Flow,
2.2	30	0.0210	0.72		Woodland Kv= 5.0 fps
1.3	105	0.0710	1.33		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.6	177	0.1330	1.82		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
18.2	626	Total			

Subcatchment 1S: Eastern Woods

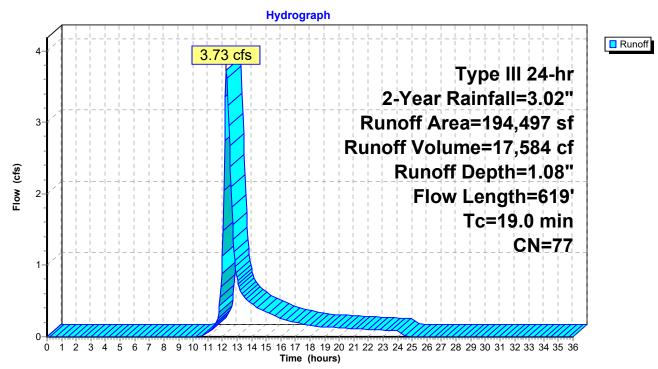

Summary for Subcatchment 2S: Northern Woods

Runoff = 0.09 cfs @ 12.60 hrs, Volume= 1,423 cf, Depth= 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.02"

	A	rea (sf)	CN I	Description		
		68,962	55 \	Noods, Go	od, HSG B	
		21,601	70 \	Noods, Go	od, HSG C	
_		20,618	30 \	Noods, Go	od, HSG A	
	1	11,181	53 \	Neighted A	verage	
	1	11,181		100.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.7	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	7.9	525	0.0495	1.11		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	17.6	575	Total			

Subcatchment 2S: Northern Woods



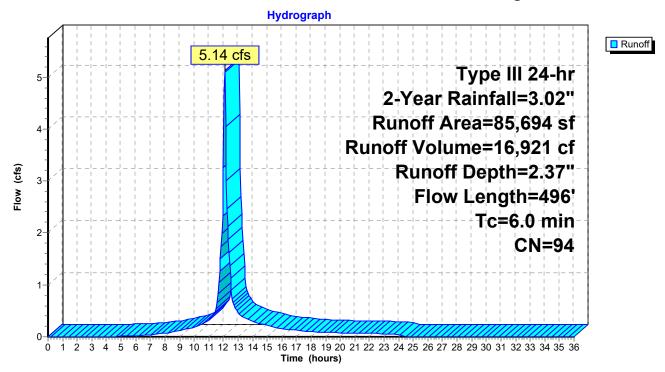
Summary for Subcatchment 3S: Front of Site

Runoff = 3.73 cfs @ 12.28 hrs, Volume= 17,584 cf, Depth= 1.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.02"

A	rea (sf)	CN E	CN Description						
	20,473	74 >	74 >75% Grass cover, Good, HSG C						
	28,406	77 V	Voods, Poo	or, HSG C					
	3,311	98 F	aved park	ing, HSG C					
	7,754	98 V	Vater Surfa	ace, HSG C					
	2,614	98 F	aved park	ing, HSG D					
	36,432	77 V	Voods, Go	od, HSG D					
	17,163	98 V	Vater Surfa	ace, HSG D					
	20,976	55 V	Voods, Go	od, HSG B					
	15,333	98 V	Vater Surfa	ace, HSG B					
	8,494	85 0	Gravel road	s, HSG B					
	1,394			ing, HSG B					
	32,147	61 >	75% Gras	s cover, Go	ood, HSG B				
1	94,497	77 V	Veighted A	verage					
1	46,928	7	5.54% Per	vious Area					
	47,569	2	4.46% Imp	pervious Are	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
9.7	50	0.0400	0.09		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 3.00"				
4.9	264	0.0322	0.90		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.4	45	0.0100	2.03		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
4.0	260	0.0460	1.07		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
19.0	619	Total							

Subcatchment 3S: Front of Site

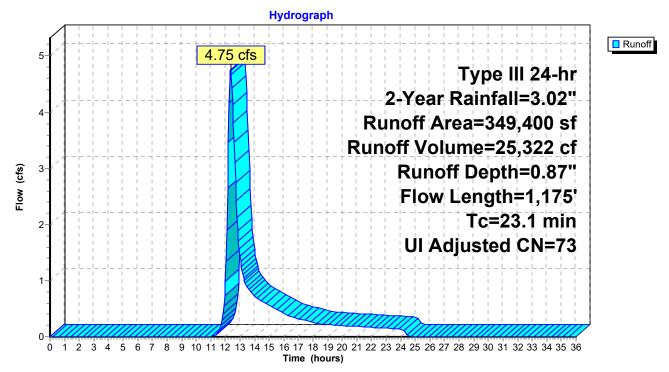

Summary for Subcatchment 4S: Northeastern Section of Existing Yard

Runoff = 5.14 cfs @ 12.09 hrs, Volume= 16,921 cf, Depth= 2.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.02"

A	rea (sf)	CN E	Description		
	4,792	55 V	Voods, Go	od, HSG B	
	2,962			ing, HSG B	
	1,002	98 V	Vater Surfa	ace, HSG B	
	76,938	96 G	Gravel surfa	ace, HSG B	
	85,694	94 V	Veighted A	verage	
	81,730	-		vious Area	
	3,964	4	.63% Impe	ervious Area	a
_					
ŢĊ	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.7	50	0.0250	1.27		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.00"
2.2	406	0.0375	3.12		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
0.7	40	0.0375	0.97		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.4					Direct Entry,
6.0	496	Total			

Subcatchment 4S: Northeastern Section of Existing Yard

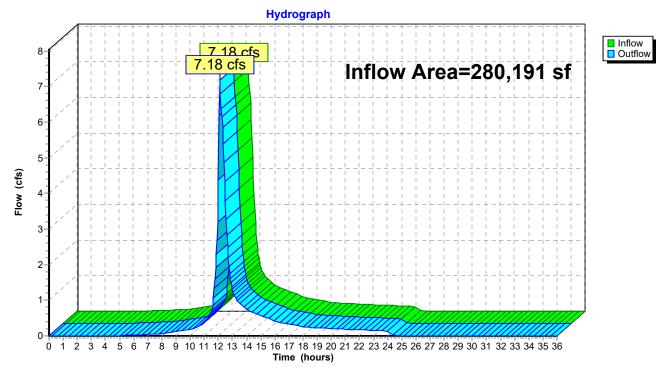

Summary for Subcatchment 5S: Most of Existing Lot

Runoff = 4.75 cfs @ 12.36 hrs, Volume= 25,322 cf, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.02"

_	A	rea (sf)	CN /	Adj Desc	cription				
		64,556	55	Woo	ds, Good, I	HSG B			
					Woods, Good, HSG D				
	1	70,927	85	Grav	el roads, ⊢	ISG B			
		5,619	98		ed parking,				
		12,110	98			oofs, HSG B			
		91,077	61			ver, Good, HSG B			
_		624	70	Woo	ds, Good, I	HSG C			
349,400 74 73 Weig					age, UI Adjusted				
	3	31,671			3% Perviou				
		17,729			% Impervic				
		12,110		68.3	1% Unconr	nected			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Becomption			
-	12.7	50	0.0200	0.07		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.00"			
	2.5	164	0.0470	1.08		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	3.4	259	0.0040	1.28		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
	3.0	640	0.0500	3.60		Shallow Concentrated Flow,			
	. –			a = :		Unpaved Kv= 16.1 fps			
	1.5	62	0.0200	0.71		Shallow Concentrated Flow,			
-						Woodland Kv= 5.0 fps			
	22.1	1 175	Total						

23.1 1,175 Total

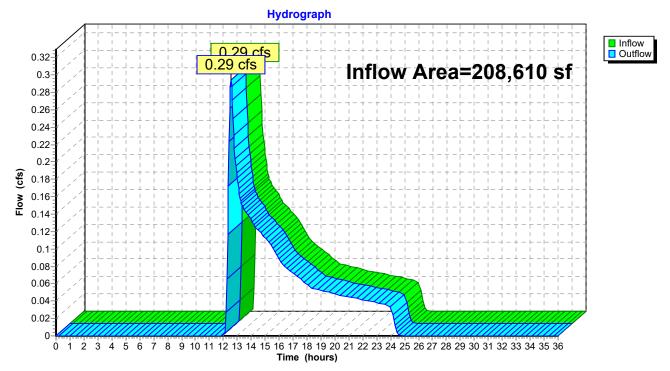


Subcatchment 5S: Most of Existing Lot

Summary for Reach 1R: Southeastern Wetland/Prop. Line

Inflow Area	=	280,191 sf,	18.39% Impervious,	Inflow Depth = 1.48"	for 2-Year event
Inflow	=	7.18 cfs @	12.11 hrs, Volume=	34,505 cf	
Outflow	=	7.18 cfs @	12.11 hrs, Volume=	34,505 cf, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

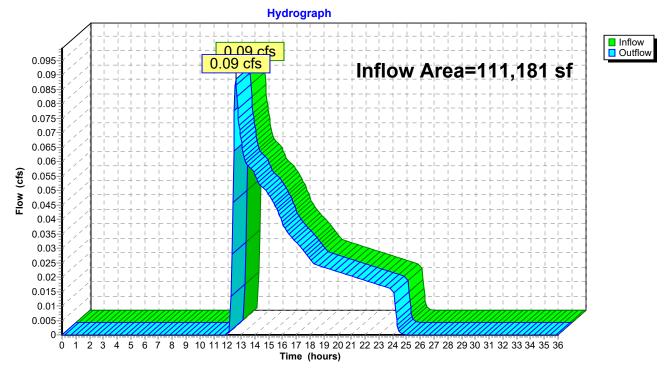


Reach 1R: Southeastern Wetland/Prop. Line

Summary for Reach 2R: Southwestern Wetland

Inflow Area	ı =	208,610 sf,	0.00% Impervious,	Inflow Depth =	0.20"	for 2-Year event
Inflow	=	0.29 cfs @	12.55 hrs, Volume=	3,479 c	f	
Outflow	=	0.29 cfs @	12.55 hrs, Volume=	3,479 c	f, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

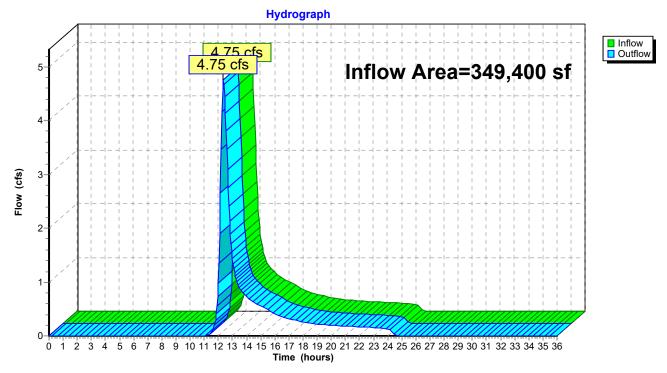


Reach 2R: Southwestern Wetland

Summary for Reach 3R: Northern Overland Flow

Inflow Area	a =	111,181 sf,	0.00% Impervious,	Inflow Depth = 0.1	15" for 2-Year event
Inflow	=	0.09 cfs @ 1	12.60 hrs, Volume=	1,423 cf	
Outflow	=	0.09 cfs @	12.60 hrs, Volume=	1,423 cf, A	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

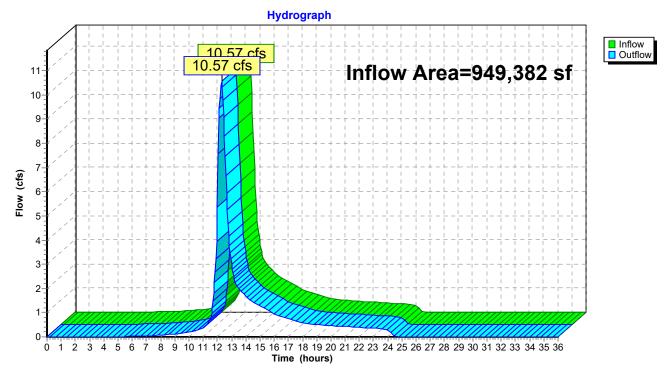


Reach 3R: Northern Overland Flow

Summary for Reach 4R: Southern Wetland

Inflow Area =	349,400 sf,	5.07% Impervious,	Inflow Depth = 0.87"	for 2-Year event
Inflow =	4.75 cfs @	12.36 hrs, Volume=	25,322 cf	
Outflow =	4.75 cfs @	12.36 hrs, Volume=	25,322 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs



Reach 4R: Southern Wetland

Summary for Reach 5R: Combined Flow

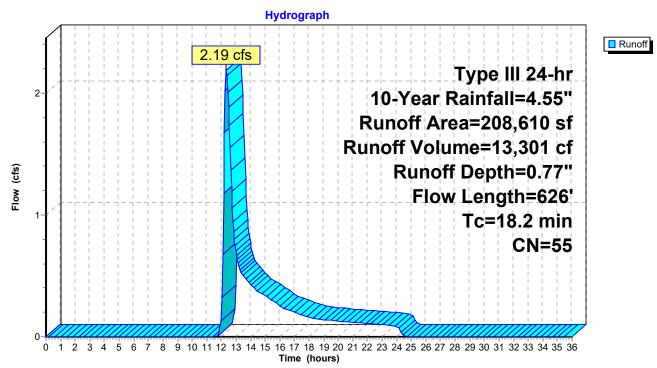
Inflow Area =		949,382 sf,	7.30% Impervious,	Inflow Depth = 0.82"	for 2-Year event
Inflow	=	10.57 cfs @ 1	12.30 hrs, Volume=	64,729 cf	
Outflow	=	10.57 cfs @ 1	12.30 hrs, Volume=	64,729 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Reach 5R: Combined Flow

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Eastern Woods	Runoff Area=208,610 sf 0.00% Impervious Runoff Depth=0.77" Flow Length=626' Tc=18.2 min CN=55 Runoff=2.19 cfs 13,301 cf
Subcatchment 2S: Northern Woods	Runoff Area=111,181 sf 0.00% Impervious Runoff Depth=0.66" Flow Length=575' Tc=17.6 min CN=53 Runoff=0.93 cfs 6,133 cf
Subcatchment 3S: Front of Site	Runoff Area=194,497 sf 24.46% Impervious Runoff Depth=2.25" Flow Length=619' Tc=19.0 min CN=77 Runoff=8.06 cfs 36,489 cf
Subcatchment 4S: Northeastern Section	n of Runoff Area=85,694 sf 4.63% Impervious Runoff Depth=3.86" Flow Length=496' Tc=6.0 min CN=94 Runoff=8.15 cfs 27,597 cf
Subcatchment 5S: Most of Existing Lot Flow Length=1	Runoff Area=349,400 sf 5.07% Impervious Runoff Depth=1.93" 1,175' Tc=23.1 min UI Adjusted CN=73 Runoff=11.30 cfs 56,296 cf
Reach 1R: Southeastern Wetland/Prop.	Line Inflow=13.06 cfs 64,086 cf Outflow=13.06 cfs 64,086 cf
Reach 2R: Southwestern Wetland	Inflow=2.19 cfs 13,301 cf Outflow=2.19 cfs 13,301 cf
Reach 3R: Northern Overland Flow	Inflow=0.93 cfs 6,133 cf Outflow=0.93 cfs 6,133 cf
Reach 4R: Southern Wetland	Inflow=11.30 cfs 56,296 cf Outflow=11.30 cfs 56,296 cf
Reach 5R: Combined Flow	Inflow=25.56 cfs 139,817 cf Outflow=25.56 cfs 139,817 cf


Total Runoff Area = 949,382 sf Runoff Volume = 139,817 cf Average Runoff Depth = 1.77" 92.70% Pervious = 880,120 sf 7.30% Impervious = 69,262 sf

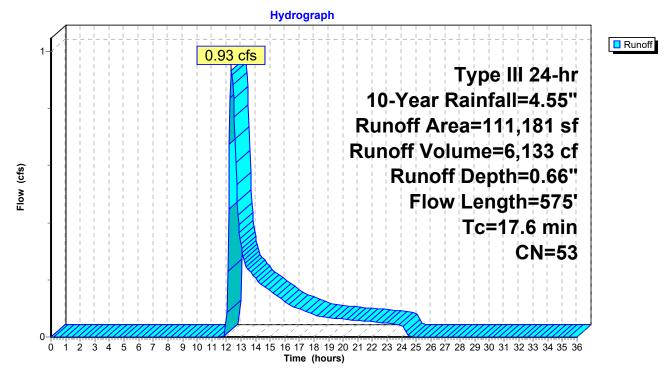
Summary for Subcatchment 1S: Eastern Woods

Runoff 2.19 cfs @ 12.33 hrs, Volume= 13,301 cf, Depth= 0.77" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.55"

A	rea (sf)	CN E	Description		
2	205,711		,	od, HSG B	
	806		,	od, HSG D	
	2,093		,	od, HSG A	
	208,610		Veighted A		
2	208,610	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
10.5	68	0.0600	0.11		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
1.3	103	0.0680	1.30		Shallow Concentrated Flow,
4.0	70	0 0000	0.07		Woodland Kv= 5.0 fps
1.3	78	0.0380	0.97		Shallow Concentrated Flow,
2.2	95	0.0210	0.72		Woodland Kv= 5.0 fps Shallow Concentrated Flow,
2.2	90	0.0210	0.72		Woodland Kv= 5.0 fps
1.3	105	0.0710	1.33		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.6	177	0.1330	1.82		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
18.2	626	Total			

Subcatchment 1S: Eastern Woods


Summary for Subcatchment 2S: Northern Woods

Runoff = 0.93 cfs @ 12.35 hrs, Volume= 6,133 cf, Depth= 0.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.55"

_	A	rea (sf)	CN I	Description		
		68,962	55 \	Noods, Go	od, HSG B	
		21,601	70	Noods, Go	od, HSG C	
_		20,618	30 \	Noods, Go	od, HSG A	
111,181 53 Weighted Average			Neighted A	verage		
	1	11,181		100.00% Pe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.7	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	7.9	525	0.0495	1.11		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
_	17.6	575	Total			

Subcatchment 2S: Northern Woods

Summary for Subcatchment 3S: Front of Site

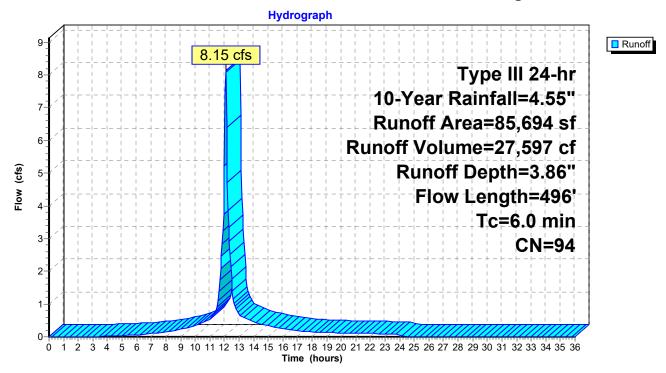
Runoff = 8.06 cfs @ 12.27 hrs, Volume= 36,489 cf, Depth= 2.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.55"

A	rea (sf)	CN E	escription							
	20,473	74 >	75% Grass	s cover, Go	ood, HSG C					
	28,406	77 V								
	3,311	98 F	aved park	ing, HSG C						
	7,754	98 V	Vater Surfa	ice, HSG C						
	2,614	98 F	aved parki	ing, HSG D						
	36,432	77 V	Voods, Goo	od, HSG D						
	17,163	98 V	Vater Surfa	ice, HSG D						
	20,976	55 V	Voods, Goo	od, HSG B						
	15,333	98 V	Vater Surfa	ice, HSG B						
	8,494	85 G	Gravel road	s, HSG B						
	1,394			ing, HSG B						
	32,147	61 >	75% Grass	s cover, Go	ood, HSG B					
1	94,497	77 V	Veighted A	verage						
1	46,928	7	5.54% Per	vious Area						
	47,569	2	4.46% Imp	ervious Are	ea					
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
9.7	50	0.0400	0.09		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 3.00"					
4.9	264	0.0322	0.90		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
0.4	45	0.0100	2.03		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					
4.0	260	0.0460	1.07		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
19.0	619	Total								

Hydrograph 9 Runoff 8.06 cfs Type III 24-hr 8-10-Year Rainfall=4.55" 7-Runoff Area=194,497 sf 6-Runoff Volume=36,489 cf Runoff Depth=2.25" Flow (cfs) 5-Flow Length=619' 4-Tc=19.0 min 3-**CN=77** 2 1 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Subcatchment 3S: Front of Site

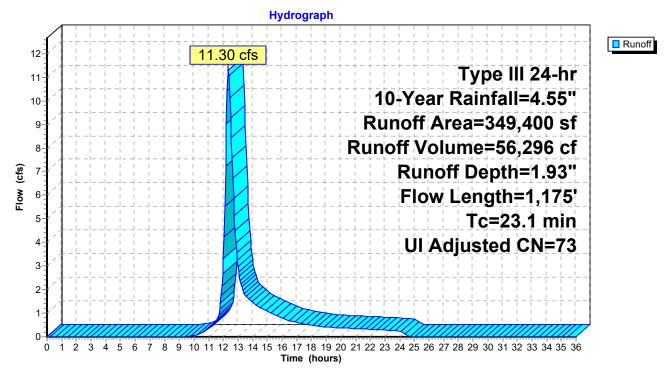

Summary for Subcatchment 4S: Northeastern Section of Existing Yard

Runoff = 8.15 cfs @ 12.09 hrs, Volume= 27,597 cf, Depth= 3.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.55"

A	rea (sf)	CN E	Description		
	4,792	55 V	Voods, Go	od, HSG B	
	2,962			ing, HSG B	
	1,002			ace, HSG B	
	76,938	96 (Gravel surfa	ace, HSG B	}
	85,694	94 V	Veighted A	verage	
	81,730	-		vious Area	
	3,964	4	.63% Impe	ervious Area	а
_		~		.	— • • • •
, Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.7	50	0.0250	1.27		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.00"
2.2	406	0.0375	3.12		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
0.7	40	0.0375	0.97		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.4					Direct Entry,
6.0	496	Total			

Subcatchment 4S: Northeastern Section of Existing Yard

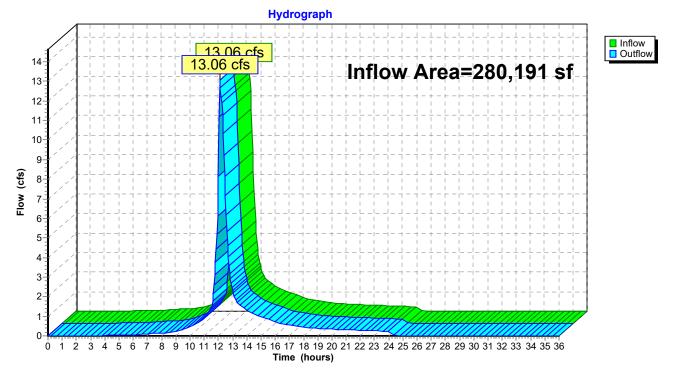

Summary for Subcatchment 5S: Most of Existing Lot

Runoff 11.30 cfs @ 12.33 hrs, Volume= 56,296 cf, Depth= 1.93" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.55"

Area (sf) CN Adj D			Adj Desc	cription			
64,556 55				Woo	Woods, Good, HSG B		
4,487 77 Woods,			Woo	ds, Good, I	HSG D		
	1	170,927 85		Grav	el roads, ⊢	ISG B	
	5,619		98	Paved parking, l		HSG B	
	12,110		98	Unconnected roofs, HSG B			
	91,077		61	>75% Grass cover, Good, HSG B			
_	624		70	Woods, Good, HSG C		HSG C	
		49,400	74			age, UI Adjusted	
)					94.93% Pervious Area		
17,729 5.07% Impervious Area							
12,110 68.31% Unconnected				nected			
	Тс	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Becomption	
-	12.7	50	0.0200	0.07		Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 3.00"	
	2.5	164	0.0470	1.08		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	3.4	259	0.0040	1.28		Shallow Concentrated Flow,	
						Paved Kv= 20.3 fps	
	3.0	640	0.0500	3.60		Shallow Concentrated Flow,	
						Unpaved Kv= 16.1 fps	
	1.5	62	0.0200	0.71		Shallow Concentrated Flow,	
_						Woodland Kv= 5.0 fps	
	22.1	1 1 7 5	Total				

23.1 1,175 Total

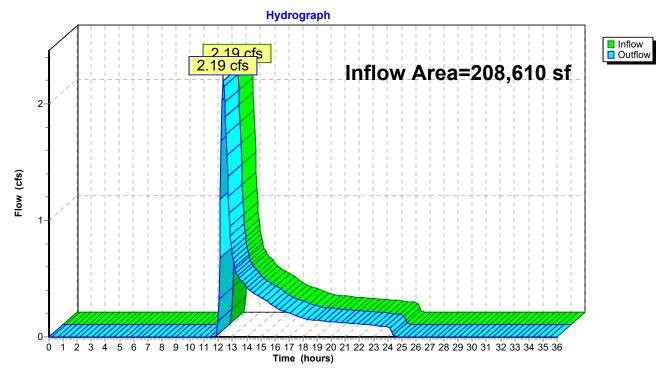


Subcatchment 5S: Most of Existing Lot

Summary for Reach 1R: Southeastern Wetland/Prop. Line

Inflow Area	a =	280,191 sf, 18.3	39% Impervious,	Inflow Depth = 2.74 "	for 10-Year event
Inflow	=	13.06 cfs @ 12.1	2 hrs, Volume=	64,086 cf	
Outflow	=	13.06 cfs @ 12.1	2 hrs, Volume=	64,086 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

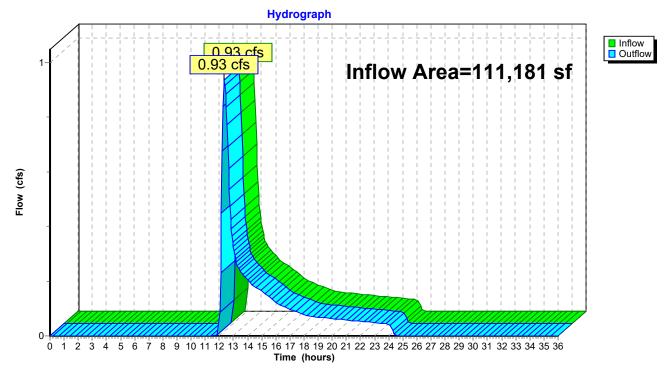


Reach 1R: Southeastern Wetland/Prop. Line

Summary for Reach 2R: Southwestern Wetland

Inflow Area	a =	208,610 sf,	0.00% Impervious,	Inflow Depth = 0.77"	for 10-Year event
Inflow	=	2.19 cfs @ 1	12.33 hrs, Volume=	13,301 cf	
Outflow	=	2.19 cfs @ 1	12.33 hrs, Volume=	13,301 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

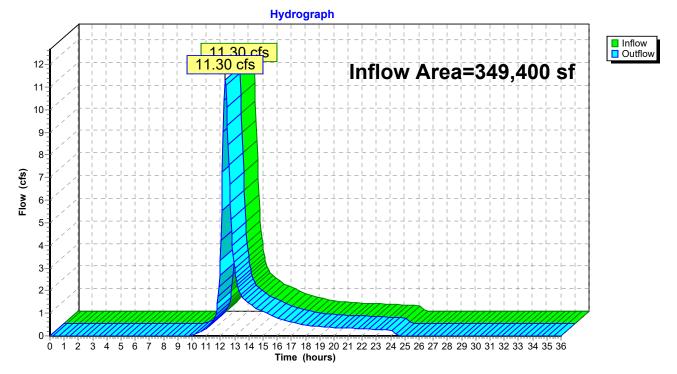


Reach 2R: Southwestern Wetland

Summary for Reach 3R: Northern Overland Flow

Inflow Area	a =	111,181 sf,	0.00% Impervious,	Inflow Depth = 0.0	66" for 10-Year event
Inflow	=	0.93 cfs @ 1	12.35 hrs, Volume=	6,133 cf	
Outflow	=	0.93 cfs @	12.35 hrs, Volume=	6,133 cf, 7	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

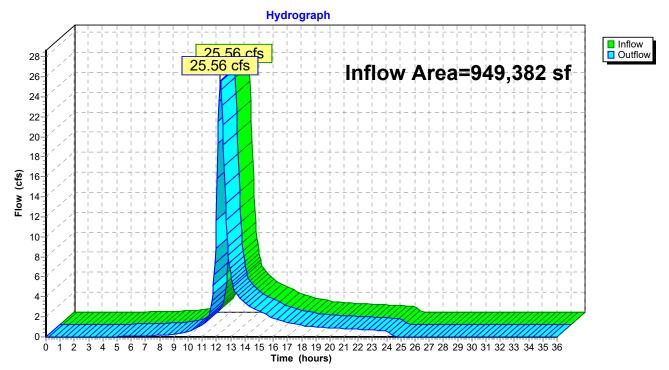


Reach 3R: Northern Overland Flow

Summary for Reach 4R: Southern Wetland

Inflow Area	a =	349,400 sf,	5.07% Impervious,	Inflow Depth = 1.93"	for 10-Year event
Inflow	=	11.30 cfs @ 1	12.33 hrs, Volume=	56,296 cf	
Outflow	=	11.30 cfs @ 1	12.33 hrs, Volume=	56,296 cf, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs



Reach 4R: Southern Wetland

Summary for Reach 5R: Combined Flow

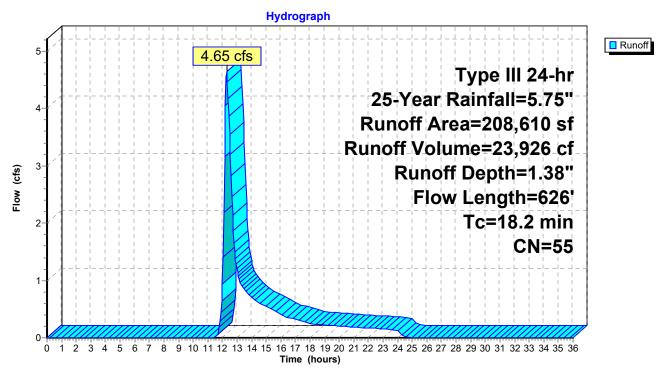
Inflow Area	a =	949,382 sf,	7.30% Impervious,	Inflow Depth = 1.77"	for 10-Year event
Inflow	=	25.56 cfs @ 1	12.29 hrs, Volume=	139,817 cf	
Outflow	=	25.56 cfs @ 1	12.29 hrs, Volume=	139,817 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Reach 5R: Combined Flow

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Eastern Woods	Runoff Area=208,610 sf 0.00% Impervious Runoff Depth=1.38" Flow Length=626' Tc=18.2 min CN=55 Runoff=4.65 cfs 23,926 cf
Subcatchment 2S: Northern Woods	Runoff Area=111,181 sf 0.00% Impervious Runoff Depth=1.23" Flow Length=575' Tc=17.6 min CN=53 Runoff=2.15 cfs 11,406 cf
Subcatchment3S: Front of Site	Runoff Area=194,497 sf 24.46% Impervious Runoff Depth=3.26" Flow Length=619' Tc=19.0 min CN=77 Runoff=11.74 cfs 52,866 cf
Subcatchment 4S: Northeastern Section	on of Runoff Area=85,694 sf 4.63% Impervious Runoff Depth=5.05" Flow Length=496' Tc=6.0 min CN=94 Runoff=10.48 cfs 36,057 cf
Subcatchment 5S: Most of Existing Lo Flow Length=	t Runoff Area=349,400 sf 5.07% Impervious Runoff Depth=2.88" 1,175' Tc=23.1 min UI Adjusted CN=73 Runoff=17.08 cfs 83,927 cf
Reach 1R: Southeastern Wetland/Prop	Inflow=17.92 cfs 88,923 cf Outflow=17.92 cfs 88,923 cf
Reach 2R: Southwestern Wetland	Inflow=4.65 cfs 23,926 cf Outflow=4.65 cfs 23,926 cf
Reach 3R: Northern Overland Flow	Inflow=2.15 cfs 11,406 cf Outflow=2.15 cfs 11,406 cf
Reach 4R: Southern Wetland	Inflow=17.08 cfs 83,927 cf Outflow=17.08 cfs 83,927 cf
Reach 5R: Combined Flow	Inflow=39.66 cfs 208,181 cf Outflow=39.66 cfs 208,181 cf


Total Runoff Area = 949,382 sfRunoff Volume = 208,181 cfAverage Runoff Depth = 2.63"92.70% Pervious = 880,120 sf7.30% Impervious = 69,262 sf

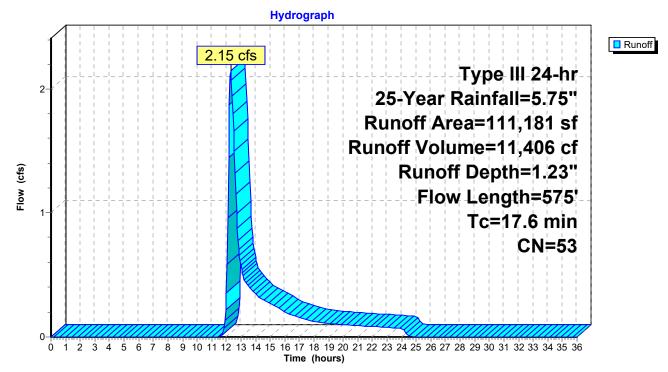
Summary for Subcatchment 1S: Eastern Woods

Runoff = 4.65 cfs @ 12.29 hrs, Volume= 23,926 cf, Depth= 1.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.75"

A	rea (sf)	CN E	Description		
2	205,711	55 V	Voods, Go	od, HSG B	
	806			od, HSG D	
	2,093		,	od, HSG A	
	208,610		Veighted A		
2	208,610	1	00.00% Pe	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption
10.5	68	0.0600	0.11		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
1.3	103	0.0680	1.30		Shallow Concentrated Flow,
4.0	70		0.07		Woodland Kv= 5.0 fps
1.3	78	0.0380	0.97		Shallow Concentrated Flow,
2.2	95	0.0210	0.72		Woodland Kv= 5.0 fps
2.2	90	0.0210	0.72		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
1.3	105	0.0710	1.33		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.6	177	0.1330	1.82		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
18.2	626	Total			

Subcatchment 1S: Eastern Woods


Summary for Subcatchment 2S: Northern Woods

Runoff = 2.15 cfs @ 12.29 hrs, Volume= 11,406 cf, Depth= 1.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.75"

	A	rea (sf)	CN I	Description		
		68,962	55 V	Noods, Go	od, HSG B	
		21,601	70	Noods, Go	od, HSG C	
		20,618	30 \	Noods, Go	od, HSG A	
	1	11,181	53 V	Neighted A	verage	
	1	11,181		100.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.7	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	7.9	525	0.0495	1.11		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	17.6	575	Total			

Subcatchment 2S: Northern Woods

Summary for Subcatchment 3S: Front of Site

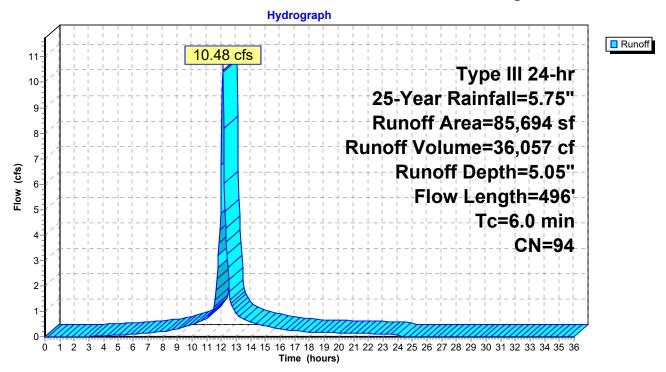
Runoff = 11.74 cfs @ 12.26 hrs, Volume= 52,866 cf, Depth= 3.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.75"

A	rea (sf)	CN E	escription		
	20,473	74 >	75% Gras	s cover, Go	ood, HSG C
	28,406	77 V	Voods, Poo	or, HSG C	
	3,311	98 F	aved park	ing, HSG C	
	7,754	98 V	Vater Surfa	ace, HSG C	
	2,614	98 F	aved park	ing, HSG D	
	36,432	77 V	Voods, Go	od, HSG D	
	17,163	98 V	Vater Surfa	ace, HSG D	
	20,976	55 V	Voods, Go	od, HSG B	
	15,333	98 V	Vater Surfa	ace, HSG B	
	8,494	85 0	Gravel road	s, HSG B	
	1,394			ing, HSG B	
	32,147	61 >	75% Gras	s cover, Go	ood, HSG B
1	94,497	77 V			
1	146,928 75.54% Pervious Area				
	47,569	2	4.46% Imp	pervious Are	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.7	50	0.0400	0.09		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
4.9	264	0.0322	0.90		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.4	45	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
4.0	260	0.0460	1.07		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
19.0	619	Total			

Hydrograph 13 Runoff 11.74 cfs 12-Type III 24-hr 11 25-Year Rainfall=5.75" 10-Runoff Area=194,497 sf 9 Runoff Volume=52,866 cf 8-Runoff Depth=3.26" Flow (cfs) 7-Flow Length=619' 6 Tc=19.0 min 5-**CN=77** 4 3-2 1 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Subcatchment 3S: Front of Site

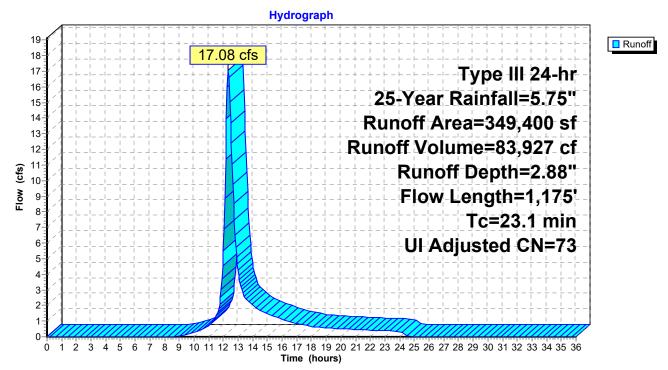

Summary for Subcatchment 4S: Northeastern Section of Existing Yard

Runoff = 10.48 cfs @ 12.09 hrs, Volume= 36,057 cf, Depth= 5.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.75"

A	rea (sf)	CN E	Description		
	4,792	55 V	Voods, Go	od, HSG B	
	2,962			ing, HSG B	
	1,002			ace, HSG B	
	76,938	96 (Gravel surfa	ace, HSG B	}
	85,694	94 V	Veighted A	verage	
	81,730	-		vious Area	
	3,964	4	.63% Impe	ervious Area	а
_		~		.	— • • • •
, Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.7	50	0.0250	1.27		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.00"
2.2	406	0.0375	3.12		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
0.7	40	0.0375	0.97		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.4					Direct Entry,
6.0	496	Total			

Subcatchment 4S: Northeastern Section of Existing Yard

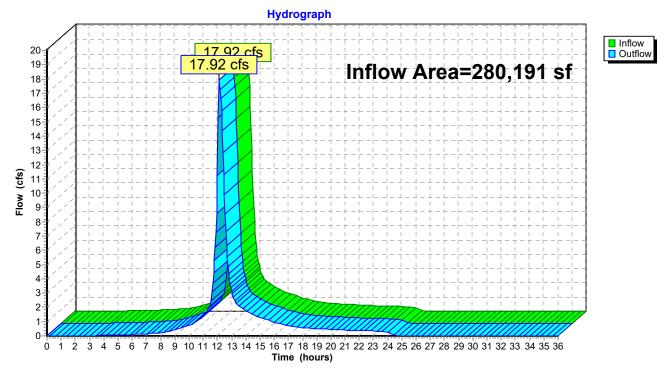

Summary for Subcatchment 5S: Most of Existing Lot

Runoff 17.08 cfs @ 12.33 hrs, Volume= 83,927 cf, Depth= 2.88" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.75"

_	A	rea (sf)	CN /	Adj Desc	cription	
		64,556	55	Woo	ds, Good, I	HSG B
		4,487	77	Woo	ds, Good, I	HSG D
	1	70,927	85	Grav	el roads, H	ISG B
		5,619	98		ed parking,	
		12,110	98			oofs, HSG B
		91,077	61			ver, Good, HSG B
_		624	70	Woo	ds, Good, I	HSG C
		49,400	74			age, UI Adjusted
		31,671			3% Perviou	
		17,729			% Impervio	
	12,110 68.31% Unconn				1% Unconr	nected
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption
-	12.7	50	0.0200	0.07	<u> </u>	Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	2.5	164	0.0470	1.08		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.4	259	0.0040	1.28		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	3.0	640	0.0500	3.60		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	1.5	62	0.0200	0.71		Shallow Concentrated Flow,
						Woodland $K_{V} = 5$ () the
-	22.1	1 175	Total			Woodland Kv= 5.0 fps

23.1 1,175 Total

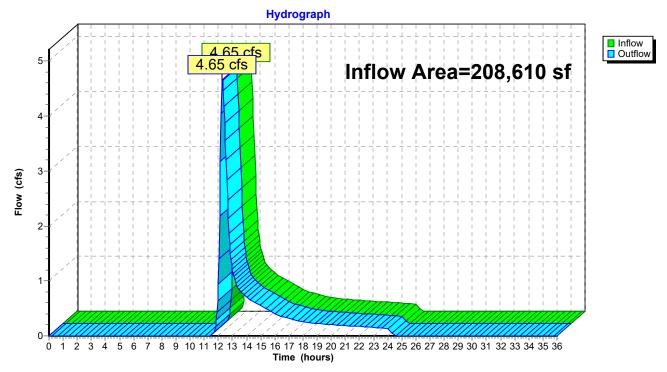


Subcatchment 5S: Most of Existing Lot

Summary for Reach 1R: Southeastern Wetland/Prop. Line

Inflow Area	a =	280,191 sf, 18.39%	Impervious,	Inflow Depth =	3.81"	for 25-Year event
Inflow	=	17.92 cfs @ 12.12 hrs	s, Volume=	88,923 c	f	
Outflow	=	17.92 cfs @ 12.12 hrs	s, Volume=	88,923 c	f, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

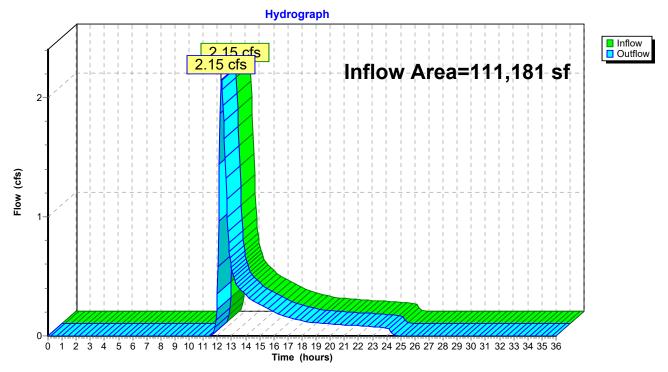


Reach 1R: Southeastern Wetland/Prop. Line

Summary for Reach 2R: Southwestern Wetland

Inflow Area =	208,610 sf,	0.00% Impervious,	Inflow Depth = 1.38"	for 25-Year event
Inflow =	4.65 cfs @	12.29 hrs, Volume=	23,926 cf	
Outflow =	4.65 cfs @	12.29 hrs, Volume=	23,926 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

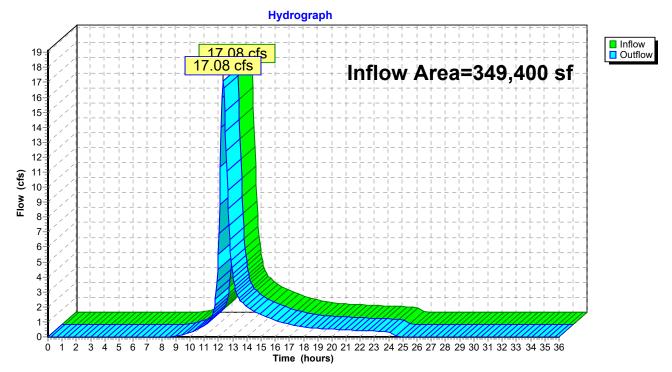


Reach 2R: Southwestern Wetland

Summary for Reach 3R: Northern Overland Flow

Inflow Area =	=	111,181 sf,	0.00% Impervious,	Inflow Depth =	1.23"	for 25-Year event
Inflow =		2.15 cfs @	12.29 hrs, Volume=	11,406 cf	F	
Outflow =		2.15 cfs @	12.29 hrs, Volume=	11,406 cf	f, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

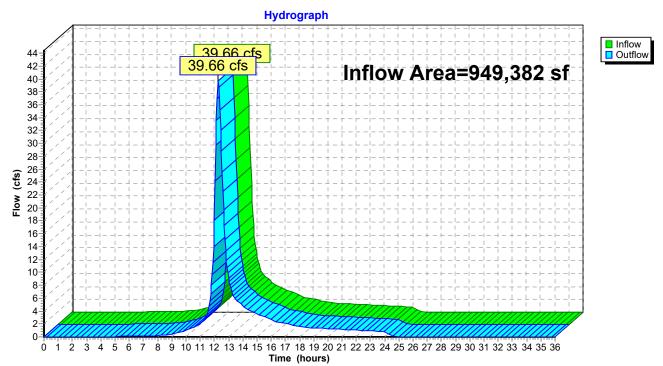


Reach 3R: Northern Overland Flow

Summary for Reach 4R: Southern Wetland

Inflow Area =		349,400 sf,	5.07% Impervious,	Inflow Depth = 2.88'	for 25-Year event
Inflow	=	17.08 cfs @ 1	12.33 hrs, Volume=	83,927 cf	
Outflow	=	17.08 cfs @ 1	12.33 hrs, Volume=	83,927 cf, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs



Reach 4R: Southern Wetland

Summary for Reach 5R: Combined Flow

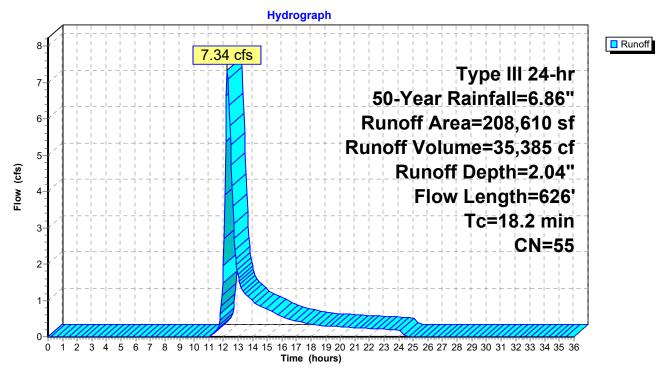
Inflow Area	a =	949,382 sf,	7.30% Impervious,	Inflow Depth = 2.63"	for 25-Year event
Inflow	=	39.66 cfs @ 1	12.28 hrs, Volume=	208,181 cf	
Outflow	=	39.66 cfs @ 1	12.28 hrs, Volume=	208,181 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Reach 5R: Combined Flow

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Eastern Woods	Runoff Area=208,610 sf 0.00% Impervious Runoff Depth=2.04" Flow Length=626' Tc=18.2 min CN=55 Runoff=7.34 cfs 35,385 cf						
Subcatchment 2S: Northern Woods	Runoff Area=111,181 sf 0.00% Impervious Runoff Depth=1.85" Flow Length=575' Tc=17.6 min CN=53 Runoff=3.53 cfs 17,178 cf						
Subcatchment3S: Front of Site	Runoff Area=194,497 sf 24.46% Impervious Runoff Depth=4.24" Flow Length=619' Tc=19.0 min CN=77 Runoff=15.23 cfs 68,725 cf						
Subcatchment 4S: Northeastern Section	on of Runoff Area=85,694 sf 4.63% Impervious Runoff Depth=6.15" Flow Length=496' Tc=6.0 min CN=94 Runoff=12.63 cfs 43,913 cf						
Subcatchment 5S: Most of Existing Lot Runoff Area=349,400 sf 5.07% Impervious Runoff Depth=3.81" Flow Length=1,175' Tc=23.1 min UI Adjusted CN=73 Runoff=22.73 cfs 111,076 cf							
Reach 1R: Southeastern Wetland/Prop	Inflow=22.52 cfs 112,639 cf Outflow=22.52 cfs 112,639 cf						
Reach 2R: Southwestern Wetland	Inflow=7.34 cfs 35,385 cf Outflow=7.34 cfs 35,385 cf						
Reach 3R: Northern Overland Flow	Inflow=3.53 cfs 17,178 cf Outflow=3.53 cfs 17,178 cf						
Reach 4R: Southern Wetland	Inflow=22.73 cfs 111,076 cf Outflow=22.73 cfs 111,076 cf						
Reach 5R: Combined Flow	Inflow=53.66 cfs 276,277 cf Outflow=53.66 cfs 276,277 cf						


Total Runoff Area = 949,382 sf Runoff Volume = 276,277 cf Average Runoff Depth = 3.49" 92.70% Pervious = 880,120 sf 7.30% Impervious = 69,262 sf

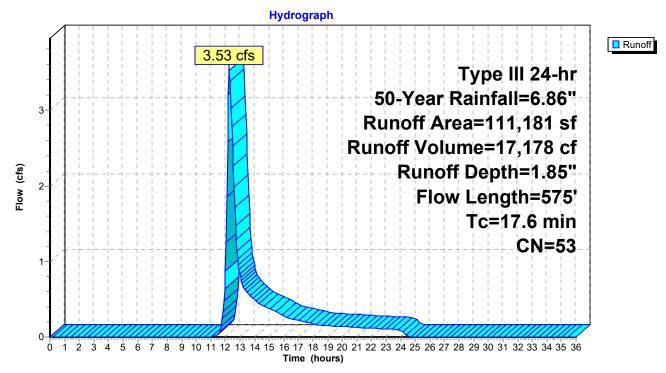
Summary for Subcatchment 1S: Eastern Woods

Runoff 7.34 cfs @ 12.28 hrs, Volume= 35,385 cf, Depth= 2.04" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

A	rea (sf)	CN E	escription		
2	205,711		,	od, HSG B	
	806		,	od, HSG D	
	2,093		,	od, HSG A	
	208,610		Veighted A		
Ż	208,610	1	00.00% Pe	ervious Area	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.5	68	0.0600	0.11		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
1.3	103	0.0680	1.30		Shallow Concentrated Flow,
4.0	70		0.07		Woodland Kv= 5.0 fps
1.3	78	0.0380	0.97		Shallow Concentrated Flow,
2.2	95	0.0210	0.72		Woodland Kv= 5.0 fps
2.2	95	0.0210	0.72		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
1.3	105	0.0710	1.33		Shallow Concentrated Flow,
		0.01.10			Woodland Kv= 5.0 fps
1.6	177	0.1330	1.82		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
18.2	626	Total			

Subcatchment 1S: Eastern Woods


Summary for Subcatchment 2S: Northern Woods

Runoff = 3.53 cfs @ 12.27 hrs, Volume= 17,178 cf, Depth= 1.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

_	A	rea (sf)	CN [Description		
		68,962	55 \	Voods, Go	od, HSG B	
		21,601	70 \	Voods, Go	od, HSG C	
		20,618	30 \	Noods, Go	od, HSG A	
	1	11,181	53 \	Veighted A	verage	
	111,181 100.00% Pervious Area				ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.7	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	7.9	525	0.0495	1.11		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	17.6	575	Total			

Subcatchment 2S: Northern Woods

Summary for Subcatchment 3S: Front of Site

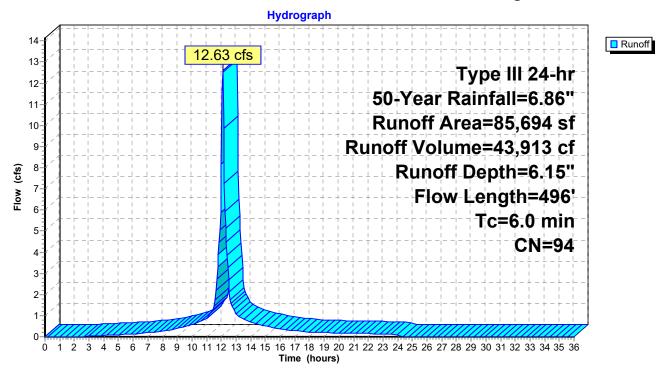
Runoff = 15.23 cfs @ 12.26 hrs, Volume= 68,725 cf, Depth= 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

A	rea (sf)	CN E	escription			
	20,473	74 >	75% Gras	s cover, Go	ood, HSG C	
	28,406	77 V	Voods, Poo	or, HSG C		
	3,311	98 F	aved park	ing, HSG C		
	7,754	98 V	Vater Surfa	ace, HSG C		
	2,614	98 F	aved park	ing, HSG D		
	36,432	77 V	Voods, Go	od, HSG D		
	17,163	98 V	Vater Surfa	ace, HSG D		
	20,976	55 V	Voods, Go	od, HSG B		
	15,333	98 V	Vater Surfa	ace, HSG B		
	8,494	85 0	Gravel road	s, HSG B		
	1,394	98 F				
	32,147 61 >75% Grass cover, Good, HSG B					
1	94,497	77 V	Veighted A	verage		
1	46,928	7	5.54% Per	vious Area		
	47,569	2	4.46% Imp	pervious Are	ea	
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
9.7	50	0.0400	0.09		Sheet Flow,	
					Woods: Light underbrush n= 0.400 P2= 3.00"	
4.9	264	0.0322	0.90		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
0.4	45	0.0100	2.03		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
4.0	260	0.0460	1.07		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
19.0	619	Total				

Hydrograph 17 Runoff 15.23 cfs 16-Type III 24-hr 15 14 50-Year Rainfall=6.86" 13 Runoff Area=194,497 sf 12-Runoff Volume=68,725 cf 11 10-Runoff Depth=4.24" Flow (cfs) 9-Flow Length=619' 8-7. Tc=19.0 min 6-**CN=77** 5 4 3-2 1 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Subcatchment 3S: Front of Site


Summary for Subcatchment 4S: Northeastern Section of Existing Yard

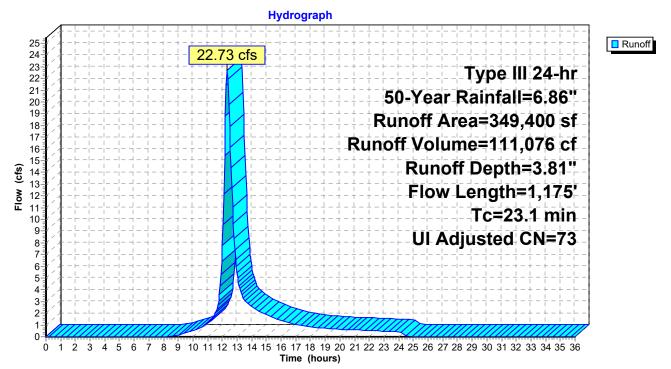
Runoff = 12.63 cfs @ 12.09 hrs, Volume= 43,913 cf, Depth= 6.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

A	rea (sf)	CN E	Description		
	4,792	55 V	Voods, Go	od, HSG B	
	2,962			ing, HSG B	
	1,002			ace, HSG B	
	76,938	96 (Gravel surfa	ace, HSG B	}
	85,694	94 V	Veighted A	verage	
	81,730	-		vious Area	
	3,964 4.63% Impervious Area				а
_		~		.	— • • • •
, Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.7	50	0.0250	1.27		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.00"
2.2	406	0.0375	3.12		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
0.7	40	0.0375	0.97		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.4					Direct Entry,
6.0	496	Total			

Subcatchment 4S: Northeastern Section of Existing Yard

Summary for Subcatchment 5S: Most of Existing Lot

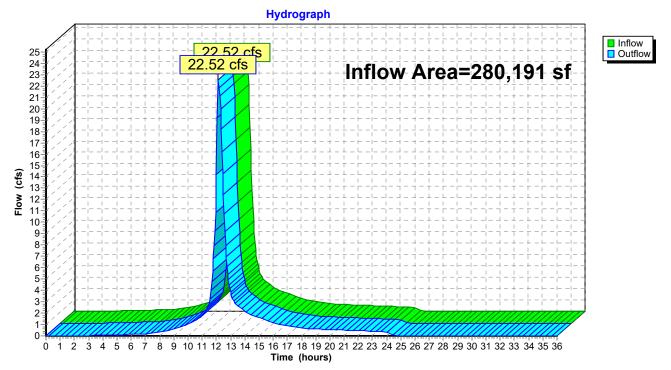

Page 54

Runoff 22.73 cfs @ 12.32 hrs, Volume= 111,076 cf, Depth= 3.81" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

_	A	rea (sf)	CN /	Adj Desc	cription	
		64,556	55	Woo	ds, Good, I	HSG B
		4,487 77 Woods, Good, H				HSG D
	1	70,927	85	Grav	el roads, H	ISG B
		5,619	98		ed parking,	
		12,110	98			oofs, HSG B
		91,077	61			ver, Good, HSG B
_		624	70		ds, Good, I	
		49,400	74			age, UI Adjusted
	331,671 94.93% Per					
17,729 5.07% Impervi						
12,110 68.31% Unconne					1% Unconr	nected
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
-	12.7	50	0.0200	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	2.5	164	0.0470	1.08		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.4	259	0.0040	1.28		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	3.0	640	0.0500	3.60		Shallow Concentrated Flow,
	4 -		0 0000	0 7 1		Unpaved Kv= 16.1 fps
	1.5	62	0.0200	0.71		Shallow Concentrated Flow,
-			-			Woodland Kv= 5.0 fps
	22.1	1 1 7 5	Total			

23.1 1,175 Total

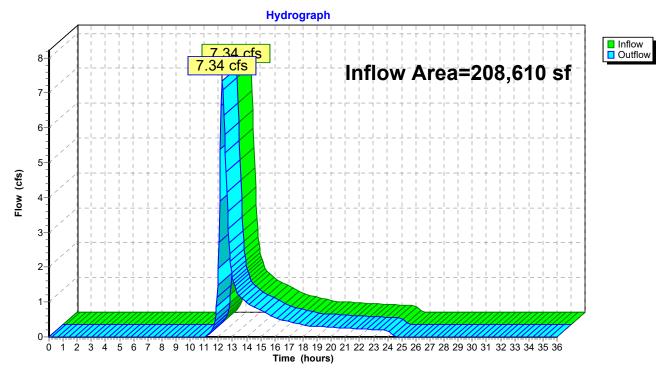


Subcatchment 5S: Most of Existing Lot

Summary for Reach 1R: Southeastern Wetland/Prop. Line

Inflow Area	a =	280,191 sf, 18.39% Impervious, Inflow Depth = 4.82" for 50-Year ev	ent
Inflow	=	22.52 cfs @ 12.12 hrs, Volume= 112,639 cf	
Outflow	=	22.52 cfs $ ilde{@}$ 12.12 hrs, Volume= 112,639 cf, Atten= 0%, Lag= 0.0) min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

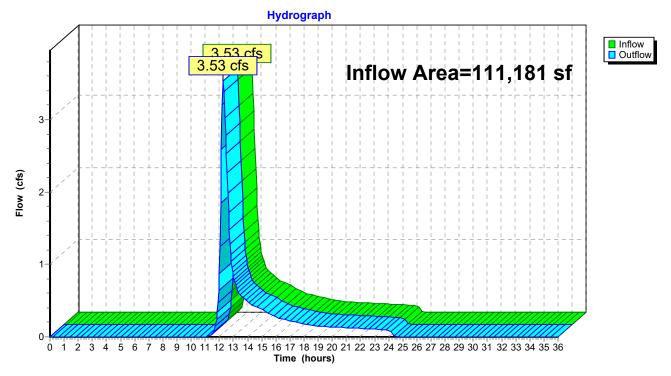


Reach 1R: Southeastern Wetland/Prop. Line

Summary for Reach 2R: Southwestern Wetland

Inflow Area	=	208,610 sf,	0.00% Impervious,	Inflow Depth =	2.04"	for 50-Year event
Inflow	=	7.34 cfs @ 1	12.28 hrs, Volume=	35,385 c	f	
Outflow	=	7.34 cfs @ ´	12.28 hrs, Volume=	35,385 c	f, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

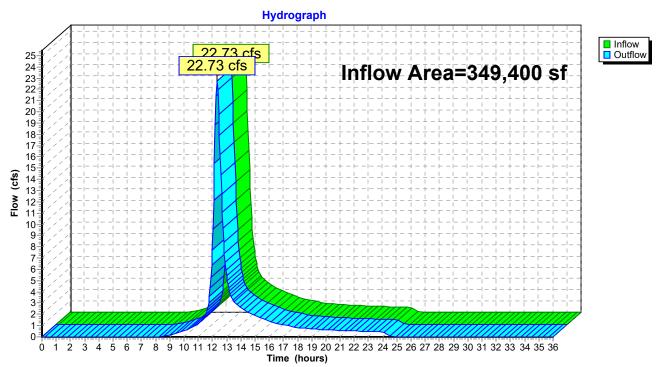

Reach 2R: Southwestern Wetland

Summary for Reach 3R: Northern Overland Flow

Page 58

Inflow Area	a =	111,181 sf,	0.00% Impervious,	Inflow Depth = 1	1.85" for 50-Year event
Inflow	=	3.53 cfs @	12.27 hrs, Volume=	17,178 cf	
Outflow	=	3.53 cfs @	12.27 hrs, Volume=	17,178 cf,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

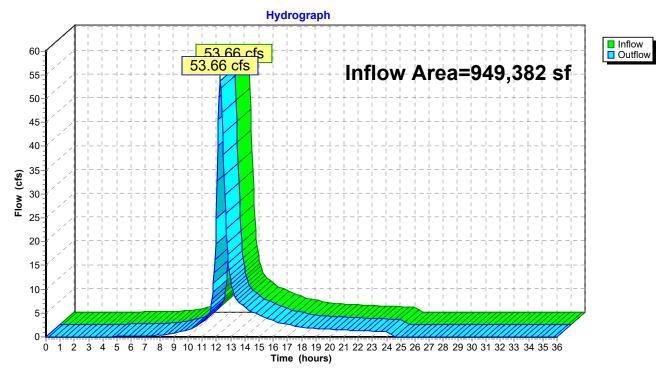


Reach 3R: Northern Overland Flow

Summary for Reach 4R: Southern Wetland

Inflow Area =		349,400 sf,	5.07% Impervious,	Inflow Depth =	3.81"	for 50-Year event
Inflow	=	22.73 cfs @ 1	2.32 hrs, Volume=	111,076 cf	F	
Outflow	=	22.73 cfs @ 1	2.32 hrs, Volume=	111,076 cf	f, Atter	n= 0%, Lag= 0.0 min

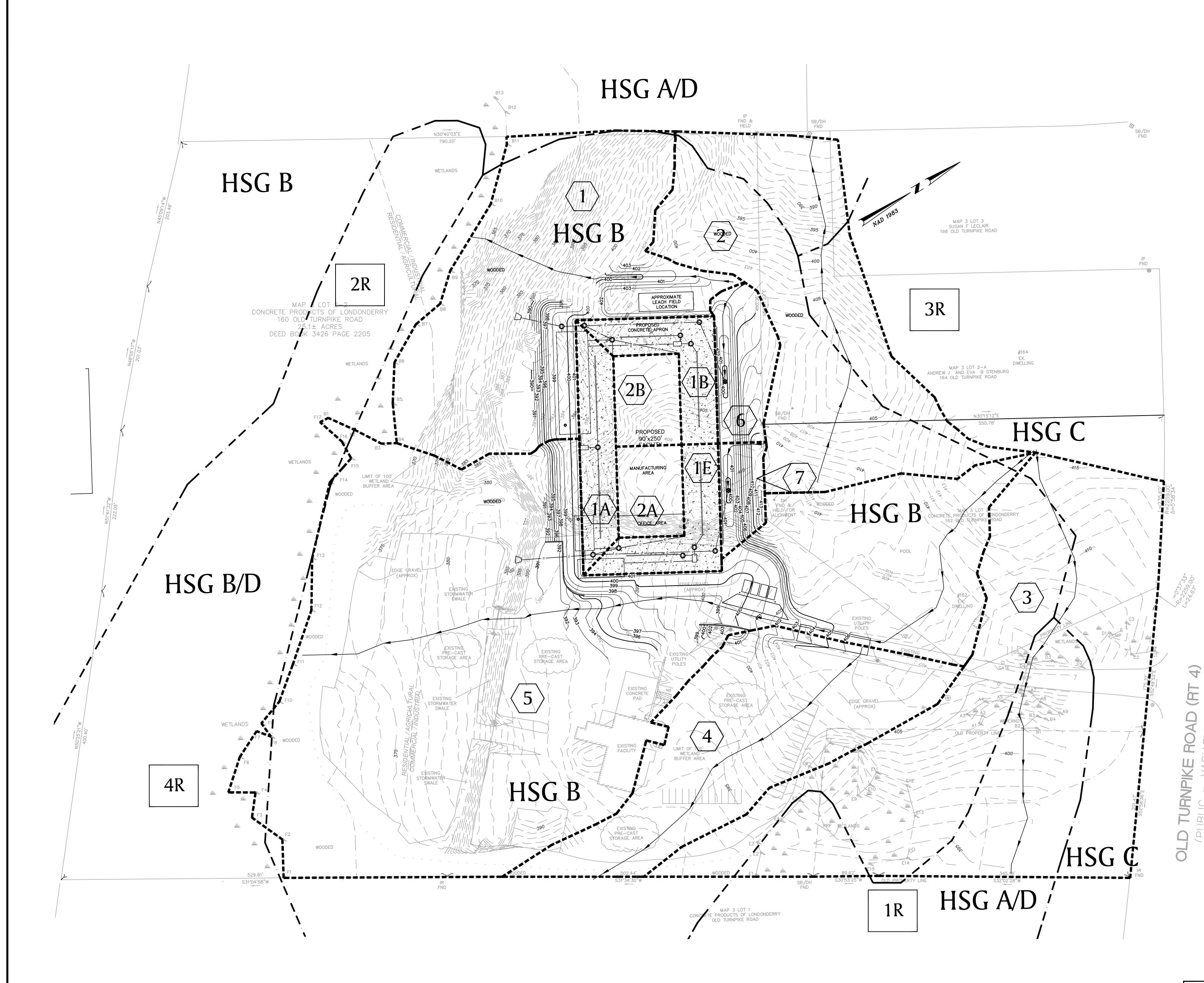
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

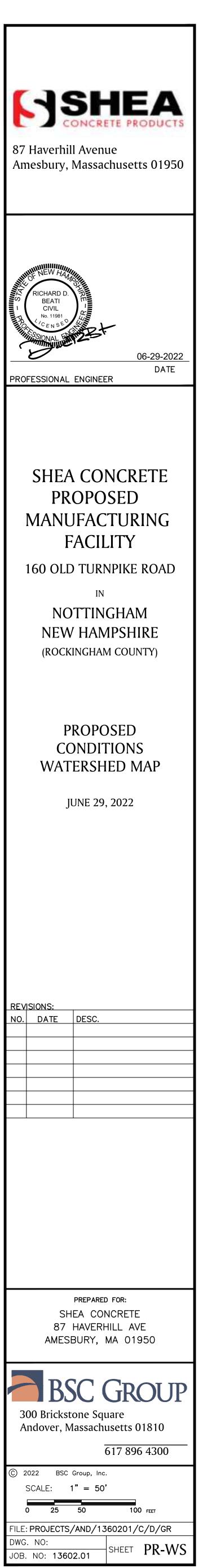


Reach 4R: Southern Wetland

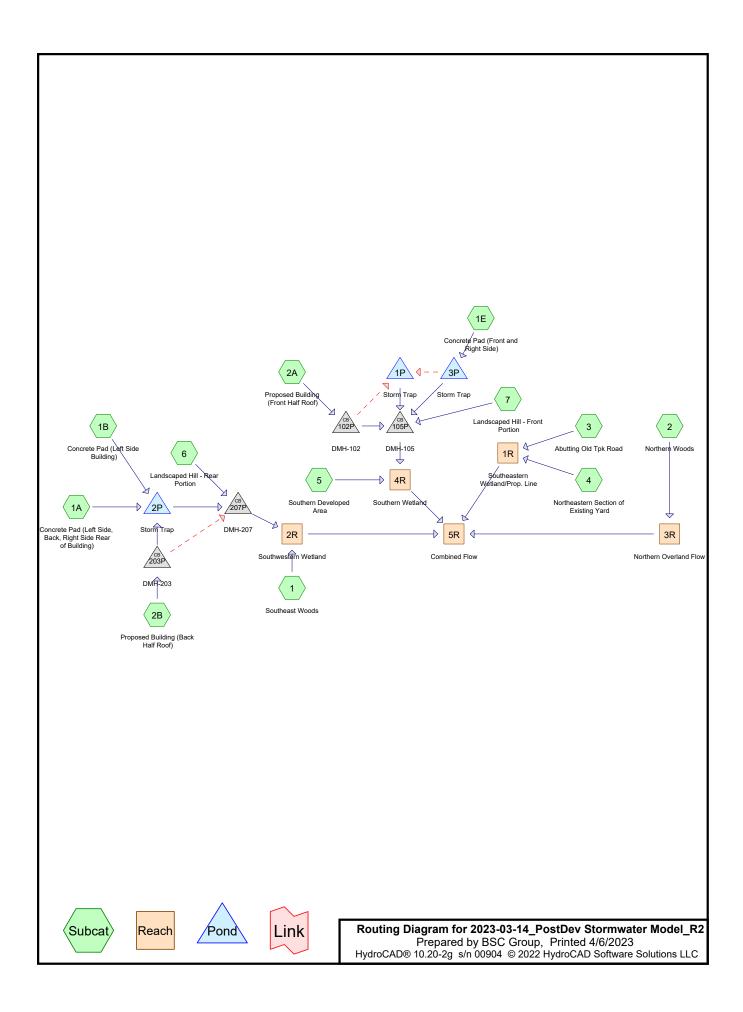
Summary for Reach 5R: Combined Flow

Inflow Are	a =	949,382 sf,	7.30% Impervious,	Inflow Depth = 3.49 "	for 50-Year event
Inflow	=	53.66 cfs @ 1	12.28 hrs, Volume=	276,277 cf	
Outflow	=	53.66 cfs @ 1	12.28 hrs, Volume=	276,277 cf, Atte	n= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Reach 5R: Combined Flow

4.03 POST-DEVELOPMENT HYDROLOGY WATERSHED PLAN


ISSUED FOR PERMITTING NOT FOR CONSTRUCTION

\\BSCBOS\AND\PROJECTS-AND\1360201\CIVIL_DRAINAGE DESIGN\1360201-PR WSHED.DWG_6/29/2022_JJWł

4.04 Post-Development Hydrology Watershed Calculations (HydroCAD Printouts)

 Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-Year	Type III 24-hr		Default	24.00	1	3.02	2
2	10-Year	Type III 24-hr		Default	24.00	1	4.55	2
3	25-Year	Type III 24-hr		Default	24.00	1	5.75	2
4	50-Year	Type III 24-hr		Default	24.00	1	6.86	2

Rainfall Events Listing (selected events)

2023-03-14_PostDev Stormwater Model_R2

Prepared by BSC Group HydroCAD® 10.20-2g s/n 00904 © 2022 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
173,650	61	>75% Grass cover, Good, HSG B (1, 3, 5, 6, 7)
20,473	74	>75% Grass cover, Good, HSG C (3)
159,647	85	Gravel roads, HSG B (3, 5)
77,760	96	Gravel surface, HSG B (1, 4)
53,975	98	Paved parking, HSG B (1A, 1B, 1E, 3, 4, 5)
3,311	98	Paved parking, HSG C (3)
2,614	98	Paved parking, HSG D (3)
34,610	98	Unconnected roofs, HSG B (2A, 2B, 5)
16,335	98	Water Surface, HSG B (3, 4)
7,754	98	Water Surface, HSG C (3)
17,163	98	Water Surface, HSG D (3)
22,711	30	Woods, Good, HSG A (1, 2)
267,023	55	Woods, Good, HSG B (1, 2, 3, 4, 5, 6)
21,606	70	Woods, Good, HSG C (2)
41,725	77	Woods, Good, HSG D (3, 5)
29,025	77	Woods, Poor, HSG C (3, 5)
949,382	72	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
22,711	HSG A	1, 2
783,000	HSG B	1, 1A, 1B, 1E, 2, 2A, 2B, 3, 4, 5, 6, 7
82,169	HSG C	2, 3, 5
61,502	HSG D	3, 5
0	Other	
949,382		TOTAL AREA

2023-03-14_PostDev Stormwater Model_R2

Prepared by BSC Group HydroCAD® 10.20-2g s/n 00904 © 2022 HydroCAD Software Solutions LLC

Printed 4/6/2023 Page 5

	Ground	Total	Other	HSG-D	HSG-C	HSG-B	HSG-A
	Cover	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)
_	>75% Grass	194,123	0	0	20,473	173,650	0
	cover, Good						
	Gravel roads	159,647	0	0	0	159,647	0
	Gravel surface	77,760	0	0	0	77,760	0
	Paved parking	59,900	0	2,614	3,311	53,975	0
	Unconnected	34,610	0	0	0	34,610	0
	roofs						
	Water Surface	41,252	0	17,163	7,754	16,335	0
	Woods, Good	353,065	0	41,725	21,606	267,023	22,711
	Woods, Poor	29,025	0	0	29,025	0	0
	TOTAL AREA	949,382	0	61,502	82,169	783,000	22,711

Ground Covers (all nodes)

2023-03-14_PostDev Stormwater Model_R2

Prepared by BSC Group HydroCAD® 10.20-2g s/n 00904 © 2022 HydroCAD Software Solutions LLC

Printed 4/6/2023 Page 6

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
1	1P	396.16	396.06	10.0	0.0100	0.012	0.0	12.0	0.0
2	2P	395.75	395.65	10.0	0.0100	0.012	0.0	12.0	0.0
3	2P	395.95	395.85	10.0	0.0100	0.012	0.0	6.0	0.0
4	3P	396.16	396.06	10.0	0.0100	0.012	0.0	12.0	0.0
5	3P	395.75	395.75	5.0	0.0000	0.012	0.0	12.0	0.0
6	102P	396.65	395.35	52.0	0.0250	0.012	0.0	12.0	0.0
7	102P	396.78	396.48	30.0	0.0100	0.012	0.0	4.0	0.0
8	105P	391.00	382.00	96.0	0.0938	0.012	0.0	12.0	0.0
9	203P	396.75	396.50	30.0	0.0083	0.012	0.0	12.0	0.0
10	203P	397.10	397.00	10.0	0.0100	0.012	0.0	12.0	0.0
11	207P	392.50	392.30	15.0	0.0133	0.012	0.0	12.0	0.0

Pipe Listing (all nodes)

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SoutheastWoods	Runoff Area=117,278 sf 0.00% Impervious Runoff Depth=0.23" Flow Length=372' Tc=15.7 min CN=56 Runoff=0.22 cfs 2,204 cf
Subcatchment1A: Concrete Pad (Left	Runoff Area=14,500 sf 100.00% Impervious Runoff Depth=2.79" Tc=6.0 min CN=98 Runoff=0.95 cfs 3,369 cf
Subcatchment1B: Concrete Pad (Left	Runoff Area=15,000 sf 100.00% Impervious Runoff Depth=2.79" Tc=6.0 min CN=98 Runoff=0.98 cfs 3,485 cf
Subcatchment1E: Concrete Pad (Front	Runoff Area=14,500 sf 100.00% Impervious Runoff Depth=2.79" Tc=6.0 min CN=98 Runoff=0.95 cfs 3,369 cf
Subcatchment2: Northern Woods	Runoff Area=108,191 sf 0.00% Impervious Runoff Depth=0.15" Flow Length=575' Tc=17.6 min CN=53 Runoff=0.09 cfs 1,385 cf
Subcatchment2A: Proposed Building	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth=2.79" Tc=6.0 min CN=98 Runoff=0.74 cfs 2,614 cf
Subcatchment2B: Proposed Building	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth=2.79" Tc=6.0 min CN=98 Runoff=0.74 cfs 2,614 cf
	Runoff Area=194,497 sf 24.46% Impervious Runoff Depth=1.08" Flow Length=619' Tc=19.0 min CN=77 Runoff=3.73 cfs 17,584 cf
Subcatchment4: Northeastern Section of	of Runoff Area=84,996 sf 4.66% Impervious Runoff Depth=2.37" Flow Length=496' Tc=6.0 min CN=94 Runoff=5.09 cfs 16,783 cf
	rea Runoff Area=353,615 sf 5.01% Impervious Runoff Depth=0.77" ,175' Tc=23.1 min UI Adjusted CN=71 Runoff=4.13 cfs 22,747 cf
Subcatchment6: LandscapedHill - Rear	Runoff Area=15,891 sf 0.00% Impervious Runoff Depth=0.34" Flow Length=140' Tc=6.9 min CN=60 Runoff=0.07 cfs 451 cf
Subcatchment7: LandscapedHill - Fron	t Runoff Area=8,414 sf 0.00% Impervious Runoff Depth=0.37" Tc=6.0 min CN=61 Runoff=0.05 cfs 261 cf
Reach 1R: Southeastern Wetland/Prop.I	Line Inflow=7.14 cfs 34,367 cf Outflow=7.14 cfs 34,367 cf
Reach 2R: Southwestern Wetland	Inflow=0.26 cfs 2,677 cf Outflow=0.26 cfs 2,677 cf
Reach 3R: Northern Overland Flow	Inflow=0.09 cfs 1,385 cf Outflow=0.09 cfs 1,385 cf
Reach 4R: Southern Wetland	Inflow=4.38 cfs 25,463 cf Outflow=4.38 cfs 25,463 cf

2023-03-14_PostDev Stormwater Model_R2 *Typ* Prepared by BSC Group HydroCAD® 10.20-2g s/n 00904 © 2022 HydroCAD Software Solutions LLC

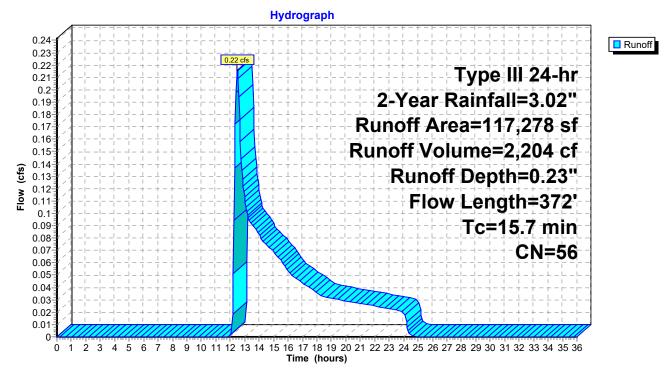
Type III 24-hr 2-Year Rainfall=3.02" Printed 4/6/2023 LLC Page 8

Reach 5R: Combined Flow

Inflow=10.29 cfs 63,892 cf Outflow=10.29 cfs 63,892 cf

Pond 1P: Storm Trap	Peak Elev=394.18' Storage=90 cf Inflow=0.13 cfs 160 cf Discarded=0.03 cfs 160 cf Primary=0.00 cfs 0 cf Outflow=0.03 cfs 160 cf						
Pond 2P: Storm Trap	Peak Elev=395.52' Storage=4,317 cf Inflow=2.62 cfs 9,446 cf Discarded=0.14 cfs 9,446 cf Primary=0.00 cfs 0 cf Outflow=0.14 cfs 9,446 cf						
Pond 3P: Storm Trap Discarded=0.04 cfs	Peak Elev=395.22' Storage=1,734 cf Inflow=0.95 cfs 3,369 cf 3,369 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.04 cfs 3,369 cf						
Pond 102P: DMH-102	Peak Elev=397.10' Inflow=0.74 cfs 2,614 cf Primary=0.61 cfs 2,454 cf Secondary=0.13 cfs 160 cf Outflow=0.74 cfs 2,614 cf						
Pond 105P: DMH-105	Peak Elev=391.46' Inflow=0.65 cfs 2,715 cf 12.0" Round Culvert n=0.012 L=96.0' S=0.0938 '/' Outflow=0.65 cfs 2,715 cf						
Pond 203P: DMH-203	Peak Elev=397.23' Inflow=0.74 cfs 2,614 cf Primary=0.68 cfs 2,592 cf Secondary=0.05 cfs 22 cf Outflow=0.74 cfs 2,614 cf						
Pond 207P: DMH-207	Peak Elev=392.68' Inflow=0.11 cfs 473 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0133 '/' Outflow=0.11 cfs 473 cf						
Total Runoff Area = 949,382 sf Runoff Volume = 76,867 cf Average Runoff Depth = 0.97"							

85.70% Pervious = 813,620 sf 14.30% Impervious = 135,762 sf

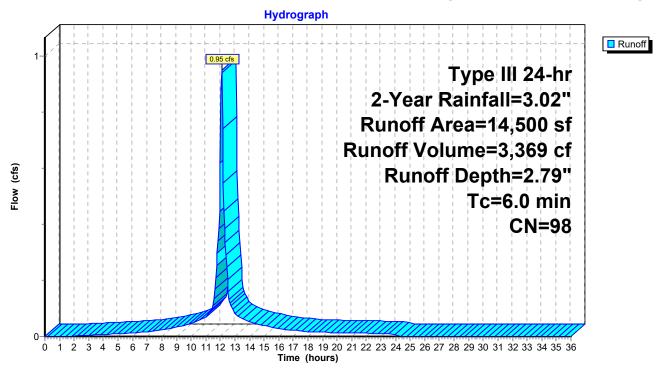

Summary for Subcatchment 1: Southeast Woods

Runoff = 0.22 cfs @ 12.49 hrs, Volume= Routed to Reach 2R : Southwestern Wetland 2,204 cf, Depth= 0.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.02"

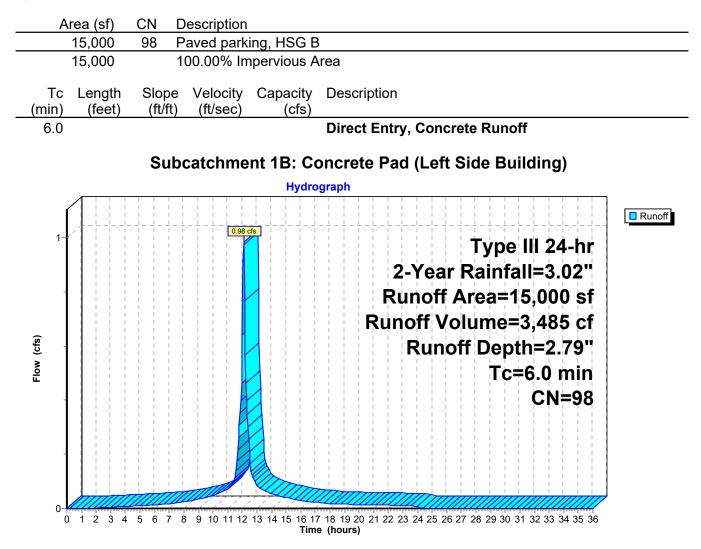
A	rea (sf)	CN E	Description		
	86,662	55 V	Voods, Go	od, HSG B	
	2,127	30 V	Voods, Go	od, HSG A	
	26,969	61 >	75% Gras	s cover, Go	ood, HSG B
	1,520	96 0	Gravel surfa	ace, HSG E	3
1	17,278		Veighted A		
1	17,278	1	00.00% Pe	ervious Are	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.7	50	0.0200	0.07		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
3.0	322	0.1240	1.76		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
15.7	372	Total			

Subcatchment 1: Southeast Woods

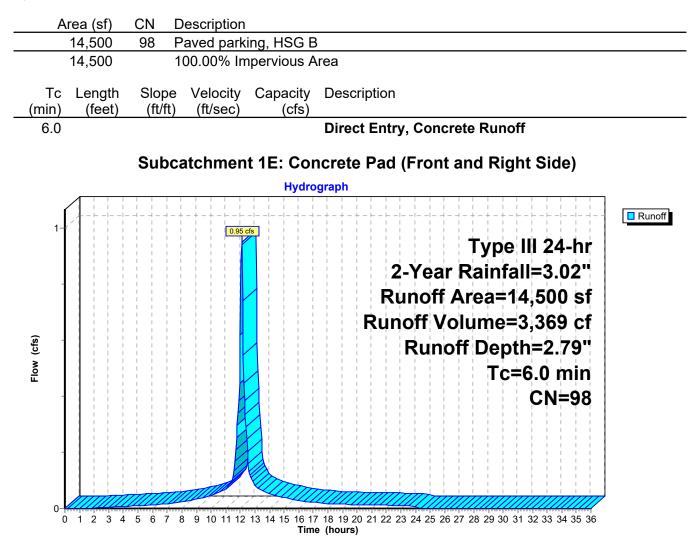

Summary for Subcatchment 1A: Concrete Pad (Left Side, Back, Right Side Rear of Building)

Runoff = 0.95 cfs @ 12.09 hrs, Volume= Routed to Pond 2P : Storm Trap 3,369 cf, Depth= 2.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.02"


Area (sf) CN	Description						
14,500) 98	Paved parking, HSG B						
14,500)	100.00% In	npervious A	Area				
Tc Leng (min) (fee		,	Capacity (cfs)	Description				
6.0				Direct Entry, Concrete Runoff				

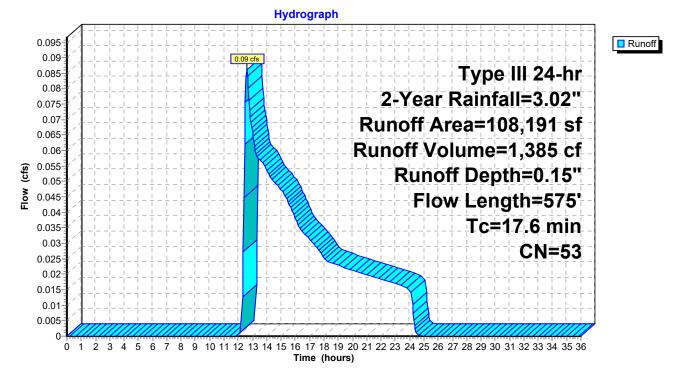
Subcatchment 1A: Concrete Pad (Left Side, Back, Right Side Rear of Building)


Summary for Subcatchment 1B: Concrete Pad (Left Side Building)

Runoff = 0.98 cfs @ 12.09 hrs, Volume= Routed to Pond 2P : Storm Trap 3,485 cf, Depth= 2.79"

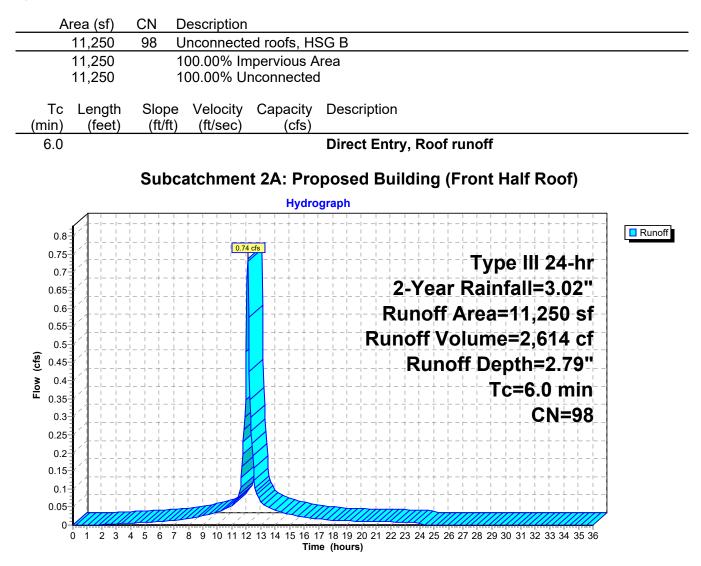
Summary for Subcatchment 1E: Concrete Pad (Front and Right Side)

Runoff = 0.95 cfs @ 12.09 hrs, Volume= Routed to Pond 3P : Storm Trap 3,369 cf, Depth= 2.79"


Summary for Subcatchment 2: Northern Woods

Runoff = 0.09 cfs @ 12.60 hrs, Volume= Routed to Reach 3R : Northern Overland Flow 1,385 cf, Depth= 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.02"

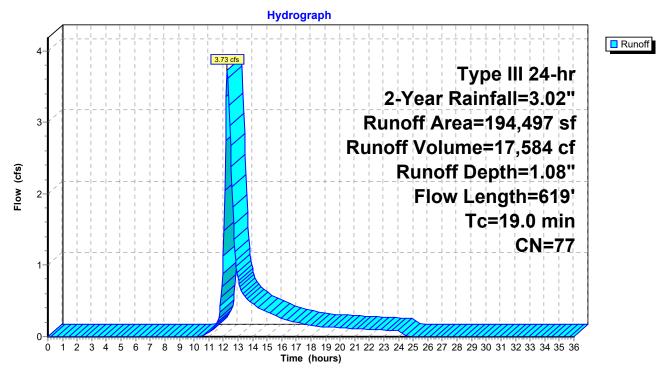

_	A	rea (sf)	CN [Description		
		66,001	55 \	Voods, Go	od, HSG B	
		21,606	70 \	Voods, Go	od, HSG C	
		20,584	30 \	Voods, Go	od, HSG A	
	1	08,191	53 \	Veighted A	verage	
	1	08,191		00.00% Pe	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.7	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	7.9	525	0.0495	1.11		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	17.6	575	Total			

Subcatchment 2: Northern Woods

Summary for Subcatchment 2A: Proposed Building (Front Half Roof)

Runoff = 0.74 cfs @ 12.09 hrs, Volume= Routed to Pond 102P : DMH-102 2,614 cf, Depth= 2.79"

Summary for Subcatchment 2B: Proposed Building (Back Half Roof)

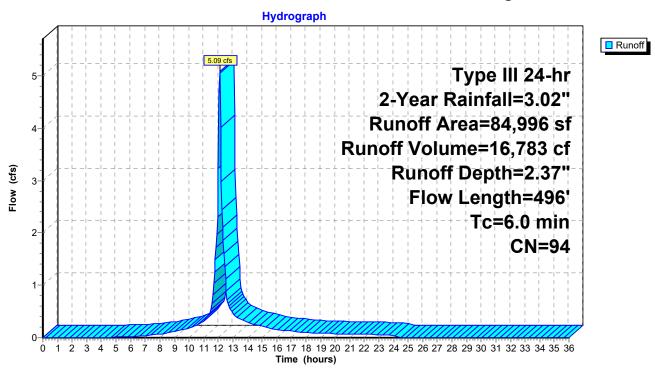

Runoff = 0.74 cfs @ 12.09 hrs, Volume= Routed to Pond 203P : DMH-203 2,614 cf, Depth= 2.79"

11,25 11,25			npervious Anconnected		
11,20	0 1	00.00 /0 01		u	
Tc Leng min) (fee		Velocity (ft/sec)	Capacity (cfs)	Description	
6.0				Direct Entry, Roof runoff	
	Subc	atchmen	t 2B: Pro	oposed Building (Back Half Roof)	
			Hydro	ograph	
0.8					Runo
0.75		1 1 1 1 <mark>0.74</mark> 1	cfs	Type III 24-hr	
0.7					
0.65	$-\frac{1}{1}$	$\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$		2-Year Rainfall=3.02"	
0.6	$-\frac{1}{1}$			Runoff Area=11,250 sf	
0.55		+ - + -	+ - +	Runoff Volume=2,614 cf	
				Runoff Depth=2.79"	
80 0.45 0.45					
0.35				Tc=6.0 min	
0.3				CN=98	
0.25					
0.2					
0.15		i i i i + - + - + - -		· · · · · · · · · · · · · · · · · · ·	
0.1					
0.05		MAR			

Summary for Subcatchment 3: Abutting Old Tpk Road

Runoff = 3.73 cfs @ 12.28 hrs, Volume= 17,584 cf, Depth= 1.08" Routed to Reach 1R : Southeastern Wetland/Prop. Line

A	rea (sf)	CN E	escription							
	20,473	74 >	74 >75% Grass cover, Good, HSG C							
	28,140	77 V								
	3,311	98 F	aved park	ing, HSG C						
	7,754	98 V	Vater Surfa	ace, HSG C						
	2,614	98 F	aved park	ing, HSG D						
	36,432	77 V	Voods, Go	od, HSG D						
	17,163	98 V	Vater Surfa	ace, HSG D						
	21,242	55 V	Voods, Go	od, HSG B						
	15,333			ace, HSG B						
	8,494		Gravel road							
	1,394			ing, HSG B						
	32,147	61 >	75% Gras	s cover, Go	ood, HSG B					
1	94,497	77 V	Veighted A	verage						
1	46,928	7	5.54% Per	vious Area						
	47,569	2	4.46% Imp	pervious Ar	ea					
Тс	Length	Slope	Velocity		Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
9.7	50	0.0400	0.09		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 3.00"					
4.9	264	0.0322	0.90		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
0.4	45	0.0100	2.03		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					
4.0	260	0.0460	1.07		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
19.0	619	Total								

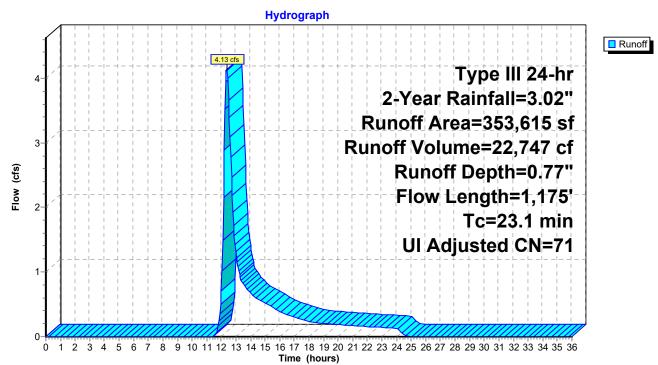


Subcatchment 3: Abutting Old Tpk Road

Summary for Subcatchment 4: Northeastern Section of Existing Yard

Runoff = 5.09 cfs @ 12.09 hrs, Volume= 16,783 cf, Depth= 2.37" Routed to Reach 1R : Southeastern Wetland/Prop. Line

A	rea (sf)	CN E	Description		
	4,792	55 V	Voods, Go	od, HSG B	
	2,962			ing, HSG B	
	1,002			ace, HSG B	
	76,240	96 0	Gravel surfa	ace, HSG B	}
	84,996		Veighted A	0	
	81,032	-		rvious Area	
	3,964	4	.66% Impe	ervious Area	a
–	1 11.	01	V/.1	0	Description
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.7	50	0.0250	1.27		Sheet Flow,
					Smooth surfaces $n = 0.011$ P2= 3.00"
2.2	406	0.0375	3.12		Shallow Concentrated Flow,
~ -	4.0	o oo - -			Unpaved Kv= 16.1 fps
0.7	40	0.0375	0.97		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.4					Direct Entry,
6.0	496	Total			



Subcatchment 4: Northeastern Section of Existing Yard

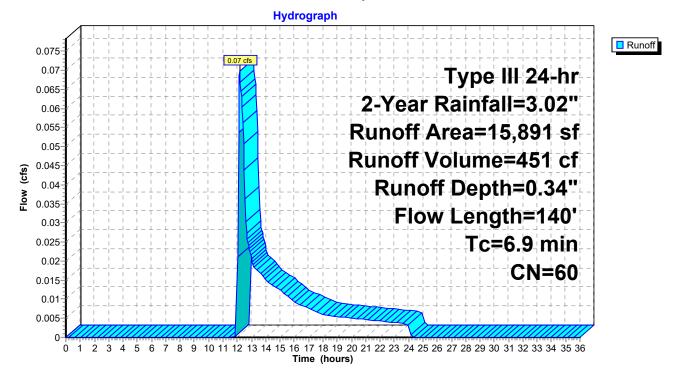
Summary for Subcatchment 5: Southern Developed Area

Runoff = 4.13 cfs @ 12.37 hrs, Volume= 22,747 cf, Depth= 0.77" Routed to Reach 4R : Southern Wetland

A	rea (sf)	CN A	Adj Desc	ription			
	86,017	55	Woo	Woods, Good, HSG B			
	5,293	77	Woo	Woods, Good, HSG D			
1	51,153	85		el roads, H			
	5,619	98		ed parking,			
	12,110	98	Unco	onnected ro	oofs, HSG B		
	92,538	61	>75%	6 Grass co	ver, Good, HSG B		
	885	77	Woo	ds, Poor, H	ISG C		
3	53,615	72	71 Weig	hted Avera	age, UI Adjusted		
3	35,886		94.99	9% Perviou	is Area		
	17,729			% Impervio			
	12,110		68.3 ⁻	1% Unconr	nected		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
12.7	50	0.0200	0.07		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 3.00"		
2.5	164	0.0470	1.08		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
3.4	259	0.0040	1.28		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
3.0	640	0.0500	3.60		Shallow Concentrated Flow,		
					Unpaved Kv= 16.1 fps		
1.5	62	0.0200	0.71		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
23.1	1,175	Total					

Subcatchment 5: Southern Developed Area

Summary for Subcatchment 6: Landscaped Hill - Rear Portion

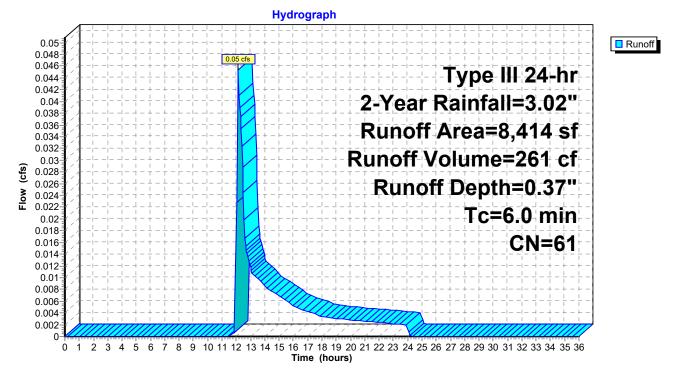

Runoff	=	0.07 cfs @	12.17 hrs,	Volume=		
Routed to Pond 207P : DMH-207						

451 cf, Depth= 0.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.02"

_	A	rea (sf)	CN I	Description				
		2,309	55	55 Woods, Good, HSG B				
_	13,582 61 >75% Grass cover, Good, HSG B							
15,891 60 Weighted Average								
15,891 100.00% Pervious Area			100.00% Pe	ervious Are	а			
	Тс	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	5.5	50	0.0600	0.15		Sheet Flow, OVERLAND		
						Grass: Dense n= 0.240 P2= 3.00"		
	1.4	90	0.0240	1.08		Shallow Concentrated Flow, SWALE		
_						Short Grass Pasture Kv= 7.0 fps		
	6.9	140	Total					

Subcatchment 6: Landscaped Hill - Rear Portion

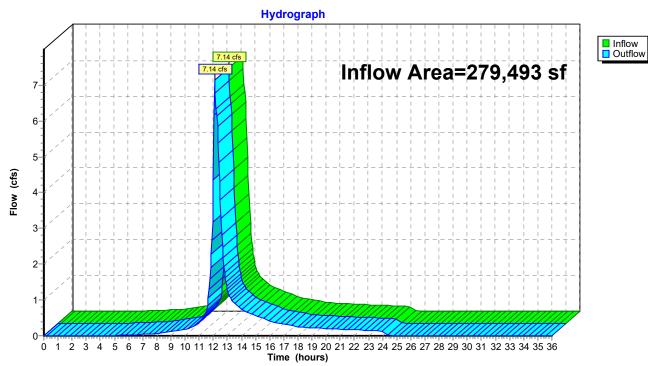

Summary for Subcatchment 7: Landscaped Hill - Front Portion

Runoff = 0.05 cfs @ 12.15 hrs, Volume= Routed to Pond 105P : DMH-105 261 cf, Depth= 0.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.02"

Area	(sf) CN	Description					
8,4	414 61	>75% Gras	>75% Grass cover, Good, HSG B				
8,4	414	100.00% P	ervious Are	ea			
	0	pe Velocity /ft) (ft/sec)	Capacity (cfs)	Description			
6.0				Direct Entry, Overland <6min			

Subcatchment 7: Landscaped Hill - Front Portion

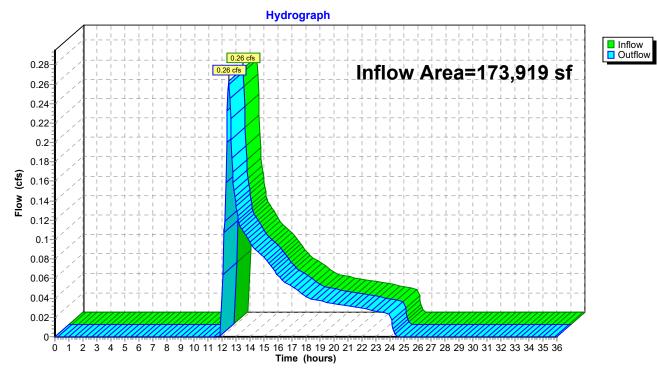


Summary for Reach 1R: Southeastern Wetland/Prop. Line

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	279,493 sf, 18.44% Impervious,	Inflow Depth = 1.48" for 2-Year event
Inflow =	7.14 cfs @ 12.11 hrs, Volume=	34,367 cf
Outflow =	7.14 cfs @ 12.11 hrs, Volume=	34,367 cf, Atten= 0%, Lag= 0.0 min
Routed to R	each 5R : Combined Flow	

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Reach 1R: Southeastern Wetland/Prop. Line

Summary for Reach 2R: Southwestern Wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	173,919 sf	, 23.43% Impervious,	Inflow Depth = 0.18 "	for 2-Year event
Inflow	=	0.26 cfs @	12.46 hrs, Volume=	2,677 cf	
Outflow	=	0.26 cfs @	12.46 hrs, Volume=	2,677 cf, Atte	n= 0%, Lag= 0.0 min
Routed to Reach 5R : Combined Flow					

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

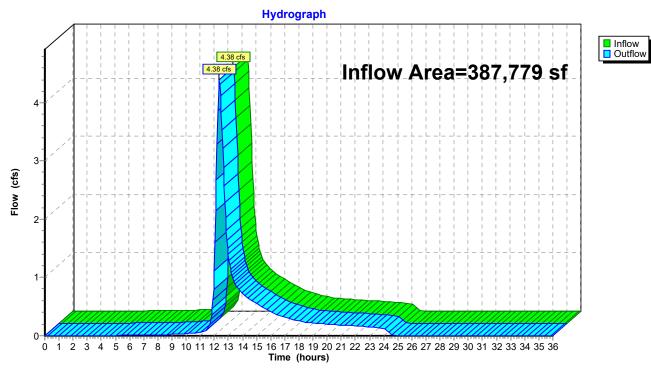

Reach 2R: Southwestern Wetland

Summary for Reach 3R: Northern Overland Flow

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	108,191 sf,	0.00% Impervious,	Inflow Depth = 0.15" for 2-Year e	vent
Inflow	=	0.09 cfs @	12.60 hrs, Volume=	1,385 cf	
Outflow	=	0.09 cfs @	12.60 hrs, Volume=	1,385 cf, Atten= 0%, Lag= 0).0 min
Routed to Reach 5R : Combined Flow					

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

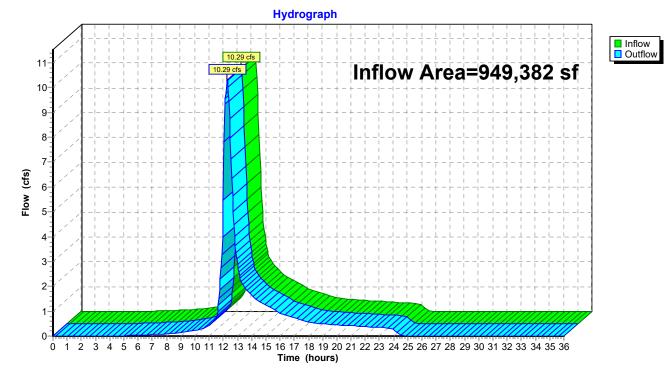

Reach 3R: Northern Overland Flow

Summary for Reach 4R: Southern Wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	387,779 sf	, 11.21% Impervious,	Inflow Depth = 0.79"	for 2-Year event
Inflow	=	4.38 cfs @	12.36 hrs, Volume=	25,463 cf	
Outflow	=	4.38 cfs @	12.36 hrs, Volume=	25,463 cf, Atte	en= 0%, Lag= 0.0 min
Routed to Reach 5R : Combined Flow					

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Reach 4R: Southern Wetland

Summary for Reach 5R: Combined Flow

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	949,382 sf, 14.30% Impervious, Inflow Depth = 0.81" for 2-Year event	
Inflow	=	10.29 cfs @ 12.29 hrs, Volume= 63,892 cf	
Outflow	=	10.29 cfs @ 12.29 hrs, Volume= 63,892 cf, Atten= 0%, Lag= 0.0 m	nin

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Reach 5R: Combined Flow

Summary for Pond 1P: Storm Trap

Discarded Primary	= = =	0.13 cfs @ 12.09 0.03 cfs @ 12.00 0.03 cfs @ 12.00 0.00 cfs @ 0.00 105P : DMH-105	hrs, Volume= 160 cf, Atten= 78%, Lag= 0.0 min hrs, Volume= 160 cf			
			n= 0.00-36.00 hrs, dt= 0.05 hrs			
			Area= 1,241 sf Storage= 90 cf sf Storage= 1,780 cf			
Plug-Flow	Plug-Flow detention time= 30.8 min calculated for 160 cf (100% of inflow) Center-of-Mass det. time= 30.9 min (756.6 - 725.8)					
Volume	Inver	t Avail.Storage	Storage Description			
#1A	394.00)' 956 cf	25.79'W x 48.10'L x 4.25'H Field A			
			5,273 cf Overall - 2,883 cf Embedded = 2,390 cf x 40.0% Voids			
#2A	395.25	5' 2,077 cf	StormTrap ST2 SingleTrap 2-6 x 2 Inside #1 Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf			
			Outside= 101.7 W x 36.0 H => 25.44 sf x 15.40 L = 293.6 cf			
			8.48' x 30.79' Core + 6.66' Border = 21.79' x 44.10' System			
		3,033 cf	Total Available Storage			

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	396.16'	12.0" Round Culvert
	-		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 396.16' / 396.06' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Discarded	394.00'	1.000 in/hr Exfiltration over Surface area
#2	Discarded	394.00	1.000 In/nr Exhitration over Surface area

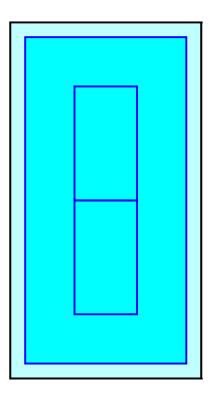
Discarded OutFlow Max=0.03 cfs @ 12.00 hrs HW=394.05' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=394.00' (Free Discharge)

Pond 1P: Storm Trap - Chamber Wizard Field A

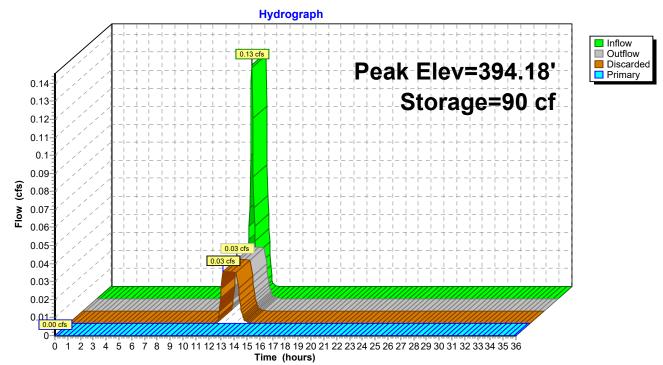
Chamber Model = StormTrap ST2 SingleTrap 2-6 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf


2 Chambers/Row x 15.40' Long = 30.79' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 48.10' Base Length 1 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 25.79' Base Width 15.0" Stone Base + 36.0" Chamber Height = 4.25' Field Height

2 Chambers x 289.8 cf + 1,497.8 cf Border = 2,077.4 cf Chamber Storage 2 Chambers x 391.6 cf + 2,100.0 cf Border = 2,883.3 cf Displacement

5,272.9 cf Field - 2,883.3 cf Chambers = 2,389.6 cf Stone x 40.0% Voids = 955.8 cf Stone Storage


Chamber Storage + Stone Storage = 3,033.3 cf = 0.070 af Overall Storage Efficiency = 57.5%Overall System Size = $48.10' \times 25.79' \times 4.25'$

2 Chambers (plus border) 195.3 cy Field 88.5 cy Stone

Pond 1P: Storm Trap

Summary for Pond 2P: Storm Trap

Inflow Area =	40,750 sf	,100.00% Impervious,	Inflow Depth = 2.78" for 2-Year event	
Inflow =	2.62 cfs @	12.09 hrs, Volume=	9,446 cf	
Outflow =	0.14 cfs @	10.45 hrs, Volume=	9,446 cf, Atten= 95%, Lag= 0.0 min	
Discarded =	0.14 cfs @	10.45 hrs, Volume=	9,446 cf	
Primary =	0.00 cfs @	0.00 hrs, Volume=	0 cf	
Routed to Pond 207P : DMH-207				

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 395.52' @ 14.10 hrs Surf.Area= 6,005 sf Storage= 4,317 cf

Plug-Flow detention time= 261.3 min calculated for 9,433 cf (100% of inflow) Center-of-Mass det. time= 261.2 min (1,018.9 - 757.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	394.00'	3,863 cf	42.75'W x 140.48'L x 4.25'H Field A
			25,523 cf Overall - 15,866 cf Embedded = 9,658 cf x 40.0% Voids
#2A	395.25'	11,568 cf	StormTrap ST2 SingleTrap 2-6 x 24 Inside #1
			Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf
			Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf
			24 Chambers in 3 Rows
			25.44' x 123.17' Core + 6.66' Border = 38.75' x 136.48' System
		15,431 cf	Total Available Storage

Storage Group A created with Chamber Wizard

00
sf
00
sf
9

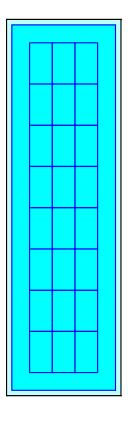
Discarded OutFlow Max=0.14 cfs @ 10.45 hrs HW=394.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=394.00' (Free Discharge) -1=Culvert (Controls 0.00 cfs) -3=Culvert (Controls 0.00 cfs)

Pond 2P: Storm Trap - Chamber Wizard Field A

Chamber Model = StormTrap ST2 SingleTrap 2-6 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf


8 Chambers/Row x 15.40' Long = 123.17' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 140.48' Base Length 3 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 42.75' Base Width 15.0" Stone Base + 36.0" Chamber Height = 4.25' Field Height

24 Chambers x 289.8 cf + 4,612.1 cf Border = 11,567.5 cf Chamber Storage 24 Chambers x 391.6 cf + 6,466.5 cf Border = 15,865.7 cf Displacement

25,523.3 cf Field - 15,865.7 cf Chambers = 9,657.6 cf Stone x 40.0% Voids = 3,863.0 cf Stone Storage

Chamber Storage + Stone Storage = 15,430.6 cf = 0.354 af Overall Storage Efficiency = 60.5% Overall System Size = 140.48' x 42.75' x 4.25'

24 Chambers (plus border) 945.3 cy Field 357.7 cy Stone

Hydrograph InflowOutflow 2.62 cfs Inflow Area=40,750 sf Discarded Primary Peak Elev=395.52' Storage=4,317 cf 2 Flow (cfs) 1 0.14 cfs 0.14 cfs 0.0 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Pond 2P: Storm Trap

Summary for Pond 3P: Storm Trap

Inflow Are			% Impervious, Inflow Depth = 2.79" for 2-Year event	
Inflow		0.95 cfs @ 12.09 h		
Outflow	=	0.04 cfs @ 9.70 h	nrs, Volume= 3,369 cf, Atten= 96%, Lag= 0.0 min	
Discarded	=	0.04 cfs @ 9.70 h	nrs, Volume= 3,369 cf	
Primary	=	0.00 cfs @ 0.00 h	nrs, Volume= 0 cf	
Routed	l to Pond	105P : DMH-105		
Secondary	/ =	0.00 cfs @ 0.00 h	nrs, Volume= 0 cf	
-		1P : Storm Trap		
		•		
Routing by	/ Stor-Ind	l method, Time Spar	n= 0.00-36.00 hrs, dt= 0.05 hrs	
• •			Area= 1,638 sf Storage= 1,734 cf	
		0	sf Storage= 3,342 cf	
)	5	
Plug-Flow detention time= 396.0 min calculated for 3,364 cf (100% of inflow)				
		t. time= 396.1 min (
			.,,	
Volume	Inve	t Avail.Storage	Storage Description	
#1A	393.25	5' 1,297 cf	25.79'W x 63.50'L x 4.75'H Field A	
		,	7,779 cf Overall - 4,538 cf Embedded = 3,241 cf x 40.0% Voids	
#2A	394.50)' 3,414 cf	StormTrap ST2 SingleTrap 3-0x 3 Inside #1	
		·	Inside= 101.7"W x 36.0"H => 22.99 sf x 15.40'L = 354.0 cf	
			Outside= 101.7"W x 42.0"H => 29.68 sf x 15.40'L = 456.9 cf	
			8.48' x 46.19' Core + 6.66' Border = 21.79' x 59.50' System	

4,710 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	396.16'	12.0" Round Culvert
	-		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 396.16' / 396.06' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Discarded	393.25'	1.000 in/hr Exfiltration over Surface area
#3	Secondary	395.75'	12.0" Round Culvert
			L= 5.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 395.75' / 395.75' S= 0.0000 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.04 cfs @ 9.70 hrs HW=393.30' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.04 cfs)

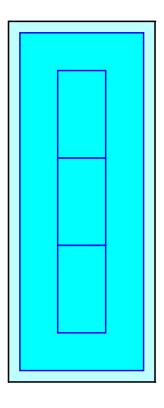
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=393.25' (Free Discharge) ☐ 1=Culvert (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=393.25' (Free Discharge) -3=Culvert (Controls 0.00 cfs)

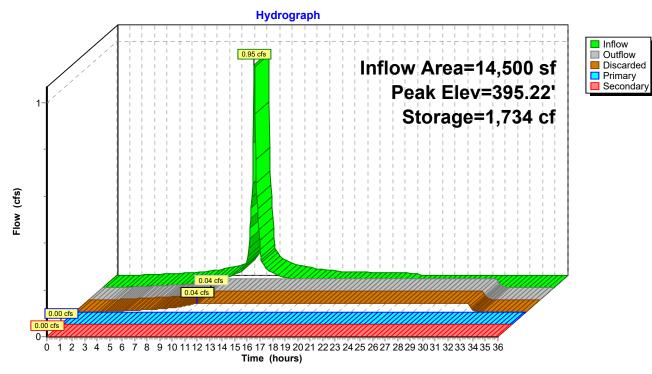
Pond 3P: Storm Trap - Chamber Wizard Field A

Chamber Model = StormTrap ST2 SingleTrap 3-0 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 36.0"H => 22.99 sf x 15.40'L = 354.0 cf Outside= 101.7"W x 42.0"H => 29.68 sf x 15.40'L = 456.9 cf


3 Chambers/Row x 15.40' Long = 46.19' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 63.50' Base Length 1 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 25.79' Base Width 15.0" Stone Base + 42.0" Chamber Height = 4.75' Field Height

3 Chambers x 354.0 cf + 2,351.9 cf Border = 3,413.9 cf Chamber Storage 3 Chambers x 456.9 cf + 3,167.4 cf Border = 4,538.1 cf Displacement


7,779.4 cf Field - 4,538.1 cf Chambers = 3,241.3 cf Stone x 40.0% Voids = 1,296.5 cf Stone Storage

Chamber Storage + Stone Storage = 4,710.4 cf = 0.108 afOverall Storage Efficiency = 60.5%Overall System Size = $63.50' \times 25.79' \times 4.75'$

3 Chambers (plus border) 288.1 cy Field 120.0 cy Stone

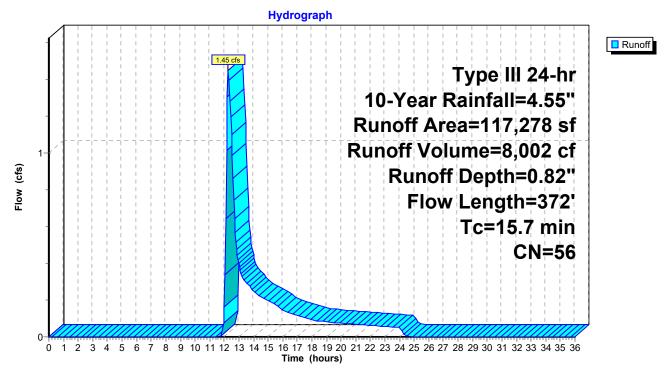
Pond 3P: Storm Trap

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SoutheastWoods	Runoff Area=117,278 sf 0.00% Impervious Runoff Depth=0.82" Flow Length=372' Tc=15.7 min CN=56 Runoff=1.45 cfs 8,002 cf
Subcatchment1A: Concrete Pad (Left	Runoff Area=14,500 sf 100.00% Impervious Runoff Depth=4.31" Tc=6.0 min CN=98 Runoff=1.45 cfs 5,213 cf
Subcatchment1B: Concrete Pad (Left	Runoff Area=15,000 sf 100.00% Impervious Runoff Depth=4.31" Tc=6.0 min CN=98 Runoff=1.50 cfs 5,392 cf
Subcatchment1E: Concrete Pad (Front	Runoff Area=14,500 sf 100.00% Impervious Runoff Depth=4.31" Tc=6.0 min CN=98 Runoff=1.45 cfs 5,213 cf
Subcatchment2: Northern Woods	Runoff Area=108,191 sf 0.00% Impervious Runoff Depth=0.66" Flow Length=575' Tc=17.6 min CN=53 Runoff=0.91 cfs 5,968 cf
Subcatchment2A: Proposed Building	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth=4.31" Tc=6.0 min CN=98 Runoff=1.12 cfs 4,044 cf
Subcatchment2B: Proposed Building	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth=4.31" Tc=6.0 min CN=98 Runoff=1.12 cfs 4,044 cf
	Runoff Area=194,497 sf 24.46% Impervious Runoff Depth=2.25" Flow Length=619' Tc=19.0 min CN=77 Runoff=8.06 cfs 36,489 cf
Subcatchment4: Northeastern Section of	of Runoff Area=84,996 sf 4.66% Impervious Runoff Depth=3.86" Flow Length=496' Tc=6.0 min CN=94 Runoff=8.08 cfs 27,373 cf
	rea Runoff Area=353,615 sf 5.01% Impervious Runoff Depth=1.78" 175' Tc=23.1 min UI Adjusted CN=71 Runoff=10.44 cfs 52,531 cf
Subcatchment6: LandscapedHill - Rear	Runoff Area=15,891 sf 0.00% Impervious Runoff Depth=1.05" Flow Length=140' Tc=6.9 min CN=60 Runoff=0.37 cfs 1,386 cf
Subcatchment7: LandscapedHill - Fron	t Runoff Area=8,414 sf 0.00% Impervious Runoff Depth=1.11" Tc=6.0 min CN=61 Runoff=0.22 cfs 776 cf
Reach 1R: Southeastern Wetland/Prop.I	Line Inflow=13.00 cfs 63,862 cf Outflow=13.00 cfs 63,862 cf
Reach 2R: Southwestern Wetland	Inflow=1.69 cfs 11,412 cf Outflow=1.69 cfs 11,412 cf
Reach 3R: Northern Overland Flow	Inflow=0.91 cfs 5,968 cf Outflow=0.91 cfs 5,968 cf
Reach 4R: Southern Wetland	Inflow=10.90 cfs 57,066 cf Outflow=10.90 cfs 57,066 cf

2023-03-14 PostDev Stormwater Model R2 Type III 24-hr 10-Year Rainfall=4.55" Prepared by BSC Group Printed 4/6/2023 HydroCAD® 10.20-2g s/n 00904 © 2022 HydroCAD Software Solutions LLC Page 45 **Reach 5R: Combined Flow** Inflow=24.67 cfs 138,308 cf Outflow=24.67 cfs 138.308 cf Peak Elev=394.90' Storage=447 cf Inflow=0.17 cfs 929 cf Pond 1P: Storm Trap Discarded=0.03 cfs 929 cf Primary=0.00 cfs 0 cf Outflow=0.03 cfs 929 cf Pond 2P: Storm Trap Peak Elev=396.01' Storage=6,728 cf Inflow=3.89 cfs 14,556 cf Discarded=0.14 cfs 12,626 cf Primary=0.22 cfs 1,930 cf Outflow=0.36 cfs 14,556 cf Pond 3P: Storm Trap Peak Elev=395.94' Storage=2,656 cf Inflow=1.45 cfs 5,213 cf Discarded=0.04 cfs 4,187 cf Primary=0.00 cfs 0 cf Secondary=0.08 cfs 644 cf Outflow=0.12 cfs 4,830 cf Peak Elev=397.22' Inflow=1.12 cfs 4,044 cf Pond 102P: DMH-102 Primary=0.95 cfs 3,759 cf Secondary=0.17 cfs 286 cf Outflow=1.12 cfs 4,044 cf Pond 105P: DMH-105 Peak Elev=391.65' Inflow=1.16 cfs 4,535 cf 12.0" Round Culvert n=0.012 L=96.0' S=0.0938 '/' Outflow=1.16 cfs 4,535 cf Peak Elev=397.33' Inflow=1.12 cfs 4,044 cf Pond 203P: DMH-203 Primary=0.95 cfs 3,951 cf Secondary=0.17 cfs 93 cf Outflow=1.12 cfs 4,044 cf Pond 207P: DMH-207 Peak Elev=392.91' Inflow=0.53 cfs 3,410 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0133 '/' Outflow=0.53 cfs 3,410 cf

> Total Runoff Area = 949,382 sf Runoff Volume = 156,432 cf Average Runoff Depth = 1.98" 85.70% Pervious = 813,620 sf 14.30% Impervious = 135,762 sf

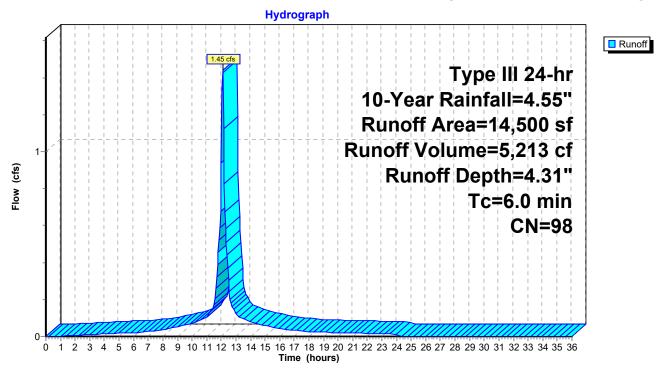

Summary for Subcatchment 1: Southeast Woods

Runoff = 1.45 cfs @ 12.27 hrs, Volume= Routed to Reach 2R : Southwestern Wetland 8,002 cf, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.55"

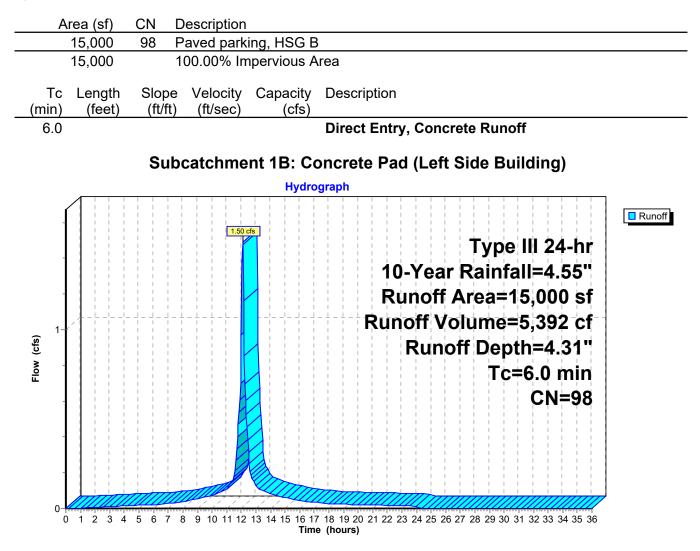
Α	rea (sf)	CN E	Description			
	86,662	55 V	55 Woods, Good, HSG B			
	2,127	30 V	Voods, Go	od, HSG A		
	26,969	61 >	75% Gras	s cover, Go	bod, HSG B	
	1,520	96 0	Gravel surfa	ace, HSG E	3	
1	17,278	56 V	Veighted A	verage		
1	17,278	1	00.00% Pe	ervious Are	a	
_						
Tc	Length	Slope	Velocity	Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)		
12.7	50	0.0200	0.07		Sheet Flow,	
					Woods: Light underbrush n= 0.400 P2= 3.00"	
3.0	322	0.1240	1.76		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
15.7	372	Total				

Subcatchment 1: Southeast Woods

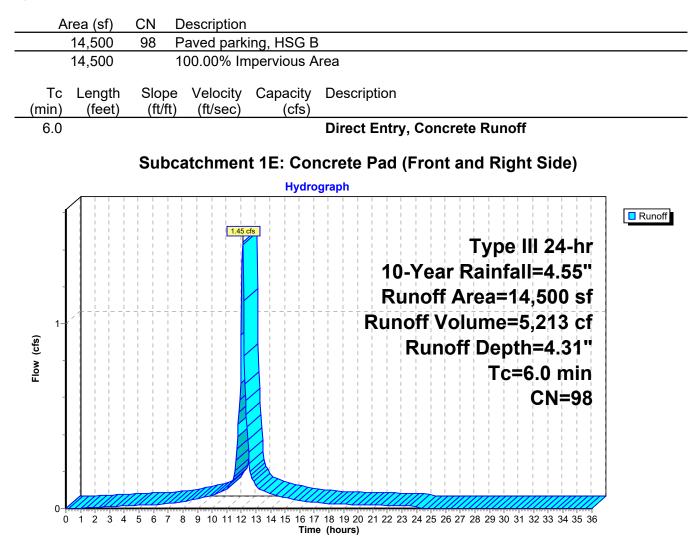

Summary for Subcatchment 1A: Concrete Pad (Left Side, Back, Right Side Rear of Building)

Runoff = 1.45 cfs @ 12.09 hrs, Volume= Routed to Pond 2P : Storm Trap 5,213 cf, Depth= 4.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.55"


Are	ea (sf)	CN E	Description				
1	4,500	98 F	98 Paved parking, HSG B				
1	4,500	1	00.00% In	npervious A	rea		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry, Concrete Runoff		

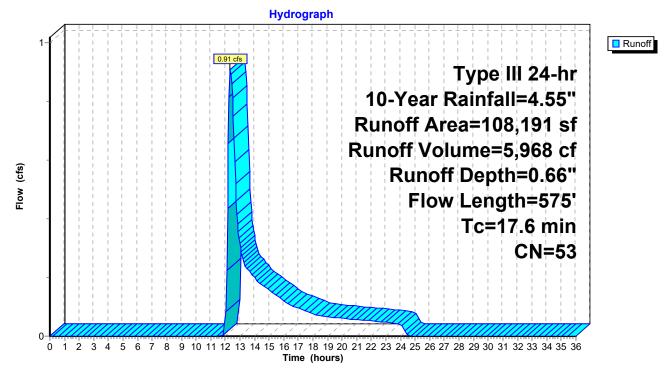
Subcatchment 1A: Concrete Pad (Left Side, Back, Right Side Rear of Building)


Summary for Subcatchment 1B: Concrete Pad (Left Side Building)

Runoff = 1.50 cfs @ 12.09 hrs, Volume= Routed to Pond 2P : Storm Trap 5,392 cf, Depth= 4.31"

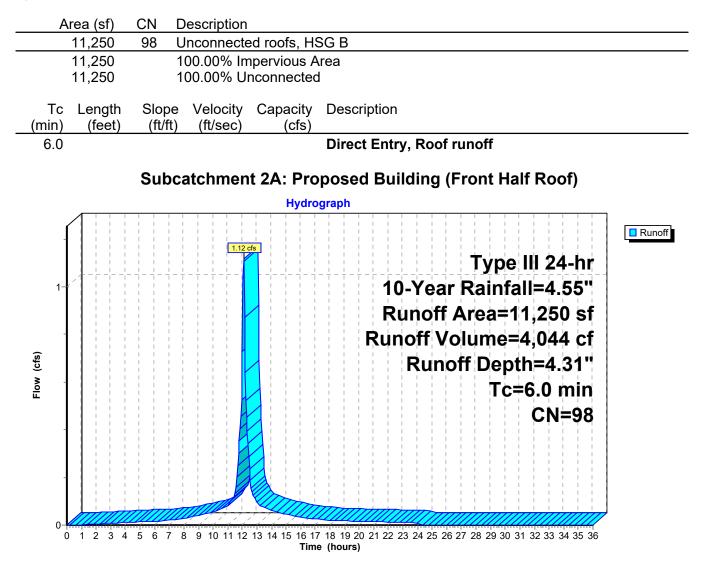
Summary for Subcatchment 1E: Concrete Pad (Front and Right Side)

Runoff = 1.45 cfs @ 12.09 hrs, Volume= Routed to Pond 3P : Storm Trap 5,213 cf, Depth= 4.31"

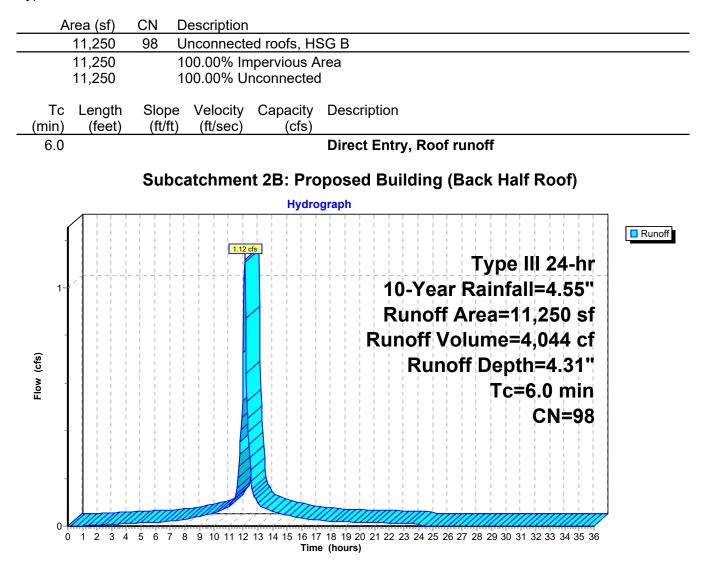

Summary for Subcatchment 2: Northern Woods

Runoff = 0.91 cfs @ 12.35 hrs, Volume= Routed to Reach 3R : Northern Overland Flow 5,968 cf, Depth= 0.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.55"

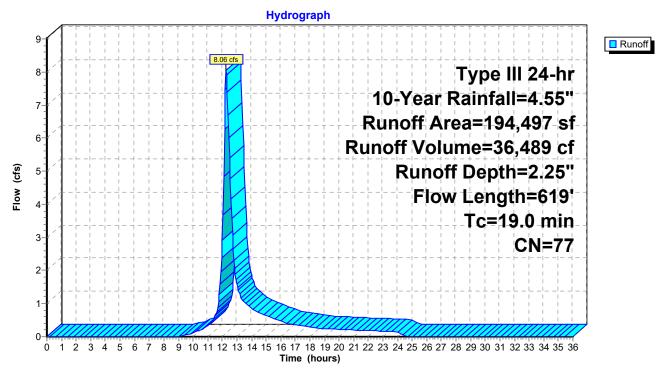

_	Α	rea (sf)	CN [Description		
		66,001	55 \	Noods, Go	od, HSG B	
		21,606	70 \	Noods, Go	od, HSG C	
		20,584	30 \	Noods, Go	od, HSG A	
	1	08,191	53 \	Neighted A	verage	
	1	08,191		100.00% Pe	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.7	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	7.9	525	0.0495	1.11		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
_	17.6	575	Total			

Subcatchment 2: Northern Woods


Summary for Subcatchment 2A: Proposed Building (Front Half Roof)

Runoff = 1.12 cfs @ 12.09 hrs, Volume= Routed to Pond 102P : DMH-102 4,044 cf, Depth= 4.31"

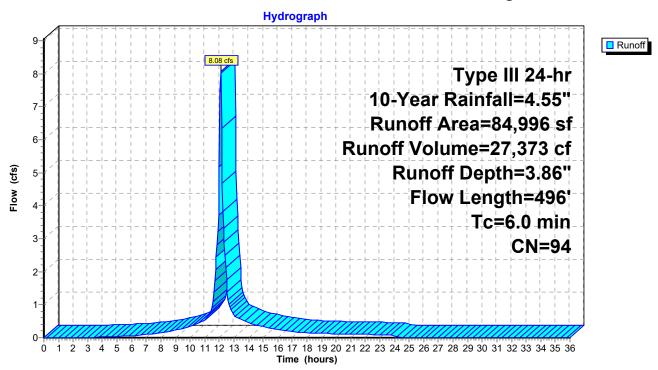
Summary for Subcatchment 2B: Proposed Building (Back Half Roof)


Runoff = 1.12 cfs @ 12.09 hrs, Volume= Routed to Pond 203P : DMH-203 4,044 cf, Depth= 4.31"

Summary for Subcatchment 3: Abutting Old Tpk Road

Runoff = 8.06 cfs @ 12.27 hrs, Volume= 36,489 cf, Depth= 2.25" Routed to Reach 1R : Southeastern Wetland/Prop. Line

A	rea (sf)	CN E	escription		
	20,473	74 >	75% Gras	s cover, Go	bod, HSG C
	28,140	77 V	Voods, Poo	or, HSG C	
	3,311	98 F	aved park	ing, HSG C	
	7,754	98 V	Vater Surfa	ace, HSG C	
	2,614	98 F	aved park	ing, HSG D	
	36,432	77 V	Voods, Go	od, HSG D	
	17,163	98 V	Vater Surfa	ace, HSG D	
	21,242	55 V	Voods, Go	od, HSG B	
	15,333			ace, HSG B	
	8,494		Gravel road		
	1,394			ing, HSG B	
	32,147	61 >	75% Gras	s cover, Go	ood, HSG B
1	194,497 77 Weighted Average				
1	46,928	7	5.54% Per	vious Area	
	47,569	2	4.46% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.7	50	0.0400	0.09		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
4.9	264	0.0322	0.90		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.4	45	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
4.0	260	0.0460	1.07		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
19.0	619	Total			



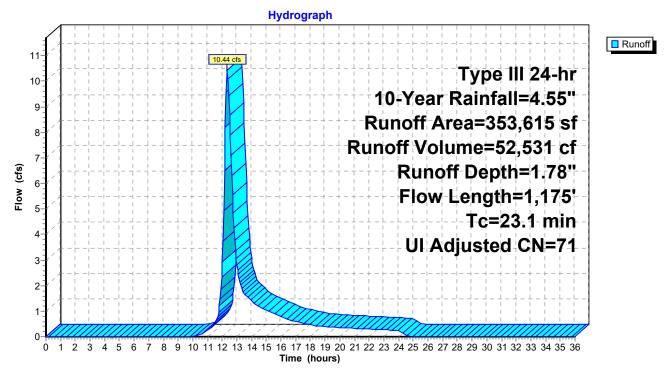
Subcatchment 3: Abutting Old Tpk Road

Summary for Subcatchment 4: Northeastern Section of Existing Yard

Runoff = 8.08 cfs @ 12.09 hrs, Volume= 27,373 cf, Depth= 3.86" Routed to Reach 1R : Southeastern Wetland/Prop. Line

Α	rea (sf)	CN E	Description		
	4,792	55 V	Voods, Go	od, HSG B	
	2,962			ing, HSG B	
	1,002			ace, HSG B	
	76,240	96 (Gravel surfa	ace, HSG E	}
	84,996	94 V	Veighted A	verage	
	81,032	-		rvious Area	
	3,964	4	.66% Impe	ervious Area	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.7	50	0.0250	1.27		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.00"
2.2	406	0.0375	3.12		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
0.7	40	0.0375	0.97		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.4					Direct Entry,
6.0	496	Total			

Subcatchment 4: Northeastern Section of Existing Yard


Summary for Subcatchment 5: Southern Developed Area

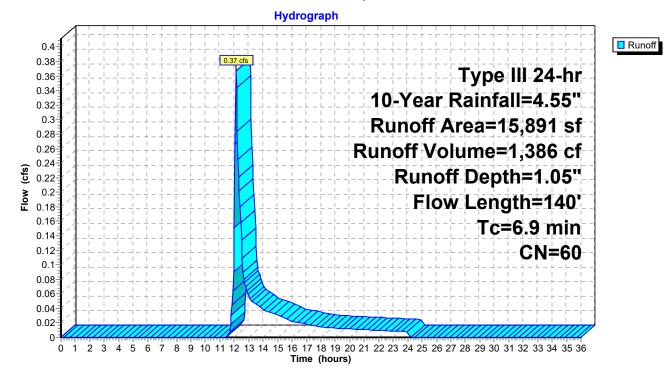
Runoff = 10.44 cfs @ 12.34 hrs, Volume= 52,531 cf, Depth= 1.78" Routed to Reach 4R : Southern Wetland

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.55"

_	A	rea (sf)	CN A	Adj Desc	cription	
		86,017	55	Woo	ds, Good, I	HSG B
		5,293	77	Woo	ds, Good, I	HSG D
	1	51,153	85		vel roads, ⊢	
		5,619	98		ed parking,	
		12,110	98			oofs, HSG B
		92,538	61			ver, Good, HSG B
_		885	77	Woo	ds, Poor, ⊦	ISG C
		53,615	72	-		age, UI Adjusted
		35,886			9% Perviou	
		17,729			% Impervic	
		12,110		68.3	1% Unconr	nected
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Beschpton
-	12.7	50	0.0200	0.07	()	Sheet Flow,
			0.0200	0.01		Woods: Light underbrush n= 0.400 P2= 3.00"
	2.5	164	0.0470	1.08		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.4	259	0.0040	1.28		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	3.0	640	0.0500	3.60		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	1.5	62	0.0200	0.71		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	23.1	1 175	Total			

23.1 1,175 Total

Subcatchment 5: Southern Developed Area


Summary for Subcatchment 6: Landscaped Hill - Rear Portion

Runoff = 0.37 cfs @ 12.12 hrs, Volume= Routed to Pond 207P : DMH-207 1,386 cf, Depth= 1.05"

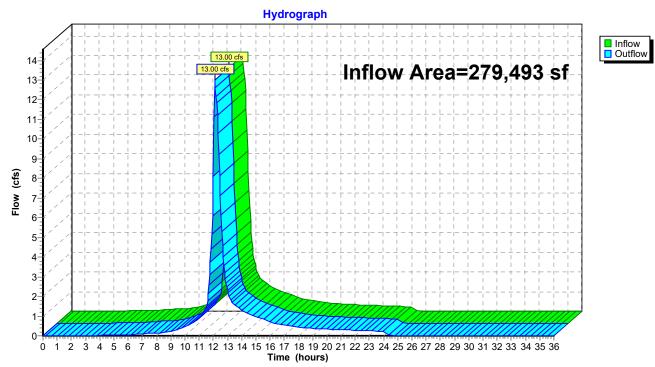
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.55"

_	A	rea (sf)	CN	Description						
		2,309	55	55 Woods, Good, HSG B						
_		13,582	61	>75% Gras	s cover, Go	bod, HSG B				
		15,891	60	Weighted A	verage					
		15,891		100.00% P	ervious Are	а				
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
_	5.5	50	0.0600	0.15		Sheet Flow, OVERLAND				
_	1.4	90	0.0240	1.08		Grass: Dense n= 0.240 P2= 3.00" Shallow Concentrated Flow, SWALE Short Grass Pasture Kv= 7.0 fps				
_	6.9	140	Total							

Subcatchment 6: Landscaped Hill - Rear Portion

Summary for Subcatchment 7: Landscaped Hill - Front Portion

Runoff = 0.22 cfs @ 12.11 hrs, Volume= Routed to Pond 105P : DMH-105 776 cf, Depth= 1.11"

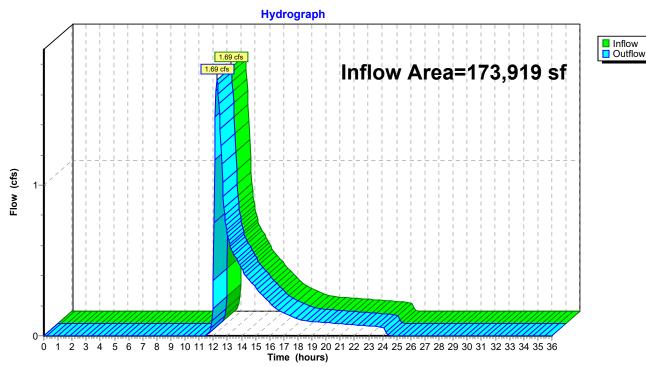

	8,414				bod, HSG B		
	8,414	1	00.00% Pe	ervious Are	a		
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0					Direct Entry, Overland <6min		
		Su	bcatchm	nent 7: La	andscaped Hill - Front Portion		
				Hydro	graph		
0.24 0.23						Runo	
0.22 0.21		+ - + - 			Type III 24-hr		
0.2 0.19		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	↓ _ ↓ _ └ _ I _ I I I I I I T - T - T - T	+ - +	10-Year Rainfall=4.55"		
0.18 0.17		$\begin{array}{c} - \begin{array}{c} - \\ 1 \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \begin{array}{c} - \\ - \end{array} \\ - \bigg \\ = \bigg \\ - \bigg \\ - \bigg \\ = \bigg \\ - \bigg \\ = \bigg \\ - \bigg \\ = \bigg \\ - \bigg \\ - \bigg \\ = \bigg \\ = \bigg \\ - \bigg \\ = $	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		Runoff Area=8,414 sf		
0.16 0.15			$\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$				
0.14		+ - + -	· - + - ⊢ - ↓ - ↓ - ↓ - ↓		Runoff Volume=776 cf		
0.14 0.13 0.12 0.12		+ - + -			Runoff Depth=1.11"		
0.1					Tc=6.0 min		
0.08					CN=61		
0.06							
0.04		$-\begin{array}{c}1\\-\\+\\-\end{array}\begin{array}{c}1\\-\\+\\-\end{array}\begin{array}{c}1\\-\\+\\-\end{array}\begin{array}{c}1\\-\\+\\-\end{array}$					
0.02							
0.01 0-	///////////////////////////////////////	///////////////////////////////////////		······································			

Summary for Reach 1R: Southeastern Wetland/Prop. Line

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	279,493 sf	, 18.44% Impervious,	Inflow Depth = 2.74"	for 10-Year event		
Inflow =	=	13.00 cfs @	12.12 hrs, Volume=	63,862 cf			
Outflow =	=	13.00 cfs @	12.12 hrs, Volume=	63,862 cf, Atte	n= 0%, Lag= 0.0 min		
Routed to Reach 5R : Combined Flow							

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Reach 1R: Southeastern Wetland/Prop. Line

Summary for Reach 2R: Southwestern Wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	173,919 sf	, 23.43% Impervious,	Inflow Depth = 0.79"	for 10-Year event			
Inflow	=	1.69 cfs @	12.26 hrs, Volume=	11,412 cf				
Outflow	=	1.69 cfs @	12.26 hrs, Volume=	11,412 cf, Atte	n= 0%, Lag= 0.0 min			
Routed to Reach 5R : Combined Flow								

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

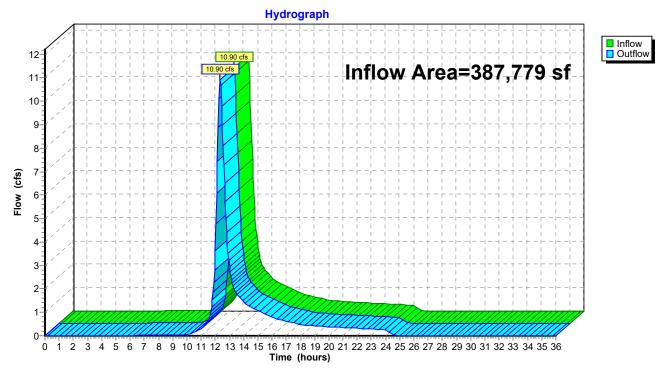
Reach 2R: Southwestern Wetland

Summary for Reach 3R: Northern Overland Flow

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	108,191 sf, 0.0	0% Impervious,	Inflow Depth = 0.66"	for 10-Year event				
Inflow =	0.91 cfs @ 12.35	5 hrs, Volume=	5,968 cf					
Outflow =	0.91 cfs @ 12.35	5 hrs, Volume=	5,968 cf, Atte	n= 0%, Lag= 0.0 min				
Routed to Reach 5R : Combined Flow								

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

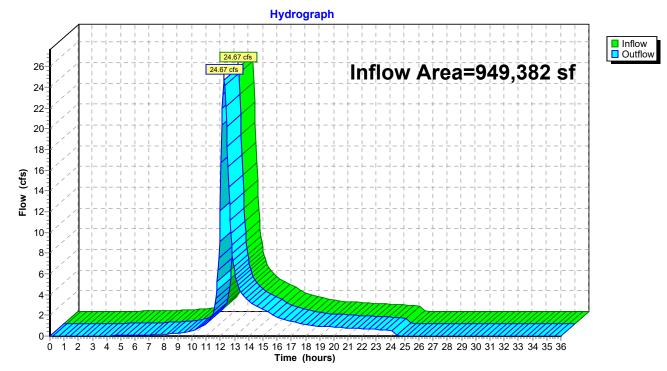

Reach 3R: Northern Overland Flow

Summary for Reach 4R: Southern Wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		387,779 sf	, 11.21% Impervious,	Inflow Depth = 1.77"	for 10-Year event		
Inflow	=	10.90 cfs @	12.33 hrs, Volume=	57,066 cf			
Outflow	=	10.90 cfs @	12.33 hrs, Volume=	57,066 cf, Atte	n= 0%, Lag= 0.0 min		
Routed to Reach 5R : Combined Flow							

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Reach 4R: Southern Wetland

Summary for Reach 5R: Combined Flow

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		949,382 sf, 14.30% Impervious, Inflow Depth = 1.75" for 10-Year event
Inflow	=	24.67 cfs @ 12.28 hrs, Volume= 138,308 cf
Outflow	=	24.67 cfs @ 12.28 hrs, Volume= 138,308 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Reach 5R: Combined Flow

Summary for Pond 1P: Storm Trap

,	= = =	0.17 cfs @ 12.09 0.03 cfs @ 11.85 0.03 cfs @ 11.85 0.00 cfs @ 0.00 105P : DMH-105	hrs, Volume= 929 cf, Atten= 84%, Lag= 0.0 min hrs, Volume= 929 cf						
Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 394.90' @ 15.18 hrs Surf.Area= 1,241 sf Storage= 447 cf Flood Elev= 396.48' Surf.Area= 1,241 sf Storage= 1,780 cf									
	Plug-Flow detention time= 158.9 min calculated for 928 cf (100% of inflow) Center-of-Mass det. time= 159.0 min (968.9 - 809.9)								
Volume	Inver	t Avail.Storage	Storage Description						
#1A	394.00	956 cf	25.79'W x 48.10'L x 4.25'H Field A 5,273 cf Overall - 2,883 cf Embedded = 2,390 cf x 40.0% Voids						
#2A	395.25	' 2,077 cf	StormTrap ST2 SingleTrap 2-6 x 2 Inside #1 Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf 8.48' x 30.79' Core + 6.66' Border = 21.79' x 44.10' System						
		3,033 cf	Total Available Storage						

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	396.16'	12.0" Round Culvert
			L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 396.16' / 396.06' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Discarded	394.00'	1.000 in/hr Exfiltration over Surface area

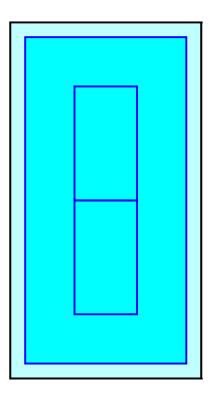
Discarded OutFlow Max=0.03 cfs @ 11.85 hrs HW=394.05' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=394.00' (Free Discharge) ☐ 1=Culvert (Controls 0.00 cfs)

Pond 1P: Storm Trap - Chamber Wizard Field A

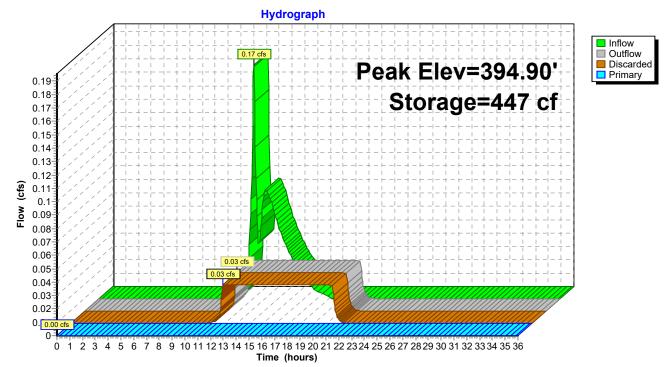
Chamber Model = StormTrap ST2 SingleTrap 2-6 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf


2 Chambers/Row x 15.40' Long = 30.79' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 48.10' Base Length 1 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 25.79' Base Width 15.0" Stone Base + 36.0" Chamber Height = 4.25' Field Height

2 Chambers x 289.8 cf + 1,497.8 cf Border = 2,077.4 cf Chamber Storage 2 Chambers x 391.6 cf + 2,100.0 cf Border = 2,883.3 cf Displacement

5,272.9 cf Field - 2,883.3 cf Chambers = 2,389.6 cf Stone x 40.0% Voids = 955.8 cf Stone Storage


Chamber Storage + Stone Storage = 3,033.3 cf = 0.070 af Overall Storage Efficiency = 57.5%Overall System Size = $48.10' \times 25.79' \times 4.25'$

2 Chambers (plus border) 195.3 cy Field 88.5 cy Stone

Pond 1P: Storm Trap

Summary for Pond 2P: Storm Trap

Inflow Area =	40,750 sf,100.00% Impervious,	Inflow Depth = 4.29" for 10-Year event
Inflow =	3.89 cfs @ 12.09 hrs, Volume=	14,556 cf
Outflow =	0.36 cfs @ 12.96 hrs, Volume=	14,556 cf, Atten= 91%, Lag= 52.7 min
Discarded =	0.14 cfs @ 9.10 hrs, Volume=	12,626 cf
Primary =	0.22 cfs @ 12.96 hrs, Volume=	1,930 cf
Routed to Pone	d 207P : DMH-207	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 396.01'@ 12.96 hrs Surf.Area= 6,005 sf Storage= 6,728 cf

Plug-Flow detention time= 330.3 min calculated for 14,536 cf (100% of inflow) Center-of-Mass det. time= 330.5 min (1,080.3 - 749.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	394.00'	3,863 cf	42.75'W x 140.48'L x 4.25'H Field A
			25,523 cf Overall - 15,866 cf Embedded = 9,658 cf x 40.0% Voids
#2A	395.25'	11,568 cf	StormTrap ST2 SingleTrap 2-6 x 24 Inside #1
			Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf
			Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf
			24 Chambers in 3 Rows
			25.44' x 123.17' Core + 6.66' Border = 38.75' x 136.48' System
		15,431 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Primary	395.75'	12.0" Round Culvert
		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 395.75' / 395.65' S= 0.0100 '/' Cc= 0.900
		n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
Discarded	394.00'	1.000 in/hr Exfiltration over Surface area
Primary	395.95'	6.0" Round Culvert
		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 395.95' / 395.85' S= 0.0100 '/' Cc= 0.900
		n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf
	Primary Discarded	Primary 395.75' Discarded 394.00'

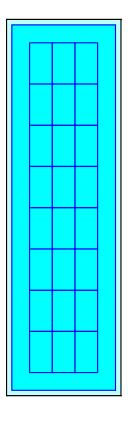
Discarded OutFlow Max=0.14 cfs @ 9.10 hrs HW=394.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.22 cfs @ 12.96 hrs HW=396.01' (Free Discharge) -1=Culvert (Barrel Controls 0.21 cfs @ 2.01 fps) -3=Culvert (Inlet Controls 0.01 cfs @ 0.65 fps)

Pond 2P: Storm Trap - Chamber Wizard Field A

Chamber Model = StormTrap ST2 SingleTrap 2-6 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf


8 Chambers/Row x 15.40' Long = 123.17' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 140.48' Base Length 3 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 42.75' Base Width 15.0" Stone Base + 36.0" Chamber Height = 4.25' Field Height

24 Chambers x 289.8 cf + 4,612.1 cf Border = 11,567.5 cf Chamber Storage 24 Chambers x 391.6 cf + 6,466.5 cf Border = 15,865.7 cf Displacement

25,523.3 cf Field - 15,865.7 cf Chambers = 9,657.6 cf Stone x 40.0% Voids = 3,863.0 cf Stone Storage

Chamber Storage + Stone Storage = 15,430.6 cf = 0.354 af Overall Storage Efficiency = 60.5% Overall System Size = 140.48' x 42.75' x 4.25'

24 Chambers (plus border) 945.3 cy Field 357.7 cy Stone

Hydrograph InflowOutflow 3.89 cfs Inflow Area=40,750 sf Discarded Primary Peak Elev=396.01' Storage=6,728 cf 3 Flow (cfs) 2 0.14 cfs 0.22 cfs 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Pond 2P: Storm Trap

Summary for Pond 3P: Storm Trap

Inflow Are Inflow	a = =	14,500 sf,100.00 1.45 cfs @ 12.09 h	% Impervious, Inflow Depth = 4.31" for 10-Year event hrs, Volume= 5,213 cf
Outflow	=	0.12 cfs @ 13.06 h	
Discarded	=	0.04 cfs @ 8.40 h	
Primary	=	0.00 cfs @ 0.00 h	hrs, Volume= 0 cf
Routed	I to Pond	105P : DMH-105	
		0.08 cfs @ 13.06 h	hrs, Volume= 644 cf
Routed	I to Pond	1P : Storm Trap	
Routing by	v Stor-Inc	I method. Time Snar	n= 0.00-36.00 hrs, dt= 0.05 hrs
			Area= 1,638 sf Storage= 2,656 cf
		0	s s f Storage= 3,342 cf
Plug-Flow	detentio	n time= 473.7 min ca	alculated for 4,824 cf (93% of inflow)
Center-of-	Mass det	t. time= 434.7 min (⁻	1,184.3 - 749.6)
Volume	Inve	t Avail.Storage	Storage Description
#1A	393.25	5' 1,297 cf	25.79'W x 63.50'L x 4.75'H Field A
			7,779 cf Overall - 4,538 cf Embedded = 3,241 cf x 40.0% Voids
#2A	394.50)' 3,414 cf	
			Inside= 101.7"W x 36.0"H => 22.99 sf x 15.40'L = 354.0 cf
			Outside= 101.7"W x 42.0"H => 29.68 sf x 15.40'L = 456.9 cf
			8.48' x 46.19' Core + 6.66' Border = 21.79' x 59.50' System

4,710 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	396.16'	12.0" Round Culvert
	•		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 396.16' / 396.06' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Discarded	393.25'	1.000 in/hr Exfiltration over Surface area
#3	Secondary	395.75'	12.0" Round Culvert
			L= 5.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 395.75' / 395.75' S= 0.0000 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.04 cfs @ 8.40 hrs HW=393.30' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.04 cfs)

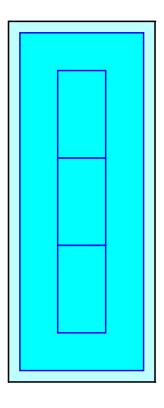
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=393.25' (Free Discharge) ☐ 1=Culvert (Controls 0.00 cfs)

Secondary OutFlow Max=0.08 cfs @ 13.06 hrs HW=395.94' (Free Discharge) -3=Culvert (Barrel Controls 0.08 cfs @ 1.13 fps)

Pond 3P: Storm Trap - Chamber Wizard Field A

Chamber Model = StormTrap ST2 SingleTrap 3-0 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 36.0"H => 22.99 sf x 15.40'L = 354.0 cf Outside= 101.7"W x 42.0"H => 29.68 sf x 15.40'L = 456.9 cf


3 Chambers/Row x 15.40' Long = 46.19' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 63.50' Base Length 1 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 25.79' Base Width 15.0" Stone Base + 42.0" Chamber Height = 4.75' Field Height

3 Chambers x 354.0 cf + 2,351.9 cf Border = 3,413.9 cf Chamber Storage 3 Chambers x 456.9 cf + 3,167.4 cf Border = 4,538.1 cf Displacement

7,779.4 cf Field - 4,538.1 cf Chambers = 3,241.3 cf Stone x 40.0% Voids = 1,296.5 cf Stone Storage

Chamber Storage + Stone Storage = 4,710.4 cf = 0.108 afOverall Storage Efficiency = 60.5%Overall System Size = $63.50' \times 25.79' \times 4.75'$

3 Chambers (plus border) 288.1 cy Field 120.0 cy Stone

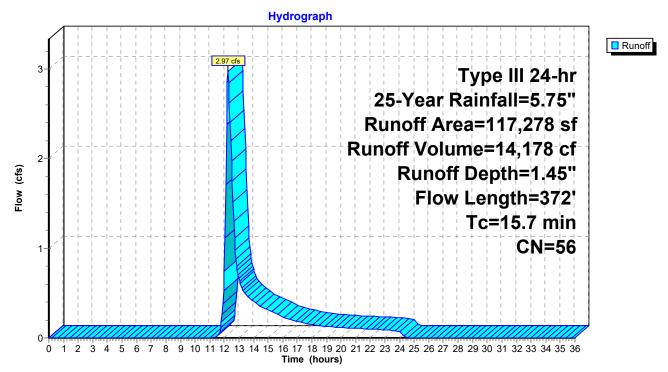
Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Southeast WoodsRunoff Area=117,278 sf0.00% ImperviousRunoff Depth=1.45"Flow Length=372'Tc=15.7 minCN=56Runoff=2.97 cfs14,178 cf
Subcatchment1A: Concrete Pad (LeftRunoff Area=14,500 sf100.00% ImperviousRunoff Depth=5.51"Tc=6.0 minCN=98Runoff=1.83 cfs6,661 cf
Subcatchment1B: Concrete Pad (LeftRunoff Area=15,000 sf100.00% ImperviousRunoff Depth=5.51"Tc=6.0 minCN=98Runoff=1.89 cfs6,890 cf
Subcatchment1E: Concrete Pad (Front Runoff Area=14,500 sf 100.00% Impervious Runoff Depth=5.51" Tc=6.0 min CN=98 Runoff=1.83 cfs 6,661 cf
Subcatchment2: Northern WoodsRunoff Area=108,191 sf0.00% ImperviousRunoff Depth=1.23"Flow Length=575'Tc=17.6 minCN=53Runoff=2.09 cfs11,099 cf
Subcatchment2A: Proposed BuildingRunoff Area=11,250 sf100.00% ImperviousRunoff Depth=5.51"Tc=6.0 minCN=98Runoff=1.42 cfs5,168 cf
Subcatchment2B: Proposed BuildingRunoff Area=11,250 sf100.00% ImperviousRunoff Depth=5.51"Tc=6.0 minCN=98Runoff=1.42 cfs5,168 cf
Subcatchment3: Abutting Old Tpk Road Runoff Area=194,497 sf 24.46% Impervious Runoff Depth=3.26" Flow Length=619' Tc=19.0 min CN=77 Runoff=11.74 cfs 52,866 cf
Subcatchment4: Northeastern Section of Runoff Area=84,996 sf 4.66% Impervious Runoff Depth=5.05" Flow Length=496' Tc=6.0 min CN=94 Runoff=10.39 cfs 35,763 cf
Subcatchment5: Southern Developed Area Runoff Area=353,615 sf 5.01% Impervious Runoff Depth=2.70" Flow Length=1,175' Tc=23.1 min UI Adjusted CN=71 Runoff=16.12 cfs 79,524 cf
Subcatchment6: LandscapedHill - Rear Flow Length=140' Tc=6.9 min CN=60 Runoff=0.67 cfs 2,331 cf
Subcatchment7: LandscapedHill - FrontRunoff Area=8,414 sf0.00% ImperviousRunoff Depth=1.84"Tc=6.0 minCN=61Runoff=0.39 cfs1,290 cf
Reach 1R: Southeastern Wetland/Prop. LineInflow=17.84 cfs88,629 cfOutflow=17.84 cfs88,629 cf
Reach 2R: Southwestern WetlandInflow=3.89 cfs21,639 cfOutflow=3.89 cfs21,639 cf21,639 cf21,639 cf
Reach 3R: Northern Overland FlowInflow=2.09 cfs11,099 cfOutflow=2.09 cfs11,099 cf11,099 cf
Reach 4R: Southern Wetland Inflow=16.77 cfs 85,707 cf Outflow=16.77 cfs 85,707 cf

2023-03-14 PostDev Stormwater Model R2 Type III 24-hr 25-Year Rainfall=5.75" Prepared by BSC Group Printed 4/6/2023 HydroCAD® 10.20-2g s/n 00904 © 2022 HydroCAD Software Solutions LLC Page 82 **Reach 5R: Combined Flow** Inflow=38.51 cfs 207,074 cf Outflow=38.51 cfs 207,074 cf Peak Elev=396.23' Storage=1,547 cf Inflow=0.50 cfs 2,203 cf Pond 1P: Storm Trap Discarded=0.03 cfs 2,092 cf Primary=0.02 cfs 110 cf Outflow=0.05 cfs 2,203 cf Pond 2P: Storm Trap Peak Elev=396.26' Storage=7,973 cf Inflow=4.88 cfs 18,541 cf Discarded=0.14 cfs 13,588 cf Primary=0.90 cfs 4,953 cf Outflow=1.04 cfs 18,541 cf Pond 3P: Storm Trap Peak Elev=396.20' Storage=2,990 cf Inflow=1.83 cfs 6,661 cf Discarded=0.04 cfs 4,325 cf Primary=0.01 cfs 4 cf Secondary=0.44 cfs 1,813 cf Outflow=0.49 cfs 6,142 cf Peak Elev=397.32' Inflow=1.42 cfs 5,168 cf Pond 102P: DMH-102 Primary=1.22 cfs 4,778 cf Secondary=0.20 cfs 390 cf Outflow=1.42 cfs 5,168 cf Pond 105P: DMH-105 Peak Elev=391.79' Inflow=1.60 cfs 6,183 cf 12.0" Round Culvert n=0.012 L=96.0' S=0.0938 '/' Outflow=1.60 cfs 6,183 cf Peak Elev=397.39' Inflow=1.42 cfs 5,168 cf Pond 203P: DMH-203 Primary=1.15 cfs 4,991 cf Secondary=0.27 cfs 177 cf Outflow=1.42 cfs 5,168 cf Pond 207P: DMH-207 Peak Elev=393.14' Inflow=1.13 cfs 7,461 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0133 '/' Outflow=1.13 cfs 7,461 cf

Total Runoff Area = 949,382 sf Runoff Volume = 227,598 cf Average Runoff Depth = 2.88" 85.70% Pervious = 813,620 sf 14.30% Impervious = 135,762 sf

Summary for Subcatchment 1: Southeast Woods

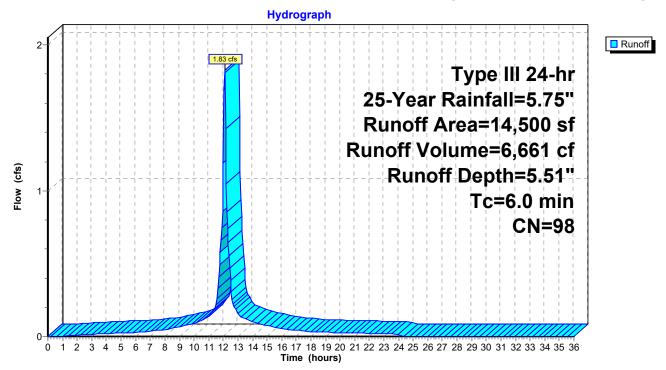

Runoff = 2.97 cfs @ 12.25 hrs, Volume= 1 Routed to Reach 2R : Southwestern Wetland

14,178 cf, Depth= 1.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.75"

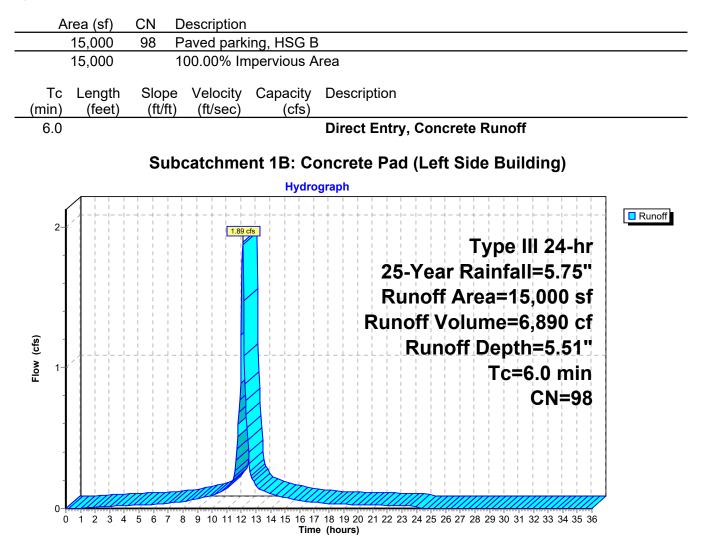
Α	rea (sf)	CN E	Description		
	86,662	55 V	Voods, Go	od, HSG B	
	2,127	30 V	Voods, Go	od, HSG A	
	26,969	61 >	•75% Gras	s cover, Go	bod, HSG B
	1,520	96 (Gravel surfa	ace, HSG E	3
1	17,278	56 V	Veighted A	verage	
1	17,278	1	00.00% Pe	ervious Are	a
Tc	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.7	50	0.0200	0.07		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
3.0	322	0.1240	1.76		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
15.7	372	Total			

Subcatchment 1: Southeast Woods

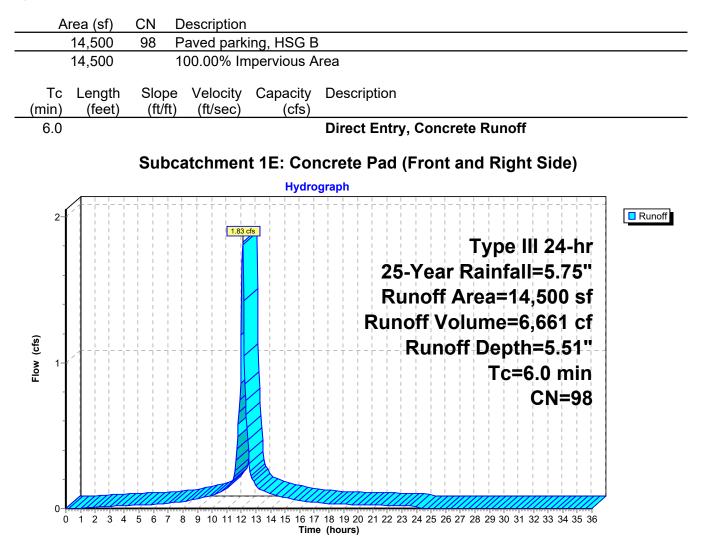

Summary for Subcatchment 1A: Concrete Pad (Left Side, Back, Right Side Rear of Building)

Runoff = 1.83 cfs @ 12.09 hrs, Volume= Routed to Pond 2P : Storm Trap 6,661 cf, Depth= 5.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.75"


Ar	ea (sf)	CN E	CN Description					
	4,500	98 F	98 Paved parking, HSG B					
	14,500 100.00% Impervious Are			npervious A	rea			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, Concrete Runoff			

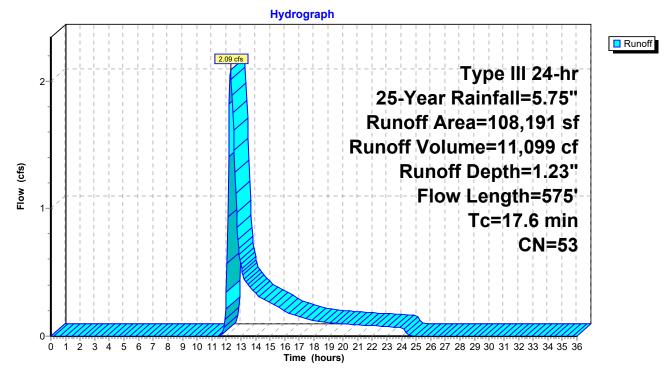
Subcatchment 1A: Concrete Pad (Left Side, Back, Right Side Rear of Building)


Summary for Subcatchment 1B: Concrete Pad (Left Side Building)

Runoff = 1.89 cfs @ 12.09 hrs, Volume= Routed to Pond 2P : Storm Trap 6,890 cf, Depth= 5.51"

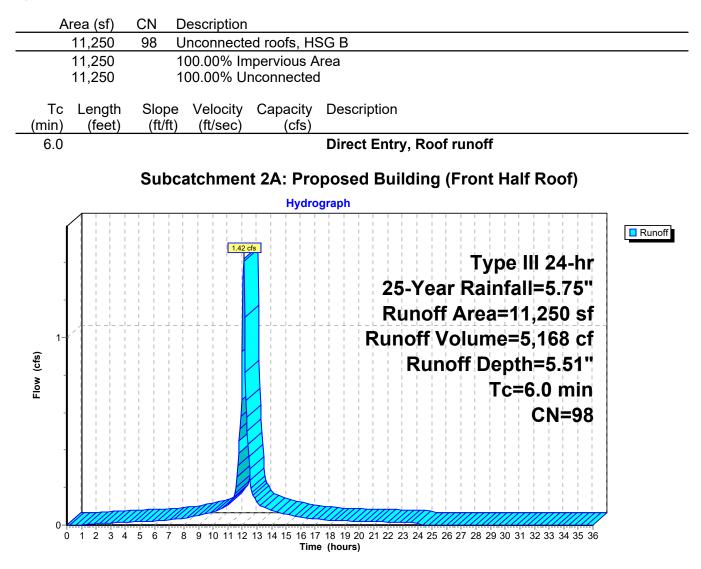
Summary for Subcatchment 1E: Concrete Pad (Front and Right Side)

Runoff = 1.83 cfs @ 12.09 hrs, Volume= Routed to Pond 3P : Storm Trap 6,661 cf, Depth= 5.51"

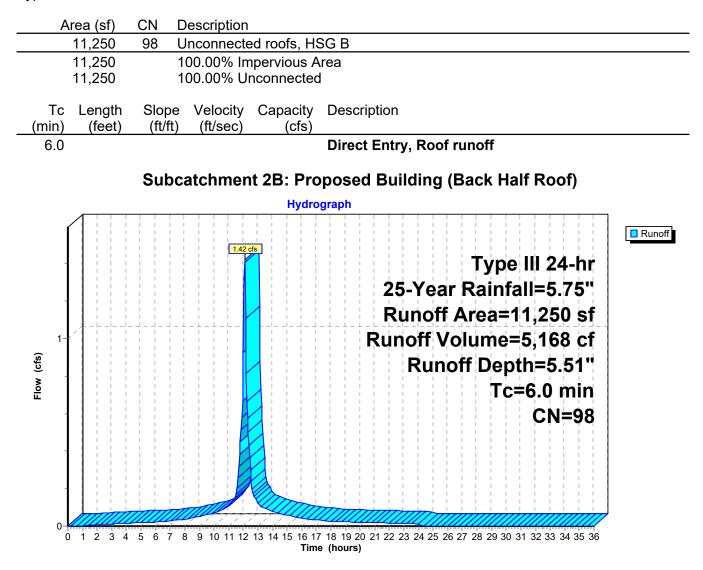

Summary for Subcatchment 2: Northern Woods

Runoff = 2.09 cfs @ 12.29 hrs, Volume= Routed to Reach 3R : Northern Overland Flow 11,099 cf, Depth= 1.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.75"

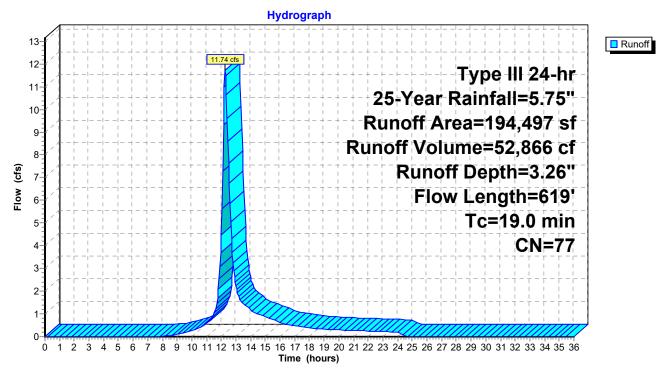

_	Α	rea (sf)	CN [Description		
		66,001	55 \	Voods, Go	od, HSG B	
		21,606	70 \	Voods, Go	od, HSG C	
		20,584	30 \	Voods, Go	od, HSG A	
	108,191 53 Weighted Average			Veighted A	verage	
	1	08,191		00.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.7	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	7.9	525	0.0495	1.11		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
_	17.6	575	Total			·

Subcatchment 2: Northern Woods


Summary for Subcatchment 2A: Proposed Building (Front Half Roof)

Runoff = 1.42 cfs @ 12.09 hrs, Volume= Routed to Pond 102P : DMH-102 5,168 cf, Depth= 5.51"

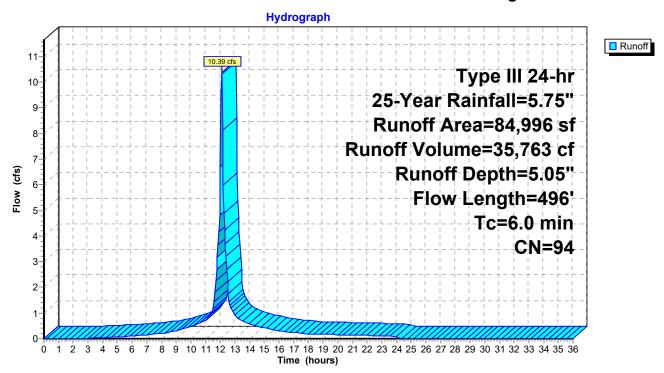
Summary for Subcatchment 2B: Proposed Building (Back Half Roof)


Runoff = 1.42 cfs @ 12.09 hrs, Volume= Routed to Pond 203P : DMH-203 5,168 cf, Depth= 5.51"

Summary for Subcatchment 3: Abutting Old Tpk Road

Runoff = 11.74 cfs @ 12.26 hrs, Volume= 52,866 cf, Depth= 3.26" Routed to Reach 1R : Southeastern Wetland/Prop. Line

A	rea (sf)	CN D	escription		
	20,473	74 >	75% Gras	s cover, Go	bod, HSG C
	28,140	77 V	Voods, Poo	or, HSG C	
	3,311	98 F	aved park	ing, HSG C	
	7,754	98 V	Vater Surfa	ace, HSG C	
	2,614	98 F	aved park	ing, HSG D	
	36,432	77 V	Voods, Go	od, HSG D	
	17,163	98 V	Vater Surfa	ace, HSG D	
	21,242	55 V	Voods, Go	od, HSG B	
	15,333	98 V	Vater Surfa	ace, HSG B	6
	8,494	85 G	Gravel road	ls, HSG B	
	1,394			ing, HSG B	
	32,147	61 >	75% Gras	s cover, Go	ood, HSG B
1	94,497	77 V	Veighted A	verage	
1	46,928	7	5.54% Per	vious Area	
	47,569	2	4.46% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.7	50	0.0400	0.09		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
4.9	264	0.0322	0.90		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.4	45	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
4.0	260	0.0460	1.07		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
19.0	619	Total			



Subcatchment 3: Abutting Old Tpk Road

Summary for Subcatchment 4: Northeastern Section of Existing Yard

Runoff = 10.39 cfs @ 12.09 hrs, Volume= 35,763 cf, Depth= 5.05" Routed to Reach 1R : Southeastern Wetland/Prop. Line

Α	rea (sf)	CN E	Description		
	4,792	55 V	Voods, Go	od, HSG B	
	2,962			ing, HSG B	
	1,002			ace, HSG B	
	76,240	96 (Gravel surfa	ace, HSG E	}
	84,996		Veighted A	•	
	81,032	-		rvious Area	
	3,964	4	.66% Impe	ervious Area	а
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.7	50	0.0250	1.27		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.00"
2.2	406	0.0375	3.12		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
0.7	40	0.0375	0.97		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.4					Direct Entry,
6.0	496	Total			

Subcatchment 4: Northeastern Section of Existing Yard

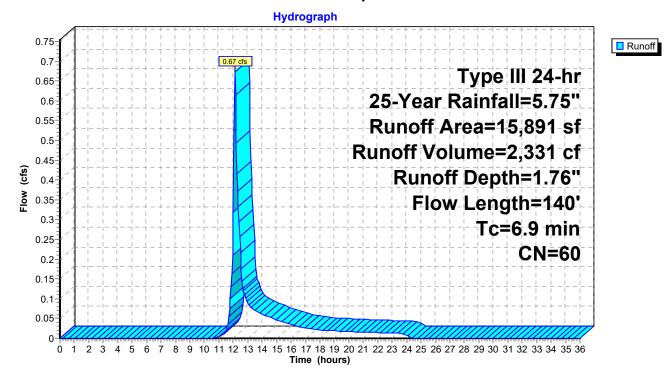
Summary for Subcatchment 5: Southern Developed Area

Runoff = 16.12 cfs @ 12.33 hrs, Volume= 79,524 cf, Depth= 2.70" Routed to Reach 4R : Southern Wetland

Α	rea (sf)	CN A	Adj Desc	ription	
	86,017	55	Woo	ds, Good, I	HSG B
	5,293	77	Woo	ds, Good, I	HSG D
1	51,153	85		el roads, H	
	5,619	98		ed parking,	
	12,110	98	Unco	onnected ro	oofs, HSG B
	92,538	61	>75%	6 Grass co	ver, Good, HSG B
	885	77	Woo	ds, Poor, ⊢	ISG C
3	53,615	72	71 Weig	hted Avera	age, UI Adjusted
3	35,886			9% Perviou	
	17,729			% Impervio	
	12,110		68.3	1% Unconr	nected
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.7	50	0.0200	0.07		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
2.5	164	0.0470	1.08		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
3.4	259	0.0040	1.28		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
3.0	640	0.0500	3.60		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
1.5	62	0.0200	0.71		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
23.1	1,175	Total			

Hydrograph 18 Runoff 17 16.12 cfs Type III 24-hr 16-15-25-Year Rainfall=5.75" 14-Runoff Area=353,615 sf 13-12 Runoff Volume=79,524 cf 11-Runoff Depth=2.70" Flow (cfs) 10-9-Flow Length=1,175' 8-Tc=23.1 min 7-6-**UI Adjusted CN=71** 5 4-3-2 1 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Subcatchment 5: Southern Developed Area

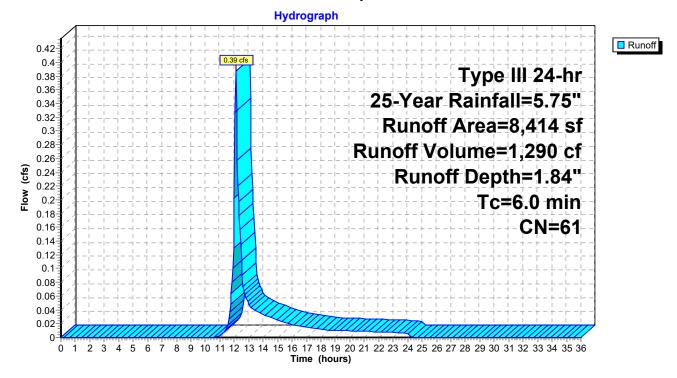

Summary for Subcatchment 6: Landscaped Hill - Rear Portion

Runoff = 0.67 cfs @ 12.11 hrs, Volume= Routed to Pond 207P : DMH-207 2,331 cf, Depth= 1.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.75"

_	A	rea (sf)	CN I	Description				
		2,309	55	Noods, Go	od, HSG B			
_		13,582	61 🔅	>75% Gras	s cover, Go	bod, HSG B		
		15,891	60 V	Neighted A	verage			
	15,891 100.00% Pervious Area					а		
	Тс	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	5.5	50	0.0600	0.15		Sheet Flow, OVERLAND		
						Grass: Dense n= 0.240 P2= 3.00"		
	1.4	90	0.0240	1.08		Shallow Concentrated Flow, SWALE		
_						Short Grass Pasture Kv= 7.0 fps		
	6.9	140	Total					

Subcatchment 6: Landscaped Hill - Rear Portion

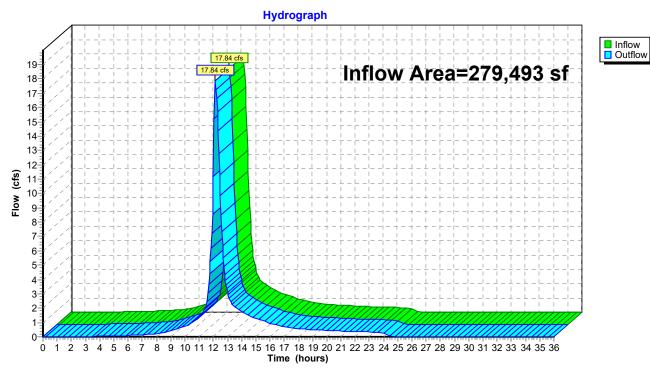

Summary for Subcatchment 7: Landscaped Hill - Front Portion

Runoff = 0.39 cfs @ 12.10 hrs, Volume= Routed to Pond 105P : DMH-105 1,290 cf, Depth= 1.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.75"

A	rea (sf)	CN E	Description					
	8,414	61 >	>75% Grass cover, Good, HSG B					
	8,414	1	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, Overland <6min			

Subcatchment 7: Landscaped Hill - Front Portion

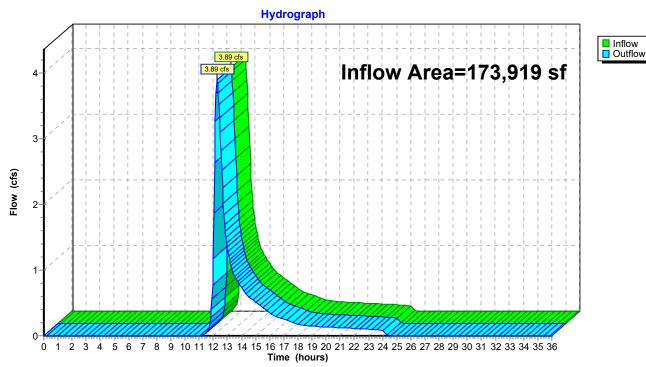


Summary for Reach 1R: Southeastern Wetland/Prop. Line

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		279,493 sf	, 18.44% Impervious	Inflow Depth = 3.8	1" for 25-Year event			
Inflow =	:	17.84 cfs @	12.12 hrs, Volume=	88,629 cf				
Outflow =	:	17.84 cfs @	12.12 hrs, Volume=	88,629 cf, A	tten= 0%, Lag= 0.0 min			
Routed to Reach 5R : Combined Flow								

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

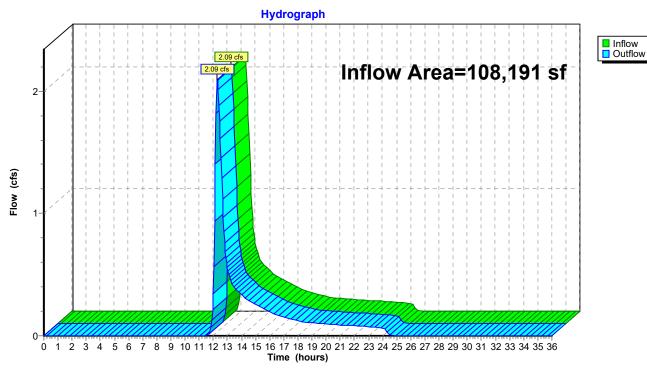

Reach 1R: Southeastern Wetland/Prop. Line

Summary for Reach 2R: Southwestern Wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		173,919 sf	, 23.43% Impervious,	Inflow Depth = 1.49"	for 25-Year event				
Inflow	=	3.89 cfs @	12.27 hrs, Volume=	21,639 cf					
Outflow	=	3.89 cfs @	12.27 hrs, Volume=	21,639 cf, Atter	n= 0%, Lag= 0.0 min				
Routed to Reach 5R : Combined Flow									

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

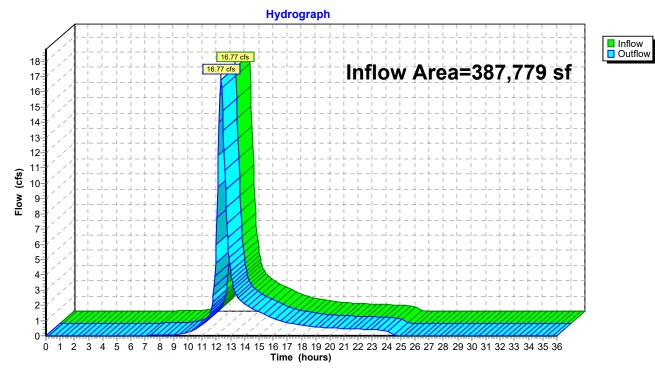

Reach 2R: Southwestern Wetland

Summary for Reach 3R: Northern Overland Flow

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		108,191 sf,	0.00% Impervious,	Inflow Depth = 1.23"	for 25-Year event				
Inflow	=	2.09 cfs @	12.29 hrs, Volume=	11,099 cf					
Outflow	=	2.09 cfs @	12.29 hrs, Volume=	11,099 cf, Atten=	= 0%, Lag= 0.0 min				
Routed to Reach 5R : Combined Flow									

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

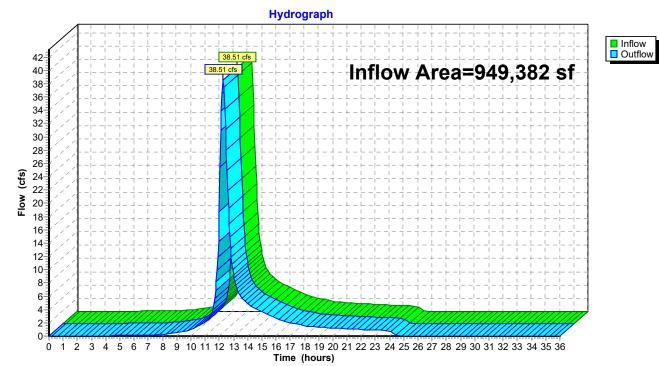

Reach 3R: Northern Overland Flow

Summary for Reach 4R: Southern Wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	387,779 sf	, 11.21% Impervious,	Inflow Depth = 2.65"	for 25-Year event				
Inflow	=	16.77 cfs @	12.32 hrs, Volume=	85,707 cf					
Outflow	=	16.77 cfs @	12.32 hrs, Volume=	85,707 cf, Atte	n= 0%, Lag= 0.0 min				
Routed to Reach 5R : Combined Flow									

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Reach 4R: Southern Wetland

Summary for Reach 5R: Combined Flow

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	949,382 sf, 14.30% Impervious, Inflow Depth = 2.62" for 25-Year event
Inflow	=	38.51 cfs @ 12.28 hrs, Volume= 207,074 cf
Outflow	=	38.51 cfs @ 12.28 hrs, Volume= 207,074 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Reach 5R: Combined Flow

Summary for Pond 1P: Storm Trap

[81] Warning: Exceeded Pond 3P by 0.34' @ 15.95 hrs

Inflow	=	0.50 cfs @	12.41 hrs,	Volume=	2,203 cf			
Outflow	=	0.05 cfs @	15.00 hrs,	Volume=	2,203 cf, Atten= 90%, Lag= 155.4 min			
Discarded	=	0.03 cfs @	11.80 hrs,	Volume=	2,092 cf			
Primary	=	0.02 cfs @	15.00 hrs,	Volume=	110 cf			
Routed to Pond 105P : DMH-105								

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 396.23' @ 15.00 hrs Surf.Area= 1,241 sf Storage= 1,547 cf Flood Elev= 396.48' Surf.Area= 1,241 sf Storage= 1,780 cf

Plug-Flow detention time= 482.4 min calculated for 2,203 cf (100% of inflow) Center-of-Mass det. time= 482.3 min (1,277.7 - 795.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	394.00'	956 cf	25.79'W x 48.10'L x 4.25'H Field A
			5,273 cf Overall - 2,883 cf Embedded = 2,390 cf x 40.0% Voids
#2A	395.25'	2,077 cf	StormTrap ST2 SingleTrap 2-6x 2 Inside #1
			Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf
			Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf
			8.48' x 30.79' Core + 6.66' Border = 21.79' x 44.10' System
		3,033 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	396.16'	12.0" Round Culvert
			L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 396.16' / 396.06' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Discarded	394.00'	1.000 in/hr Exfiltration over Surface area

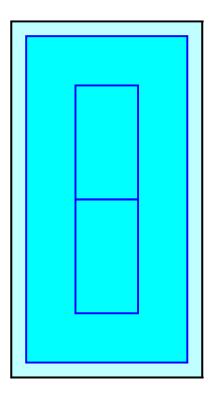
Discarded OutFlow Max=0.03 cfs @ 11.80 hrs HW=394.05' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.02 cfs @ 15.00 hrs HW=396.23' (Free Discharge) ←1=Culvert (Inlet Controls 0.02 cfs @ 0.72 fps)

Pond 1P: Storm Trap - Chamber Wizard Field A

Chamber Model = StormTrap ST2 SingleTrap 2-6 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf


2 Chambers/Row x 15.40' Long = 30.79' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 48.10' Base Length 1 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 25.79' Base Width 15.0" Stone Base + 36.0" Chamber Height = 4.25' Field Height

2 Chambers x 289.8 cf + 1,497.8 cf Border = 2,077.4 cf Chamber Storage 2 Chambers x 391.6 cf + 2,100.0 cf Border = 2,883.3 cf Displacement

5,272.9 cf Field - 2,883.3 cf Chambers = 2,389.6 cf Stone x 40.0% Voids = 955.8 cf Stone Storage

Chamber Storage + Stone Storage = 3,033.3 cf = 0.070 af Overall Storage Efficiency = 57.5%Overall System Size = $48.10' \times 25.79' \times 4.25'$

2 Chambers (plus border) 195.3 cy Field 88.5 cy Stone

Hydrograph Inflow 50 cfs Outflow Peak Elev=396.23' Discarded Primary 0.55 Storage=1,547 cf 0.5 0.45 0.4 0.35 (cfs) 0.3 **0.25** 0.2 0.15 0.05 cfs 0.1 0.03 cfs 0.05 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Pond 1P: Storm Trap

Summary for Pond 2P: Storm Trap

Inflow Area =	40,750 sf,100.00% Impervious,	Inflow Depth = 5.46" for 25-Year event
Inflow =	4.88 cfs @ 12.09 hrs, Volume=	18,541 cf
Outflow =	1.04 cfs @ 12.51 hrs, Volume=	18,541 cf, Atten= 79%, Lag= 25.6 min
Discarded =	0.14 cfs @ 8.40 hrs, Volume=	13,588 cf
Primary =	0.90 cfs @ 12.51 hrs, Volume=	4,953 cf
Routed to Pone	d 207P : DMH-207	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 396.26' @ 12.51 hrs Surf.Area= 6,005 sf Storage= 7,973 cf

Plug-Flow detention time= 291.1 min calculated for 18,516 cf (100% of inflow) Center-of-Mass det. time= 291.5 min (1,037.4 - 746.0)

Volume	Invert	Avail.Storage	Storage Description	
#1A	394.00'	3,863 cf	42.75'W x 140.48'L x 4.25'H Field A	
			25,523 cf Overall - 15,866 cf Embedded = 9,658 cf x 40.0% Voids	
#2A	395.25'	11,568 cf	StormTrap ST2 SingleTrap 2-6x 24 Inside #1	
			Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf	
			Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf	
			24 Chambers in 3 Rows	
			25.44' x 123.17' Core + 6.66' Border = 38.75' x 136.48' System	
		15,431 cf	Total Available Storage	

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Primary	395.75'	12.0" Round Culvert
		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 395.75' / 395.65' S= 0.0100 '/' Cc= 0.900
		n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
Discarded	394.00'	1.000 in/hr Exfiltration over Surface area
Primary	395.95'	6.0" Round Culvert
		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 395.95' / 395.85' S= 0.0100 '/' Cc= 0.900
		n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf
	Primary Discarded	Primary 395.75' Discarded 394.00'

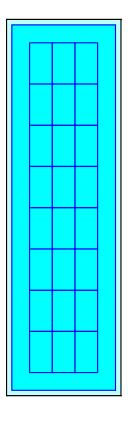
Discarded OutFlow Max=0.14 cfs @ 8.40 hrs HW=394.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.14 cfs)

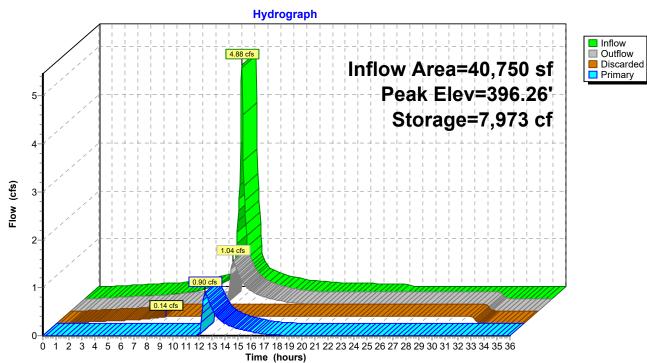
Primary OutFlow Max=0.89 cfs @ 12.51 hrs HW=396.26' (Free Discharge) -1=Culvert (Barrel Controls 0.71 cfs @ 2.56 fps) -3=Culvert (Barrel Controls 0.19 cfs @ 2.09 fps)

Pond 2P: Storm Trap - Chamber Wizard Field A

Chamber Model = StormTrap ST2 SingleTrap 2-6 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf


8 Chambers/Row x 15.40' Long = 123.17' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 140.48' Base Length 3 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 42.75' Base Width 15.0" Stone Base + 36.0" Chamber Height = 4.25' Field Height


24 Chambers x 289.8 cf + 4,612.1 cf Border = 11,567.5 cf Chamber Storage 24 Chambers x 391.6 cf + 6,466.5 cf Border = 15,865.7 cf Displacement

25,523.3 cf Field - 15,865.7 cf Chambers = 9,657.6 cf Stone x 40.0% Voids = 3,863.0 cf Stone Storage

Chamber Storage + Stone Storage = 15,430.6 cf = 0.354 af Overall Storage Efficiency = 60.5% Overall System Size = 140.48' x 42.75' x 4.25'

24 Chambers (plus border) 945.3 cy Field 357.7 cy Stone

Pond 2P: Storm Trap

Summary for Pond 3P: Storm Trap

Inflow Area = 14,500 sf,100.00% Impervious, Inflow Depth = 5.51" for 25-Year event							
Inflow	=	1.83 cfs @ 12.09 h	hrs, Volume= 6,661 cf				
Outflow		0.49 cfs @ 12.44 h					
Discarded	=	0.04 cfs @ 7.45 h	hrs, Volume= 4,325 cf				
		0.01 cfs @ 12.44 ł	hrs, Volume= 4 cf				
		105P : DMH-105					
		0.44 cfs @ 12.44 ł	hrs, Volume= 1,813 cf				
Routed	to Pond	1P : Storm Trap					
			n= 0.00-36.00 hrs, dt= 0.05 hrs				
		<u> </u>	Area= 1,638 sf Storage= 2,990 cf				
Flood Elev	v= 396.48	3' Surf.Area= 1,638	3 sf Storage= 3,342 cf				
			alculated for 6,134 cf (92% of inflow)				
Center-of-Mass det. time= 343.6 min(1,089.4 - 745.8)							
Volume	Invo	rt Avail Storago	Storage Deparintion				
-		U	Storage Description				
#1A	393.25	b' 1,297 cf	25.79'W x 63.50'L x 4.75'H Field A				
	004 54	0.444.6	7,779 cf Overall - 4,538 cf Embedded = 3,241 cf x 40.0% Voids				
#2A	394.50) 3,414 cf	StormTrap ST2 SingleTrap 3-0x 3 Inside #1				
			Inside= 101.7"W x 36.0"H => 22.99 sf x 15.40'L = 354.0 cf				
			Outside= 101.7"W x 42.0"H => 29.68 sf x 15.40'L = 456.9 cf				
			8.48' x 46.19' Core + 6.66' Border = 21.79' x 59.50' System				

4,710 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	396.16'	12.0" Round Culvert
	-		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 396.16' / 396.06' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Discarded	393.25'	1.000 in/hr Exfiltration over Surface area
#3	Secondary	395.75'	12.0" Round Culvert
			L= 5.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 395.75' / 395.75' S= 0.0000 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.04 cfs @ 7.45 hrs HW=393.30' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.04 cfs)

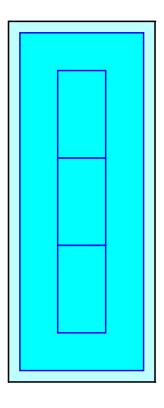
Primary OutFlow Max=0.01 cfs @ 12.44 hrs HW=396.20' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.01 cfs @ 0.56 fps)

Secondary OutFlow Max=0.44 cfs @ 12.44 hrs HW=396.20' (Free Discharge) -3=Culvert (Barrel Controls 0.44 cfs @ 1.87 fps)

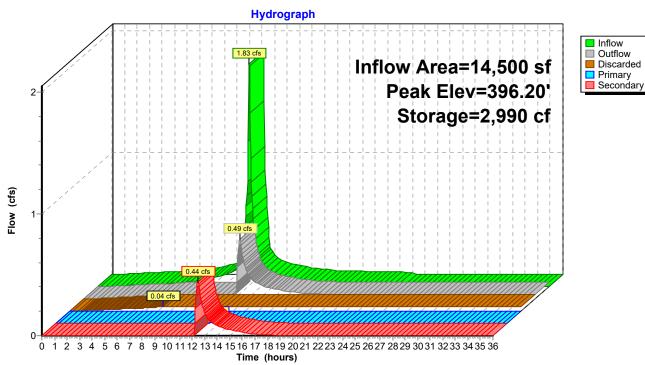
Pond 3P: Storm Trap - Chamber Wizard Field A

Chamber Model = StormTrap ST2 SingleTrap 3-0 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 36.0"H => 22.99 sf x 15.40'L = 354.0 cf Outside= 101.7"W x 42.0"H => 29.68 sf x 15.40'L = 456.9 cf


3 Chambers/Row x 15.40' Long = 46.19' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 63.50' Base Length 1 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 25.79' Base Width 15.0" Stone Base + 42.0" Chamber Height = 4.75' Field Height

3 Chambers x 354.0 cf + 2,351.9 cf Border = 3,413.9 cf Chamber Storage 3 Chambers x 456.9 cf + 3,167.4 cf Border = 4,538.1 cf Displacement


7,779.4 cf Field - 4,538.1 cf Chambers = 3,241.3 cf Stone x 40.0% Voids = 1,296.5 cf Stone Storage

Chamber Storage + Stone Storage = 4,710.4 cf = 0.108 afOverall Storage Efficiency = 60.5%Overall System Size = $63.50' \times 25.79' \times 4.75'$

3 Chambers (plus border) 288.1 cy Field 120.0 cy Stone

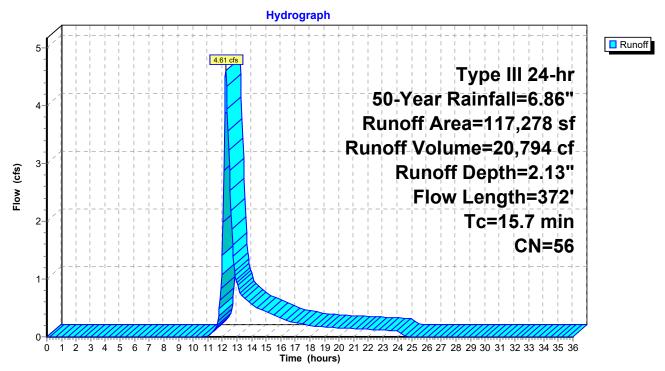
Pond 3P: Storm Trap

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SoutheastWoodsRunoff Area=117,278 sf0.00% ImperviousRunoff Depth=2.13"Flow Length=372'Tc=15.7 minCN=56Runoff=4.61 cfs20,794 cf
Subcatchment1A: Concrete Pad (LeftRunoff Area=14,500 sf100.00% ImperviousRunoff Depth=6.62"Tc=6.0 minCN=98Runoff=2.19 cfs8,000 cf
Subcatchment1B: Concrete Pad (LeftRunoff Area=15,000 sf100.00% ImperviousRunoff Depth=6.62"Tc=6.0 minCN=98Runoff=2.26 cfs8,276 cf
Subcatchment1E: Concrete Pad (Front Runoff Area=14,500 sf 100.00% Impervious Runoff Depth=6.62" Tc=6.0 min CN=98 Runoff=2.19 cfs 8,000 cf
Subcatchment2: Northern WoodsRunoff Area=108,191 sf0.00% ImperviousRunoff Depth=1.85"Flow Length=575'Tc=17.6 minCN=53Runoff=3.44 cfs16,716 cf
Subcatchment2A: Proposed BuildingRunoff Area=11,250 sf100.00% ImperviousRunoff Depth=6.62"Tc=6.0 minCN=98Runoff=1.70 cfs6,207 cf
Subcatchment2B: Proposed BuildingRunoff Area=11,250 sf100.00% ImperviousRunoff Depth=6.62"Tc=6.0 minCN=98Runoff=1.70 cfs6,207 cf
Subcatchment3: Abutting Old Tpk Road Runoff Area=194,497 sf 24.46% Impervious Runoff Depth=4.24" Flow Length=619' Tc=19.0 min CN=77 Runoff=15.23 cfs 68,725 cf
Subcatchment4: Northeastern Section of Runoff Area=84,996 sf 4.66% Impervious Runoff Depth=6.15" Flow Length=496' Tc=6.0 min CN=94 Runoff=12.52 cfs 43,556 cf
Subcatchment5: Southern Developed Area Runoff Area=353,615 sf 5.01% Impervious Runoff Depth=3.61" Flow Length=1,175' Tc=23.1 min UI Adjusted CN=71 Runoff=21.71 cfs 106,258 cf
Subcatchment6: LandscapedHill - Rear Flow Length=140' Tc=6.9 min CN=60 Runoff=0.99 cfs 3,317 cf
Subcatchment7: LandscapedHill - FrontRunoff Area=8,414 sf0.00% ImperviousRunoff Depth=2.60"Tc=6.0 minCN=61Runoff=0.56 cfs1,824 cf
Reach 1R: Southeastern Wetland/Prop. LineInflow=22.42 cfs112,281 cfOutflow=22.42 cfs112,281 cf112,281 cf
Reach 2R: Southwestern WetlandInflow=6.64 cfs32,259 cfOutflow=6.64 cfs32,259 cf
Reach 3R: Northern Overland FlowInflow=3.44 cfs16,716 cfOutflow=3.44 cfs16,716 cfOutflow=3.44 cfs16,716 cf
Reach 4R: Southern Wetland Inflow=22.64 cfs 115,058 cf Outflow=22.64 cfs 115,058 cf

2023-03-14 PostDev Stormwater Model R2 Type III 24-hr 50-Year Rainfall=6.86" Prepared by BSC Group Printed 4/6/2023 HydroCAD® 10.20-2g s/n 00904 © 2022 HydroCAD Software Solutions LLC Page 119 **Reach 5R: Combined Flow** Inflow=52.80 cfs 276,314 cf Outflow=52.80 cfs 276,314 cf Peak Elev=396.42' Storage=1,720 cf Inflow=0.93 cfs 3,295 cf Pond 1P: Storm Trap Discarded=0.03 cfs 2,184 cf Primary=0.21 cfs 1,111 cf Outflow=0.24 cfs 3,295 cf Pond 2P: Storm Trap Peak Elev=396.46' Storage=8,969 cf Inflow=5.78 cfs 22,211 cf Discarded=0.14 cfs 14,335 cf Primary=1.62 cfs 7,875 cf Outflow=1.76 cfs 22,211 cf Pond 3P: Storm Trap Peak Elev=396.37' Storage=3,208 cf Inflow=2.19 cfs 8,000 cf Discarded=0.04 cfs 4,429 cf Primary=0.15 cfs 147 cf Secondary=0.80 cfs 2,805 cf Outflow=0.99 cfs 7,381 cf Peak Elev=397.40' Inflow=1.70 cfs 6,207 cf Pond 102P: DMH-102 Primary=1.47 cfs 5,717 cf Secondary=0.22 cfs 490 cf Outflow=1.70 cfs 6,207 cf Pond 105P: DMH-105 Peak Elev=391.95' Inflow=2.03 cfs 8,800 cf 12.0" Round Culvert n=0.012 L=96.0' S=0.0938 '/' Outflow=2.03 cfs 8,800 cf Peak Elev=397.45' Inflow=1.70 cfs 6,207 cf Pond 203P: DMH-203 Primary=1.33 cfs 5,934 cf Secondary=0.37 cfs 273 cf Outflow=1.70 cfs 6,207 cf Pond 207P: DMH-207 Peak Elev=393.48' Inflow=2.08 cfs 11,466 cf 12.0" Round Culvert n=0.012 L=15.0' S=0.0133 '/' Outflow=2.08 cfs 11,466 cf

> Total Runoff Area = 949,382 sf Runoff Volume = 297,881 cf Average Runoff Depth = 3.77" 85.70% Pervious = 813,620 sf 14.30% Impervious = 135,762 sf

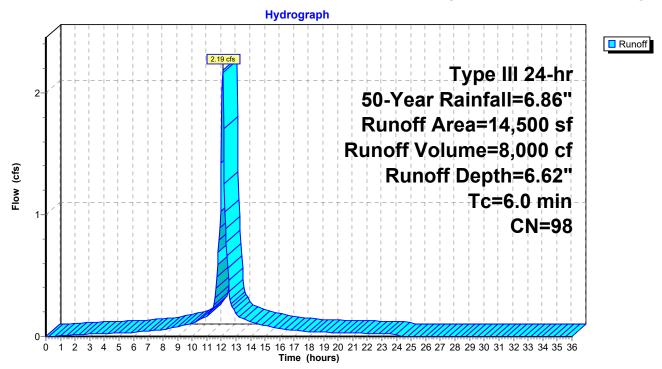

Summary for Subcatchment 1: Southeast Woods

Runoff = 4.61 cfs @ 12.24 hrs, Volume= Routed to Reach 2R : Southwestern Wetland 20,794 cf, Depth= 2.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

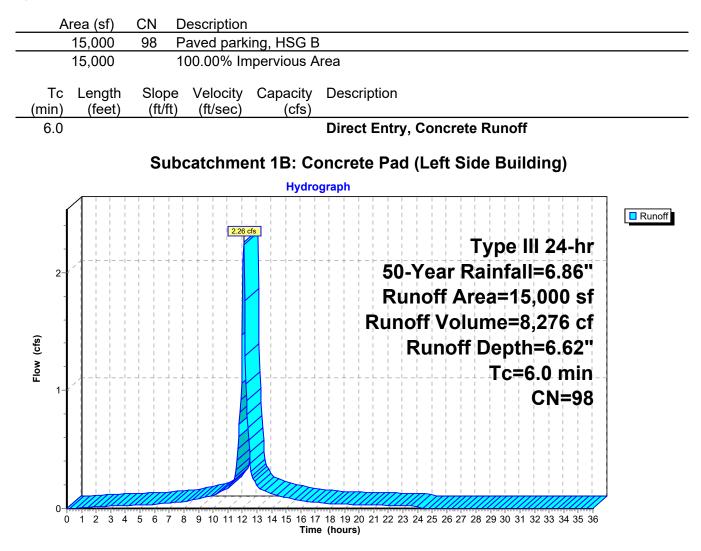
A	rea (sf)	CN [Description		
	86,662	55 \	Voods, Go	od, HSG B	
	2,127	30 \	Voods, Go	od, HSG A	
	26,969	61 >	>75% Gras	s cover, Go	bod, HSG B
	1,520	96 (Gravel surfa	ace, HSG E	3
1	17,278		Veighted A		
1	17,278		100.00% Pe	ervious Are	a
_				•	— • • •
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.7	50	0.0200	0.07		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
3.0	322	0.1240	1.76		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
15.7	372	Total			

Subcatchment 1: Southeast Woods

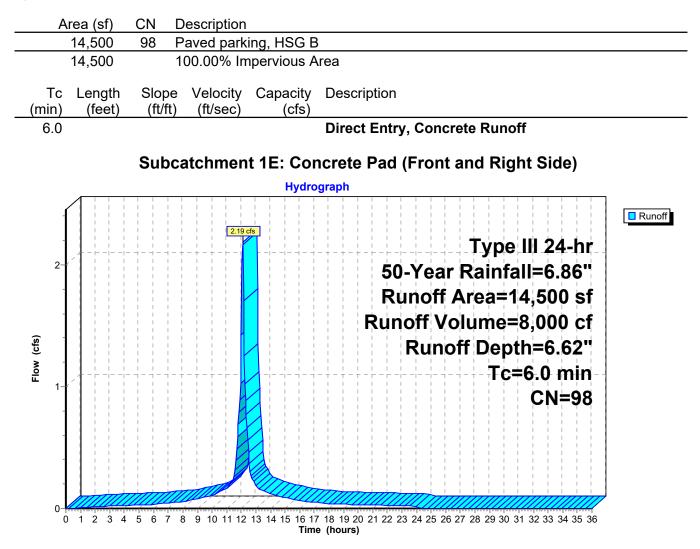

Summary for Subcatchment 1A: Concrete Pad (Left Side, Back, Right Side Rear of Building)

Runoff = 2.19 cfs @ 12.09 hrs, Volume= Routed to Pond 2P : Storm Trap 8,000 cf, Depth= 6.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"


Area (sf) CN	Description						
14,500) 98	98 Paved parking, HSG B						
14,500)	100.00% In	npervious A	Area				
Tc Leng (min) (fee			Capacity (cfs)	Description				
6.0				Direct Entry, Concrete Runoff				

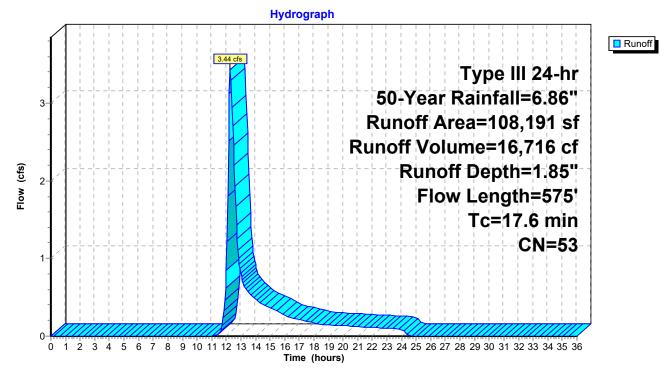
Subcatchment 1A: Concrete Pad (Left Side, Back, Right Side Rear of Building)


Summary for Subcatchment 1B: Concrete Pad (Left Side Building)

Runoff = 2.26 cfs @ 12.09 hrs, Volume= Routed to Pond 2P : Storm Trap 8,276 cf, Depth= 6.62"

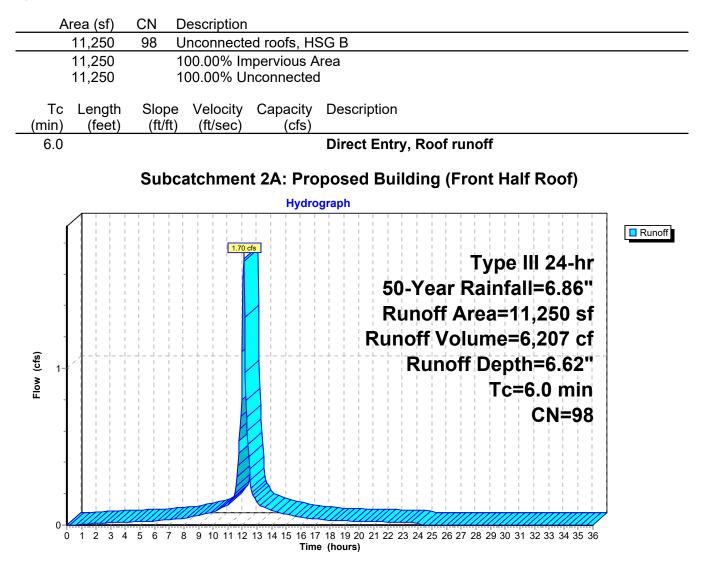
Summary for Subcatchment 1E: Concrete Pad (Front and Right Side)

Runoff = 2.19 cfs @ 12.09 hrs, Volume= Routed to Pond 3P : Storm Trap 8,000 cf, Depth= 6.62"

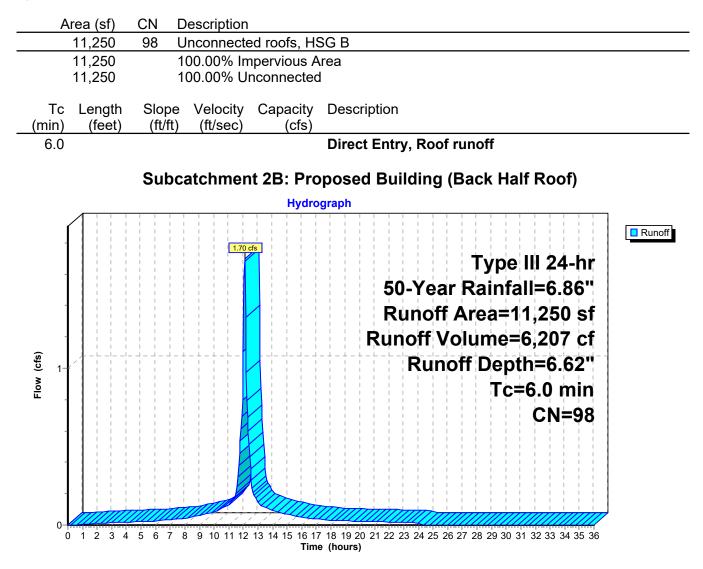

Summary for Subcatchment 2: Northern Woods

Runoff = 3.44 cfs @ 12.27 hrs, Volume= Routed to Reach 3R : Northern Overland Flow 16,716 cf, Depth= 1.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

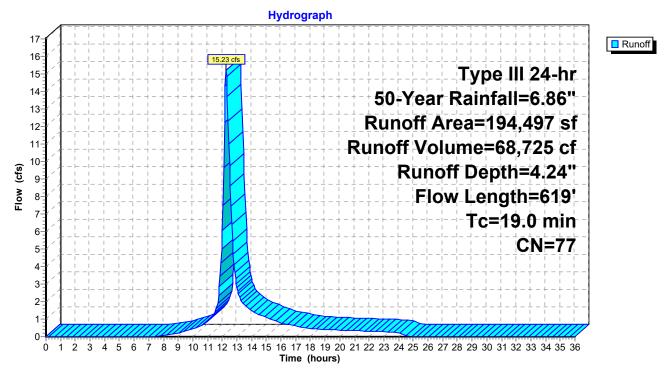

_	A	rea (sf)	CN [Description		
		66,001	55 \	Voods, Go	od, HSG B	
		21,606	70 \	Voods, Go	od, HSG C	
		20,584	30 \	Voods, Go	od, HSG A	
	1	08,191	53 \	Veighted A	verage	
	1	08,191	-	00.00% Pe	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.7	50	0.0400	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	7.9	525	0.0495	1.11		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	17.6	575	Total			

Subcatchment 2: Northern Woods


Summary for Subcatchment 2A: Proposed Building (Front Half Roof)

Runoff = 1.70 cfs @ 12.09 hrs, Volume= Routed to Pond 102P : DMH-102 6,207 cf, Depth= 6.62"

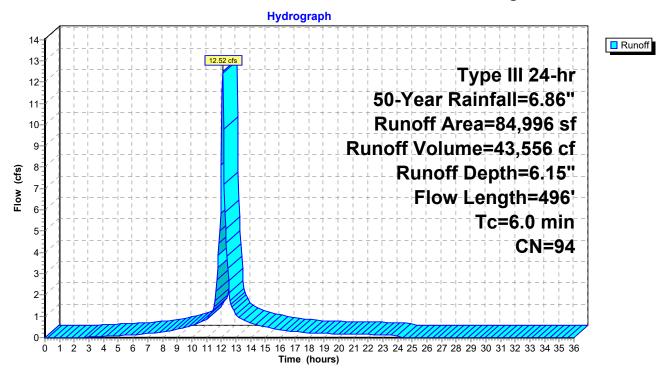
Summary for Subcatchment 2B: Proposed Building (Back Half Roof)


Runoff = 1.70 cfs @ 12.09 hrs, Volume= Routed to Pond 203P : DMH-203 6,207 cf, Depth= 6.62"

Summary for Subcatchment 3: Abutting Old Tpk Road

Runoff = 15.23 cfs @ 12.26 hrs, Volume= 68,725 cf, Depth= 4.24" Routed to Reach 1R : Southeastern Wetland/Prop. Line

A	rea (sf)	CN E	escription		
	20,473	74 >	75% Gras	s cover, Go	bod, HSG C
	28,140	77 V	Voods, Poo	or, HSG C	
	3,311	98 F	aved park	ing, HSG C	
	7,754	98 V	Vater Surfa	ace, HSG C	
	2,614	98 F	aved park	ing, HSG D	
	36,432	77 V	Voods, Go	od, HSG D	
	17,163	98 V	Vater Surfa	ace, HSG D	
	21,242	55 V	Voods, Go	od, HSG B	
	15,333			ace, HSG B	
	8,494		Gravel road		
	1,394			ing, HSG B	
	32,147	61 >	75% Gras	s cover, Go	ood, HSG B
1	94,497	77 V	Veighted A	verage	
1	46,928	7	5.54% Per	vious Area	
	47,569	2	4.46% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.7	50	0.0400	0.09		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
4.9	264	0.0322	0.90		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.4	45	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
4.0	260	0.0460	1.07		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
19.0	619	Total			


Subcatchment 3: Abutting Old Tpk Road

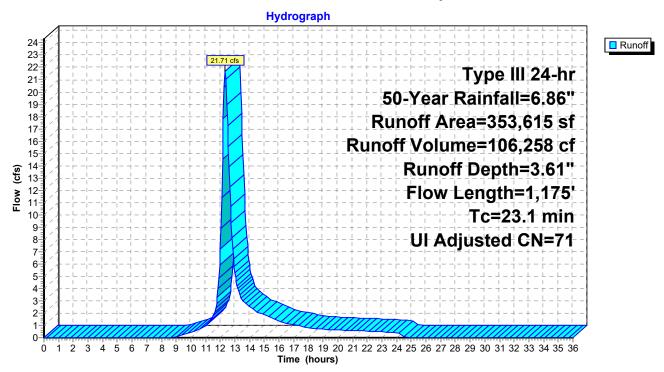
Summary for Subcatchment 4: Northeastern Section of Existing Yard

Runoff = 12.52 cfs @ 12.09 hrs, Volume= 43,556 cf, Depth= 6.15" Routed to Reach 1R : Southeastern Wetland/Prop. Line

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

Α	rea (sf)	CN E	Description		
	4,792	55 V	Voods, Go	od, HSG B	
	2,962			ing, HSG B	
	1,002			ace, HSG B	
	76,240	96 (Gravel surfa	ace, HSG E	}
	84,996		Veighted A	•	
	81,032	-		rvious Area	
	3,964	4	.66% Impe	ervious Area	а
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.7	50	0.0250	1.27		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.00"
2.2	406	0.0375	3.12		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
0.7	40	0.0375	0.97		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.4					Direct Entry,
6.0	496	Total			

Subcatchment 4: Northeastern Section of Existing Yard


Summary for Subcatchment 5: Southern Developed Area

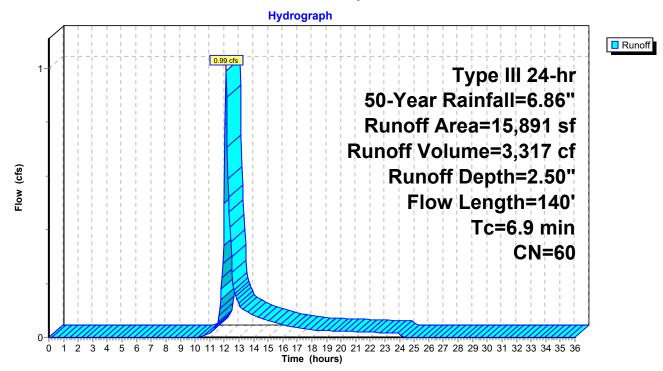
Runoff = 21.71 cfs @ 12.32 hrs, Volume= 106,258 cf, Depth= 3.61" Routed to Reach 4R : Southern Wetland

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

_	A	rea (sf)	CN A	Adj Desc	cription	
		86,017	55 Woods, Good, H			HSG B
		5,293	77	Woo	ds, Good, I	HSG D
	1	51,153	85		vel roads, ⊢	
		5,619	98		ed parking,	
		12,110	98			oofs, HSG B
		92,538	61			ver, Good, HSG B
_		885	77	Woo	ds, Poor, ⊦	ISG C
		53,615	72	-		age, UI Adjusted
		35,886			9% Perviou	
		17,729			% Impervic	
		12,110		68.3	1% Unconr	nected
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Beschpton
-	12.7	50	0.0200	0.07	()	Sheet Flow,
			0.0200	0.01		Woods: Light underbrush n= 0.400 P2= 3.00"
	2.5	164	0.0470	1.08		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.4	259	0.0040	1.28		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	3.0	640	0.0500	3.60		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	1.5	62	0.0200	0.71		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	23.1	1 175	Total			

23.1 1,175 Total

Subcatchment 5: Southern Developed Area


Summary for Subcatchment 6: Landscaped Hill - Rear Portion

Runoff = 0.99 cfs @ 12.11 hrs, Volume= Routed to Pond 207P : DMH-207 3,317 cf, Depth= 2.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

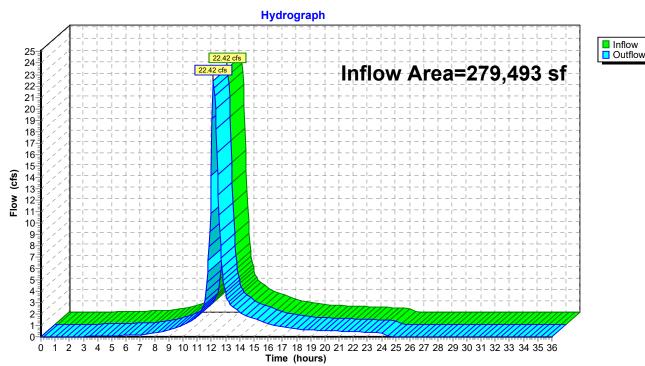
_	A	rea (sf)	CN	Description					
		2,309	55	55 Woods, Good, HSG B					
_		13,582	61	>75% Gras	s cover, Go	bod, HSG B			
		15,891	60	Weighted A	verage				
		15,891		100.00% P	ervious Are	а			
	Тс	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.5	50	0.0600	0.15		Sheet Flow, OVERLAND			
						Grass: Dense n= 0.240 P2= 3.00"			
	1.4	90	0.0240	1.08		Shallow Concentrated Flow, SWALE			
_						Short Grass Pasture Kv= 7.0 fps			
	6.9	140	Total						

Subcatchment 6: Landscaped Hill - Rear Portion

Summary for Subcatchment 7: Landscaped Hill - Front Portion

Runoff = 0.56 cfs @ 12.10 hrs, Volume= Routed to Pond 105P : DMH-105 1,824 cf, Depth= 2.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.86"

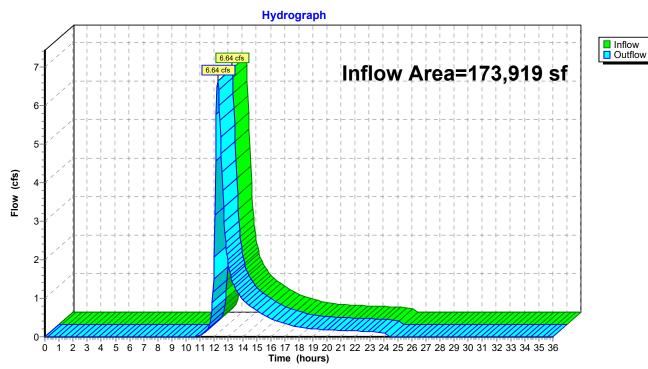

	8,414 8,414			<u>s cover, Go</u> ervious Are	bod, HSG B
	0,414		00.00 % F	eivious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min) 6.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Entry, Overland <6min
		-			
		Su	bcatchn		andscaped Hill - Front Portion
				Hydro	9 graph
0.6-	∮ -¦¦			- $ -$	
0.55-		iiii- 	r = r = r = r = 1		Type III 24-hr
0.5-					50-Year Rainfall=6.86"
0.45-					Runoff Area=8,414 sf
0.4-					Runoff Volume=1,824 cf
(£) 0.35					Runoff Depth=2.60"
(sj 0.35- 0.3-					Tc=6.0 min
0.25-					CN=61
0.2-					
0.15-					
0.1-					
0.05					

Summary for Reach 1R: Southeastern Wetland/Prop. Line

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	279,493 sf	, 18.44% Impervious	, Inflow Depth = 4.82" for 50-Year event	
Inflow :	=	22.42 cfs @	12.12 hrs, Volume=	112,281 cf	
Outflow :	=	22.42 cfs @	12.12 hrs, Volume=	112,281 cf, Atten= 0%, Lag= 0.0 min	
Routed to Reach 5R : Combined Flow					

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

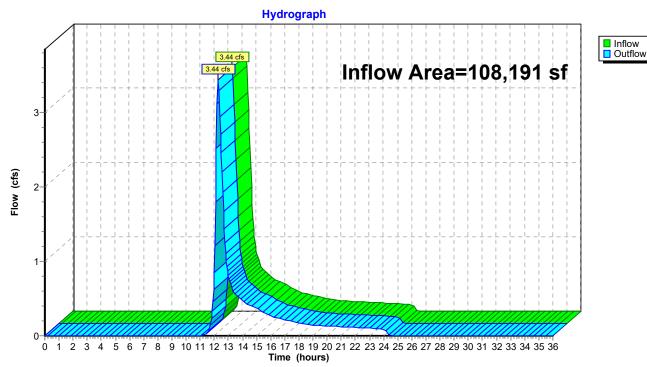

Reach 1R: Southeastern Wetland/Prop. Line

Summary for Reach 2R: Southwestern Wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	173,919 sf	, 23.43% Impervious,	Inflow Depth = 2.23" for 50-Year event	
Inflow	=	6.64 cfs @	12.25 hrs, Volume=	32,259 cf	
Outflow	=	6.64 cfs @	12.25 hrs, Volume=	32,259 cf, Atten= 0%, Lag= 0.0 min	
Routed to Reach 5R : Combined Flow					

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

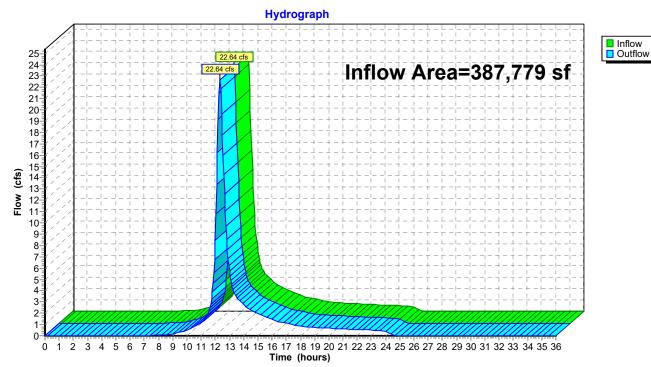

Reach 2R: Southwestern Wetland

Summary for Reach 3R: Northern Overland Flow

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	108,191 sf,	0.00% Impervious,	Inflow Depth = 1.85	for 50-Year event	
Inflow	=	3.44 cfs @	12.27 hrs, Volume=	16,716 cf		
Outflow	=	3.44 cfs @	12.27 hrs, Volume=	16,716 cf, Att	en= 0%, Lag= 0.0 min	
Routed to Reach 5R : Combined Flow						

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Reach 3R: Northern Overland Flow

Summary for Reach 4R: Southern Wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	387,779 sf	, 11.21% Impervious,	Inflow Depth = 3.56"	for 50-Year event	
Inflow	=	22.64 cfs @	12.32 hrs, Volume=	115,058 cf		
Outflow	=	22.64 cfs @	12.32 hrs, Volume=	115,058 cf, Atten=	= 0%, Lag= 0.0 min	
Routed to Reach 5R : Combined Flow						

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Reach 4R: Southern Wetland

Summary for Reach 5R: Combined Flow

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	949,382 sf, 14.30% Impervious, Inflow Depth = 3.49" for 50-Year event
Inflow	=	52.80 cfs @ 12.27 hrs, Volume= 276,314 cf
Outflow	=	52.80 cfs @ 12.27 hrs, Volume= 276,314 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Reach 5R: Combined Flow

Summary for Pond 1P: Storm Trap

[81] Warning: Exceeded Pond 3P by 0.37' @ 13.30 hrs

Inflow	=	0.93 cfs @	12.26 hrs, Volume=	3,295 cf	
Outflow	=	0.24 cfs @	13.00 hrs, Volume=	3,295 cf, Atten= 74%, Lag= 44.5 min	
Discarded	=	0.03 cfs @	11.75 hrs, Volume=	2,184 cf	
Primary	=	0.21 cfs @	13.00 hrs, Volume=	1,111 cf	
Routed to Pond 105P : DMH-105					

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 396.42' @ 13.00 hrs Surf.Area= 1,241 sf Storage= 1,720 cf Flood Elev= 396.48' Surf.Area= 1,241 sf Storage= 1,780 cf

Plug-Flow detention time= 358.9 min calculated for 3,290 cf (100% of inflow) Center-of-Mass det. time= 359.5 min (1,150.8 - 791.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	394.00'	956 cf	25.79'W x 48.10'L x 4.25'H Field A
			5,273 cf Overall - 2,883 cf Embedded = 2,390 cf x 40.0% Voids
#2A	395.25'	2,077 cf	StormTrap ST2 SingleTrap 2-6x 2 Inside #1
			Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf
			Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf
			8.48' x 30.79' Core + 6.66' Border = 21.79' x 44.10' System
		3,033 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	396.16'	12.0" Round Culvert
			L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 396.16' / 396.06' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Discarded	394.00'	1.000 in/hr Exfiltration over Surface area

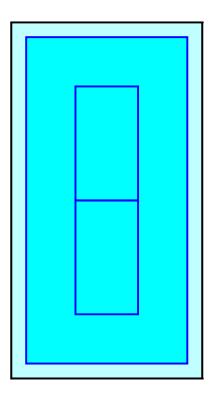
Discarded OutFlow Max=0.03 cfs @ 11.75 hrs HW=394.05' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.21 cfs @ 13.00 hrs HW=396.42' (Free Discharge) ←1=Culvert (Barrel Controls 0.21 cfs @ 2.00 fps)

Pond 1P: Storm Trap - Chamber Wizard Field A

Chamber Model = StormTrap ST2 SingleTrap 2-6 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf


2 Chambers/Row x 15.40' Long = 30.79' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 48.10' Base Length 1 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 25.79' Base Width 15.0" Stone Base + 36.0" Chamber Height = 4.25' Field Height

2 Chambers x 289.8 cf + 1,497.8 cf Border = 2,077.4 cf Chamber Storage 2 Chambers x 391.6 cf + 2,100.0 cf Border = 2,883.3 cf Displacement

5,272.9 cf Field - 2,883.3 cf Chambers = 2,389.6 cf Stone x 40.0% Voids = 955.8 cf Stone Storage

Chamber Storage + Stone Storage = 3,033.3 cf = 0.070 af Overall Storage Efficiency = 57.5%Overall System Size = $48.10' \times 25.79' \times 4.25'$

2 Chambers (plus border) 195.3 cy Field 88.5 cy Stone

Pond 1P: Storm Trap

Summary for Pond 2P: Storm Trap

Inflow Area =	40,750 sf,100.00% Impervious,	Inflow Depth = 6.54" for 50-Year event
Inflow =	5.78 cfs @ 12.09 hrs, Volume=	22,211 cf
Outflow =	1.76 cfs @ 12.42 hrs, Volume=	22,211 cf, Atten= 70%, Lag= 19.9 min
Discarded =	0.14 cfs @ 7.70 hrs, Volume=	14,335 cf
Primary =	1.62 cfs @ 12.42 hrs, Volume=	7,875 cf
Routed to Pond	d 207P : DMH-207	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 396.46' @ 12.42 hrs Surf.Area= 6,005 sf Storage= 8,969 cf

Plug-Flow detention time= 264.2 min calculated for 22,180 cf (100% of inflow) Center-of-Mass det. time= 264.6 min (1,008.0 - 743.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	394.00'	3,863 cf	42.75'W x 140.48'L x 4.25'H Field A
			25,523 cf Overall - 15,866 cf Embedded = 9,658 cf x 40.0% Voids
#2A	395.25'	11,568 cf	StormTrap ST2 SingleTrap 2-6 x 24 Inside #1
			Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf
			Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf
			24 Chambers in 3 Rows
			25.44' x 123.17' Core + 6.66' Border = 38.75' x 136.48' System
		15,431 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Primary	395.75'	12.0" Round Culvert
		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 395.75' / 395.65' S= 0.0100 '/' Cc= 0.900
		n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
Discarded	394.00'	1.000 in/hr Exfiltration over Surface area
Primary	395.95'	6.0" Round Culvert
		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 395.95' / 395.85' S= 0.0100 '/' Cc= 0.900
		n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf
	Primary Discarded	Primary 395.75' Discarded 394.00'

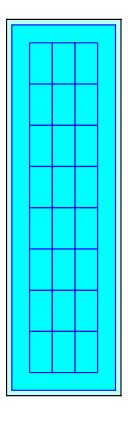
Discarded OutFlow Max=0.14 cfs @ 7.70 hrs HW=394.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.14 cfs)

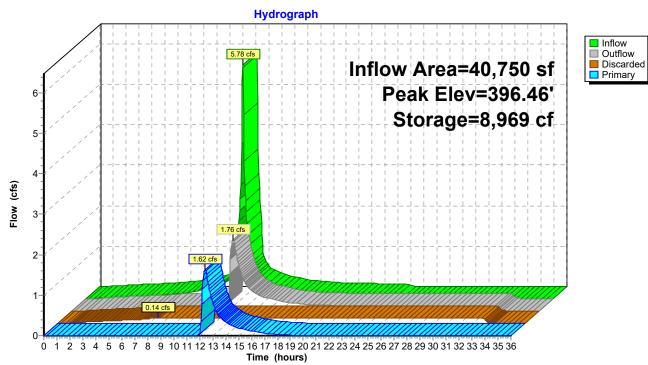
Primary OutFlow Max=1.62 cfs @ 12.42 hrs HW=396.46' (Free Discharge) -1=Culvert (Barrel Controls 1.23 cfs @ 2.88 fps) -3=Culvert (Inlet Controls 0.38 cfs @ 1.95 fps)

Pond 2P: Storm Trap - Chamber Wizard Field A

Chamber Model = StormTrap ST2 SingleTrap 2-6 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 30.0"H => 18.82 sf x 15.40'L = 289.8 cf Outside= 101.7"W x 36.0"H => 25.44 sf x 15.40'L = 391.6 cf


8 Chambers/Row x 15.40' Long = 123.17' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 140.48' Base Length 3 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 42.75' Base Width 15.0" Stone Base + 36.0" Chamber Height = 4.25' Field Height


24 Chambers x 289.8 cf + 4,612.1 cf Border = 11,567.5 cf Chamber Storage 24 Chambers x 391.6 cf + 6,466.5 cf Border = 15,865.7 cf Displacement

25,523.3 cf Field - 15,865.7 cf Chambers = 9,657.6 cf Stone x 40.0% Voids = 3,863.0 cf Stone Storage

Chamber Storage + Stone Storage = 15,430.6 cf = 0.354 af Overall Storage Efficiency = 60.5% Overall System Size = 140.48' x 42.75' x 4.25'

24 Chambers (plus border) 945.3 cy Field 357.7 cy Stone

Pond 2P: Storm Trap

Summary for Pond 3P: Storm Trap

Inflow Are	a =	14,500 sf,100.00	% Impervious, Inflow Depth = 6.62" for 50-Year event
Inflow	=	2.19 cfs @ 12.09 l	hrs, Volume= 8,000 cf
Outflow	=	0.99 cfs @ 12.27 l	hrs, Volume= 7,381 cf, Atten= 55%, Lag= 11.0 min
Discarded	=	0.04 cfs @ 6.75 l	hrs, Volume= 4,429 cf
Primary	=	0.15 cfs @ 12.27 l	hrs, Volume= 147 cf
Routed	l to Pond	105P : DMH-105	
Secondary	y =	0.80 cfs @ 12.27 l	hrs, Volume= 2,805 cf
Routed	l to Pond	1P : Storm Trap	
Routing by	y Stor-Inc	I method, Time Spa	n= 0.00-36.00 hrs, dt= 0.05 hrs
Peak Elev	= 396.37	'@ 12.27 hrs Surf.	Area= 1,638 sf Storage= 3,208 cf
Flood Elev	/= 396.48	3' Surf.Area= 1,638	sf Storage= 3,342 cf
			alculated for 7,381 cf (92% of inflow)
Center-of-	Mass de	t. time= 287.4 min (1,030.6 - 743.2)
Volume	Inve	rt Avail.Storage	Storage Description
#1A	393.25	5' 1,297 cf	25.79'W x 63.50'L x 4.75'H Field A
			7,779 cf Overall - 4,538 cf Embedded = 3,241 cf x 40.0% Voids
#2A	394.50)' 3,414 cf	StormTrap ST2 SingleTrap 3-0 x 3 Inside #1
			Inside= 101.7"W x 36.0"H => 22.99 sf x 15.40'L = 354.0 cf
			Outside= 101.7"W x 42.0"H => 29.68 sf x 15.40'L = 456.9 cf
			8.48' x 46.19' Core + 6.66' Border = 21.79' x 59.50' System

4,710 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	396.16'	12.0" Round Culvert
	-		L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 396.16' / 396.06' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Discarded	393.25'	1.000 in/hr Exfiltration over Surface area
#3	Secondary	395.75'	12.0" Round Culvert
			L= 5.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 395.75' / 395.75' S= 0.0000 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.04 cfs @ 6.75 hrs HW=393.30' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.04 cfs)

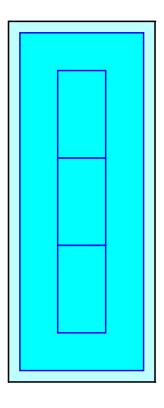
Primary OutFlow Max=0.15 cfs @ 12.27 hrs HW=396.37' (Free Discharge) **1=Culvert** (Barrel Controls 0.15 cfs @ 1.86 fps)

Secondary OutFlow Max=0.79 cfs @ 12.27 hrs HW=396.37' (Free Discharge) -3=Culvert (Barrel Controls 0.79 cfs @ 2.21 fps)

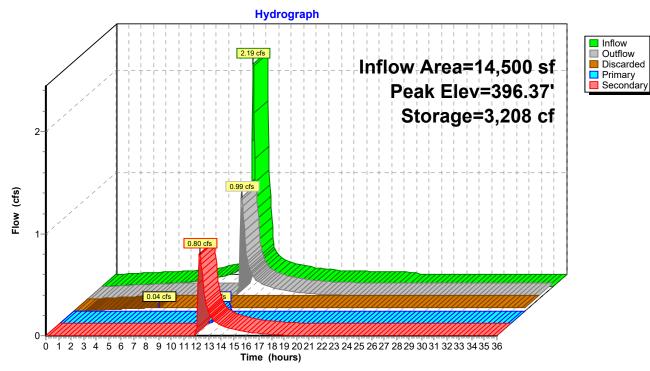
Pond 3P: Storm Trap - Chamber Wizard Field A

Chamber Model = StormTrap ST2 SingleTrap 3-0 (StormTrap ST2 SingleTrap®Type II+IV)

Inside= 101.7"W x 36.0"H => 22.99 sf x 15.40'L = 354.0 cf Outside= 101.7"W x 42.0"H => 29.68 sf x 15.40'L = 456.9 cf


3 Chambers/Row x 15.40' Long = 46.19' Row Length +79.9" Border x 2 +24.0" End Stone x 2 = 63.50' Base Length 1 Rows x 101.7" Wide + 79.9" Side Border x 2 + 24.0" Side Stone x 2 = 25.79' Base Width 15.0" Stone Base + 42.0" Chamber Height = 4.75' Field Height

3 Chambers x 354.0 cf + 2,351.9 cf Border = 3,413.9 cf Chamber Storage 3 Chambers x 456.9 cf + 3,167.4 cf Border = 4,538.1 cf Displacement


7,779.4 cf Field - 4,538.1 cf Chambers = 3,241.3 cf Stone x 40.0% Voids = 1,296.5 cf Stone Storage

Chamber Storage + Stone Storage = 4,710.4 cf = 0.108 afOverall Storage Efficiency = 60.5%Overall System Size = $63.50' \times 25.79' \times 4.75'$

3 Chambers (plus border) 288.1 cy Field 120.0 cy Stone

Pond 3P: Storm Trap

SECTION 5.0

ADDITIONAL DRAINAGE CALCULATIONS

5.01 TOTAL SUSPENDED SOLIDS REMOVAL (TSS)

5.02 PIPE OUTLET PROTECTION CALCULATION

5.01 TOTAL SUSPENDED SOLIDS REMOVAL (TSS)

TSS Removal Calculation Worksheet Location: 160 Old Turnpike Road, Nottingham, NH

Project: 1-3602.01

AREA 1 - Subcatchment 1A Total Impervious Area, Acres= 0.333 А В С D Е **TSS Removal** Starting TSS Remaining Load Amount BMP Load* Removed (BxC) (C-D) Rate DMH w/Deep Sump & 0.15 1.00 0.15 0.85 Hood **Oil/Particle Separator** 0.85 0.85 Stormtrap Infiltration Basin 0.9 0.85 0.77 0.09 TSS Removal = 0.92 AREA 2 - Subcatchment 1B Total Impervious Area, Acres= 0.344 В С D Ε A **TSS Removal** Starting TSS Amount Remaining Load BMP (C-D) Rate Load* Removed (BxC) DMH w/Deep Sump & Hood 0.15 1.00 0.15 0.85 Oil/Particle Separator 0.85 0.85 0.9 0.85 Stormtrap Infiltration Basin 0.77 0.09

AREA 3 - Subcatchment 1	E													
Total Impervious Area, Acres= 0.333														
A	В	С	D	E										
	TSS Removal	Starting TSS	Amount	Remaining Load										
BMP	Rate	Load*	Removed (BxC)	(C-D)										
DMH w/Deep Sump &														
Hood	0.15	1.00	0.15	0.85										
Oil/Particle Separator		0.85		0.85										
Stormtrap Infiltration Basin	0.9	0.85	0.77	0.09										

TSS Removal =

0.92

Weighted Annual Average TSS Removal Rate

[TSS Removal-1 (Area-1) + TSS Revoval-2 (Area-2)+] / [Area-1 + Area-2 + ...] = 0.92

> Project Site TSS Removal = 0.92

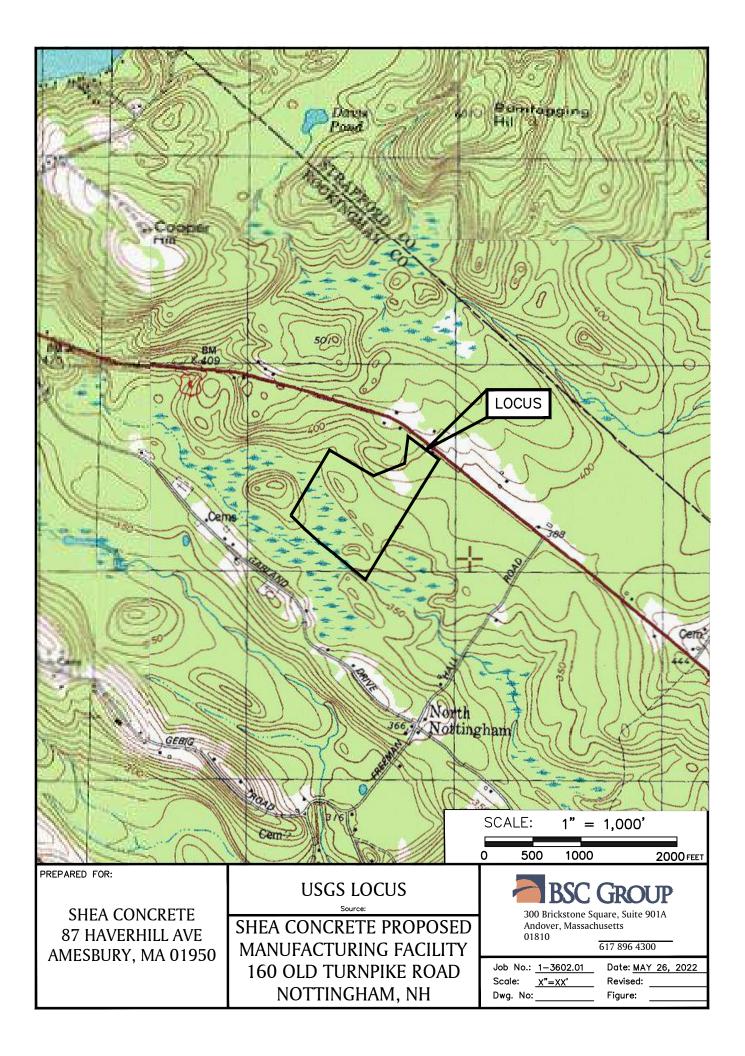
TSS Removal = 0.92

5.02 PIPE OUTLET PROTECTION CALCULATIONS

OUTLET PROTECTION SIZING

1.3602.01 Outlet Protection S Shea Concrete, No	0		- -				Calc E Da Checked I Da	ite by		J. White 5/31/2022
Q=Design Discharge, (ft	t^3/s)		=	1.98	cfs					
D=Culvert Diameter, (ft)			=	1.00	ft					
TW=Tailwater Depth, (ft	t)		=	0.4	ft, (0.4xD	for unknow tailwater, c	or enter known ta	ailwater)		
					(Tailwate	r depth is to be limited t	to between 0.4D	and 1.0	D)	
Riprap Rock Sizing										
D50=	0.2D	$\left[\frac{Q}{\sqrt{g}D^{2.5}}\right]^4$	/3 <u>D</u> TW			n rock size, ft				
D50=		1.98 5.67	(4/3)	1.00 0.40	=	0.12 ft				
					=	1 inches				
	Table 1 : R			n Dimensions	5					
	Class	D50 (in)	Apron Length	Apron Depth						
	1	5	4D	3.5D50						
	2	6	4D	3.5D50	Use C	lass 2				
	3	10	5D	3.3D50						
	4	14	6D	2.2D50						
	5	20	7D	2.0D50						
	6	22	8D	2.0D50						
Apron Dimensions						Riprap Rock Sizing Gr				л
Length, L=4D	=	4	ft			than Given Size		Stone, i	nches	
Depth= <mark>3.5</mark> D50	=	5.16	Inches			100	2	to	3	
Width=3D+(2/3)L	=	5.67	ft	(at apron er	nd)	85	2	to	3	
						50	1	to	2	
						15	2	to	1	

OUTLET PROTECTION SIZING


No. 1	1.3602.01 Outlet Protection Si Shea Concrete, No	0		-					J. White 5/31/2022		
	Q=Design Discharge, (ft	^3/s)		=	2.12	cfs					
	D=Culvert Diameter, (ft)			=	1.00	ft					
	TW=Tailwater Depth, (ft))		=	0.4	ft, (0.4xD) for unknow tailwater,	or enter known ta	ailwater)		
	Riprap Rock Sizing					(Tailwate	er depth is to be limited	to between 0.4D	and 1.0	D)	
	D50=	0.2D	$\left[\frac{Q}{\sqrt{g}D^{2.5}}\right]^4$	/3 <u>D</u> TW	g⁼ D50	=32.2 fps = media	n rock size, ft				
	D50=	0.2	2.12 5.67	(4/3)	1.00 0.40	=	0.13 ft				
						=	2 inches				
	-	Table 1 : R	iprap Classes		n Dimensions	6					
		Class	D50 (in)	Apron Length	Apron Depth						
	-	1	5	4D	3.5D50						
	•	2	6	4D 4D	3.5D50		lass 2				
		3	10	4D 5D	3.3D50	Use C	1055 2				
	•	4	14	6D	2.2D50						
		5	20	7D	2.2D30						
		6	20	8D	2.0D50						
	Apron Dimensions			•	•		Riprap Rock Sizing G	radation			
	, prest Dimensional						% of Weight Smalle				コ
	Length, L=4D	=	4	ft			than Given Size		Stone, ir	nches	
	Depth=3.5D50	=		Inches			100	2	to	3	1
	Width=3D+(2/3)L	=	5.67	ft	(at apron er	nd)	85	2	to	3	
							50	2	to	2	
	1						15	2	to	1	

APPENDICES

USGS LOCUS MAP

EXTREME PRECIPITATION TABLES

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	71.107 degrees West
Latitude	43.178 degrees North
Elevation	0 feet
Date/Time	Thu, 26 May 2022 08:22:14 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.49	0.65	0.81	1.02	1yr	0.70	0.98	1.19	1.52	1.95	2.52	2.76	1yr	2.23	2.66	3.07	3.78	4.36	1yr
2yr	0.32	0.49	0.61	0.80	1.01	1.28	2yr	0.87	1.16	1.48	1.88	2.38	3.02	3.36	2yr	2.67	3.23	3.74	4.45	5.08	2yr
5yr	0.37	0.57	0.72	0.97	1.23	1.58	5yr	1.07	1.44	1.85	2.35	2.99	3.81	4.30	5yr	3.37	4.13	4.75	5.61	6.34	5yr
10yr	0.41	0.64	0.81	1.10	1.44	1.86	10yr	1.24	1.70	2.18	2.80	3.57	4.55	5.17	10yr	4.02	4.97	5.69	6.68	7.51	10yr
25yr	0.47	0.75	0.96	1.32	1.76	2.30	25yr	1.52	2.10	2.72	3.50	4.50	5.75	6.61	25yr	5.09	6.36	7.24	8.43	9.40	25yr
50yr	0.53	0.85	1.09	1.53	2.06	2.72	50yr	1.78	2.48	3.22	4.17	5.37	6.86	7.97	50yr	6.07	7.67	8.70	10.05	11.15	50yr
100yr	0.59	0.96	1.24	1.76	2.40	3.21	100yr	2.07	2.92	3.83	4.97	6.41	8.20	9.61	100yr	7.26	9.24	10.44	11.99	13.23	100yr
200yr	0.67	1.10	1.42	2.04	2.81	3.79	200yr	2.43	3.45	4.52	5.91	7.63	9.80	11.59	200yr	8.67	11.15	12.54	14.31	15.70	200yr
500yr	0.80	1.31	1.71	2.48	3.47	4.71	500yr	2.99	4.30	5.65	7.42	9.64	12.42	14.86	500yr	10.99	14.29	15.99	18.11	19.72	500yr

Lower Confidence Limits

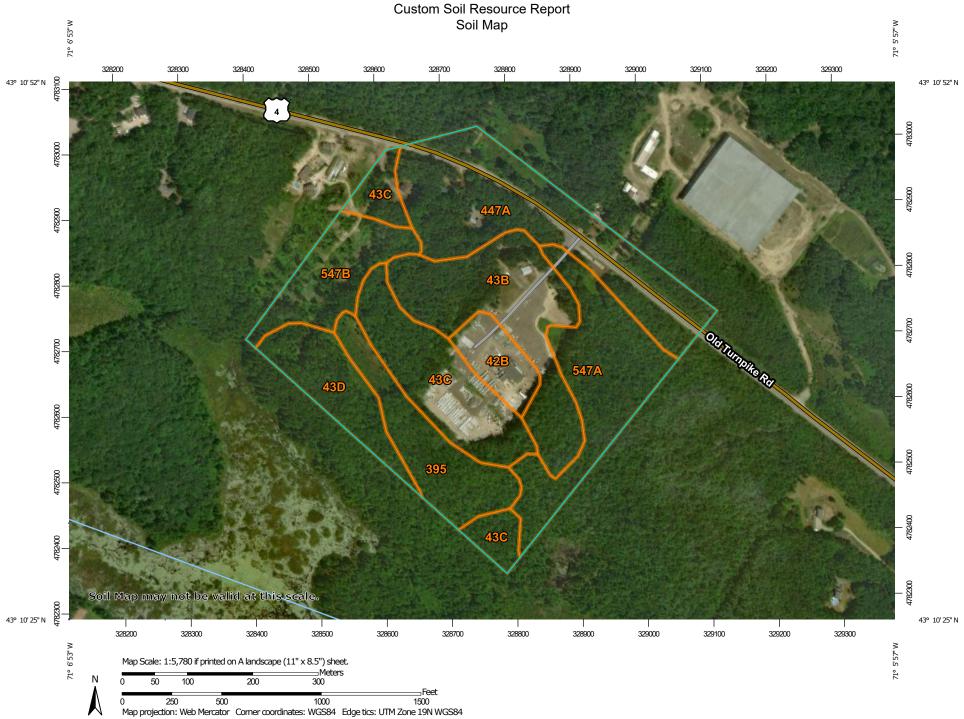
	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.43	0.58	0.72	0.89	1yr	0.62	0.87	0.95	1.27	1.53	2.00	2.47	1yr	1.77	2.38	2.82	3.37	3.76	1yr
2yr	0.31	0.48	0.59	0.80	0.99	1.17	2yr	0.86	1.15	1.35	1.80	2.31	2.91	3.22	2yr	2.58	3.10	3.59	4.34	4.95	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.60	2.11	2.73	3.42	3.82	5yr	3.03	3.68	4.25	5.26	5.75	5yr
10yr	0.39	0.59	0.73	1.03	1.33	1.59	10yr	1.14	1.56	1.80	2.40	3.08	3.85	4.33	10yr	3.41	4.16	4.83	6.08	6.42	10yr
25yr	0.44	0.68	0.84	1.20	1.58	1.90	25yr	1.36	1.86	2.11	2.79	3.60	4.46	5.08	25yr	3.95	4.89	5.71	7.38	8.21	25yr
50yr	0.49	0.75	0.93	1.34	1.80	2.17	50yr	1.55	2.12	2.37	3.14	4.05	4.96	5.70	50yr	4.39	5.48	6.47	8.53	9.46	50yr
100yr	0.55	0.83	1.04	1.51	2.07	2.49	100yr	1.78	2.43	2.68	3.53	4.54	5.51	6.39	100yr	4.88	6.14	7.36	9.87	10.85	100yr
200yr	0.61	0.93	1.17	1.70	2.37	2.84	200yr	2.04	2.78	3.01	3.96	5.10	6.08	8.75	200yr	5.38	8.41	8.36	11.42	12.46	200yr
500yr	0.72	1.07	1.38	2.01	2.85	3.42	500yr	2.46	3.34	3.53	4.61	5.97	6.88	10.61	500yr	6.09	10.21	9.90	13.87	14.92	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.44	0.53	0.72	0.88	1.07	1yr	0.76	1.05	1.23	1.69	2.14	2.77	3.17	1yr	2.45	3.04	3.45	4.07	4.81	1yr
2yr	0.33	0.50	0.62	0.84	1.04	1.24	2yr	0.90	1.22	1.45	1.91	2.45	3.20	3.56	2yr	2.83	3.42	3.94	4.58	5.22	2yr
5yr	0.40	0.61	0.76	1.04	1.32	1.57	5yr	1.14	1.54	1.83	2.43	3.11	4.22	4.80	5yr	3.73	4.62	5.27	5.95	6.97	5yr
10yr	0.46	0.71	0.88	1.23	1.59	1.91	10yr	1.38	1.87	2.20	2.94	3.73	5.25	6.06	10yr	4.65	5.83	6.61	7.27	8.61	10yr
25yr	0.57	0.87	1.08	1.54	2.03	2.46	25yr	1.75	2.41	2.83	3.79	4.76	7.04	8.30	25yr	6.23	7.98	8.90	9.51	10.55	25yr
50yr	0.66	1.01	1.26	1.81	2.44	2.98	50yr	2.10	2.92	3.43	4.58	5.74	8.79	10.55	50yr	7.78	10.14	11.16	11.64	12.84	50yr
100yr	0.78	1.18	1.48	2.14	2.93	3.61	100yr	2.53	3.53	4.15	5.57	6.93	10.99	13.40	100yr	9.73	12.89	14.01	14.27	15.63	100yr
200yr	0.91	1.38	1.74	2.52	3.52	4.38	200yr	3.04	4.28	5.04	6.76	8.36	13.80	14.70	200yr	12.22	14.13	17.57	17.47	19.07	200yr
500yr	1.13	1.69	2.17	3.15	4.48	5.65	500yr	3.87	5.52	6.49	8.76	10.74	18.66	19.67	500yr	16.51	18.91	23.71	22.89	24.82	500yr

SOIL SURVEY MAP

United States Department of Agriculture


NIRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Rockingham County, New Hampshire

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP LEGEND			MAP INFORMATION	
	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.	
Soils	Soil Map Unit Polygons	۵	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.	
~	Soil Map Unit Lines	\$		Enlargement of maps beyond the scale of mapping can cause	
	Soil Map Unit Points	\triangle	Other	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of	
Special	Point Features	·**	Special Line Features	contrasting soils that could have been shown at a more detailed	
ల	Blowout	Water Fea	Streams and Canals	scale.	
	Borrow Pit	Transport		Please rely on the bar scale on each map sheet for map	
×	Clay Spot	++++	Rails	measurements.	
\diamond	Closed Depression	~	Interstate Highways		
X	Gravel Pit	~	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:	
0	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)	
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator	
٨.	Lava Flow	Backgrou	nd	projection, which preserves direction and shape but distorts	
علله	Marsh or swamp	(Aller	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more	
~	Mine or Quarry			accurate calculations of distance or area are required.	
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as	
0	Perennial Water			of the version date(s) listed below.	
~	Rock Outcrop			Soil Survey Area: Rockingham County, New Hampshire	
+	Saline Spot			Survey Area Data: Version 24, Aug 31, 2021	
0.0	Sandy Spot			Soil map units are labeled (as space allows) for map scales	
-	Severely Eroded Spot			1:50,000 or larger.	
٥	Sinkhole			Date(s) aerial images were photographed: Aug 28, 2015—May	
»	Slide or Slip			15, 2017	
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	

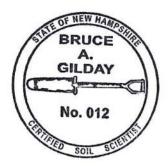
Мар	Unit	Legend
-----	------	--------

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
42B	Canton fine sandy loam, 3 to 8 percent slopes	2.8	4.2%
43B	Canton fine sandy loam, 0 to 8 percent slopes, very stony	10.8	16.5%
43C	Canton fine sandy loam, 8 to 15 percent slopes, very stony	10.9	16.7%
43D	Canton fine sandy loam, 15 to 25 percent slopes, very stony	4.9	7.5%
395	Swansea mucky peat, 0 to 2 percent slopes	6.3	9.6%
447A	Scituate-Newfields complex, 0 to 3 percent slopes, very stony	14.4	22.1%
547A	Walpole very fine sandy loam, 0 to 3 percent slopes, very stony	9.8	15.1%
547B	Walpole very fine sandy loam, 3 to 8 percent slopes, very stony	5.4	8.3%
Totals for Area of Interest		65.3	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

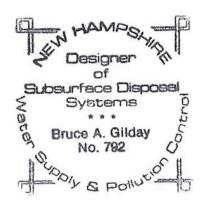

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They

SOIL EVALUATOR FORMS

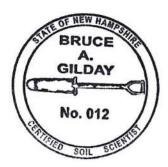
DATE:	04/07/22
JOB NO:	3353
INVESTIGATOR	BAGilday

PROJECT SITE: Route 4, Nottingham NH

APPLICANT / OWNER: Shea Concrete Products


TP# <u>#1</u>

HOR.	DEPTH	MATRIX COLOR	TEXTURE	STRUCTURE	CONSISTENCY
A	0-8"	10YR 2/2	FSL	1.FGR	VFR
Bw_1	8-20"	7.5YR 6/6	FSL	1.FGR	VFR
Bw ₂	20-36"	2.5YR 6/4	FSL	2.FGR	FR
С	36-80"	10YR 6/4	FSL	MASSIVE	FR


MOTTLE REMARKS: E.S.H.W.T. = 64" // Est. Perc Rate = 4 min/in @ 32" Depth Redox (7.5YR 5/6) Observed @ 64" [Distinct & Common]

OTHER COMMENTS: No Water Observed @ 80" // Very Few Boulders Stones Observed @ 80" Glacial Till Parent Material // No Hardpan Observed @ 80"

43 Rockingham Street • Concord, New Hampshire 03301 • 603/228-5775

DATE:	04/07/22
JOB NO:	3353
INVESTIGATOR	BAGilday

PROJECT SITE:

Route 4, Nottingham NH

APPLICANT / OWNER: Shea Concrete Products

TP# <u>#2</u>

DEPTH	MATRIX COLOR	TEXTURE	STRUCTURE	CONSISTENCY
0-5"	10YR 2/2	FSL	1.FGR	VFR
5-15"	7.5YR 6/6	FSL	1FGr	VFR
15-30"	10YR 6/4	FSL	2FGR	FR
30-82"	2.5Y6/4	FSL	MASSIVE	FR
	0-5" 5-15" 15-30"	0-5"10YR 2/25-15"7.5YR 6/615-30"10YR 6/4	0-5"10YR 2/2FSL5-15"7.5YR 6/6FSL15-30"10YR 6/4FSL	0-5" 10YR 2/2 FSL 1.FGR 5-15" 7.5YR 6/6 FSL 1FGr 15-30" 10YR 6/4 FSL 2FGR

MOTTLE REMARKS:

E.S.H.W.T. = 60"

Redox (7.5YR 5/6) Observed @ 60" [Distinct & Common]

OTHER COMMENTS: No Water Observed @ 82" // No Boulders & Few Stones Observed @ 82" Glacial Till Parent Material // No Hardpan Observed @ 82"

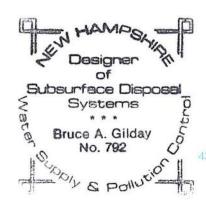
DATE:	04/07/22
JOB NO:	3353
INVESTIGATOR	BAGilday

PROJECT SITE: Route 4, Nottingham NH

APPLICANT / OWNER: Shea Concrete Products

TP# <u>#3</u>

HOR.	DEPTH	MATRIX COLOR	TEXTURE	STRUCTURE	CONSISTENCY
A	0-7"	10YR 2/2	FSL	1.FGR	VFR
B _{w1}	7-23"	7.5YR 6/6	FSL	1.FGR	FR
B _{w2}	23-35"	10YR 5/6	FSL	2.FGR	FR
С	35-78"	2.5Y 6/4	FSL	MASSIVE	FR


MOTTLE REMARKS:

E.S.H.W.T. = 46"

Redox (7.5YR 5/6) Observed @ 46" [Distinct & Common]

OTHER COMMENTS:

No Water Observed @ 78" // No Boulders & Few Stones Observed @ 78" Glacial Till Parent Material // No Hardpan Observed @ 78"

43 Rockingham Street • Concord, New Hampshire 03301 • 603/228-5775

D	ATE:	04/07/22
JOB	NO:	3353
INVESTIGA	TOR	BAGilday

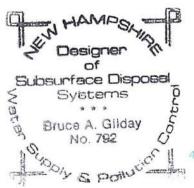
PROJECT SITE:

Route 4, Nottingham NH

APPLICANT / OWNER: Shea Concrete Products

TP# <u>#4</u>

HOR.	DEPTH	MATRIX COLOR	TEXTURE	STRUCTURE	CONSISTENCY
A	0-5"	10YR 2/2	FSL	1.FGR	VFR
$\mathbf{B}_{\mathbf{w}^1}$	5-28"	7.5YR 6/6	FSL	2.FGR	FR
B _{w²}	28-36"	2.5Y 6/4	FSL	SUB	FR
С	36-66"	2.5Y 5/3	FSL	PLATY	FIRM


MOTTLE REMARKS:

E.S.H.W.T. = 36"

Redox (7.5YR 5/6) Observed @ 36"

OTHER COMMENTS:

Water Observed @ 38" // Few Boulder & Stones observed @ 36" Glacial Till Parent Material // Hardpan Observed @ 42"

43 Rockingham Street • Concord, New Hampshire 03301 • 603/228-5775

LAND INSULTANTS

Bru, : A Gilday In Bockingham Street + For cord, New Hampshire 03301 Phoneel <1: 19(228-5775 Dadig in cucreculation www.mag--ak.msellands.com

DATE:	5-23-22
JOB NO:	
INVESTIGATOR	BAGilday

n.e. Lot:

PROJECT SITE:

NH REE 4 - Nothigham, NH Shea Conente APPLICANT / OWNER:

TP#

HOR.	DEPTH	MATRIX COL R	TEXTURE	STRUCTURE	CONSISTENCY
A	0-9"	1048. 2/7.	FSL	1.fgr	V.FR
Bu,	9-17"	10/e 54	FSL	1 fge	V.R
Buz	17-29 "	104R.96	FCL	Zfqe.	FR
C	29 = 96"	1042 6/4	FSL	MASSIVE	FR
	nan kan yaka na kana kana kana kana kana	Anna an ann an Anna ann an Anna an Ann Anna an Anna an Anna an Anna an			

11 11 E.S.H.W.T. **MOTTLE REMARKS:** " [Distinct & Common] Redox Observed (2) Few Few Boulders & Stones observed @ OTHER COMMENTS: Water Obs wen Glacial Till Paren Material // No Hardpan Observed (

LAND INSULTANTS

Bru, s A. Gilday 20 Rockingteem Street - Jan bord, New Hampshire 03301 Phone: I vis 92/28-5775 bagilin withomcast.net www.thag--dc.onsultance.com

NH FOR 4 ; Nottingham, NHI Sher Concrete

DATE: JOB NO: BAGilday INVESTIGATOR

Lot

PROJECT SITE:

APPLICANT / OWNER:

TP#

HOR.	DEPTH	MATRIX COL R	TEXTURE	STRUCTURE	CONSISTENCY
A	0-6"	10yr3/2	FS4	1.90	YFR
BI	6-18"	10/R 5/4	FSL.	1 Fax	VFR
Br	19-28"	1012 44	FTL	Zfgr	FR
C	28-99	100 43	FSL	MARSIL	ER
	and the second	Andreas Bourborgerung (n. 1999) 1 1 1 1 1 1			•
				1	
			allauerananyare yereletitisisisisi		

11 E.S.H.W.T. = 56 **MOTTLE REMARKS:** 11 Redox (Observed @ " Distinct & Common 11 Fews // Boulders & Stones observed @ **OTHER COMMENTS:** Water Observed Glacial (Till)Paret Material // No Hardpan Observed

LAND CINSULTANTS

Bruc & A. Gilday IS Reclangram Street - Son cont. New Hampshire 03301 phoned - 2.6 (2028-5775 ponjac - an immusitient www.page-schonsolitents.com

DATE: JOB NO: BAGilday INVESTIGATOR

Lot:

Ting ham, NH

PROJECT SITE:

APPLICANT / OWNER:

5

NHR

TP#

HOR.	DEPTH	MATRIX COL R	TEXTURE	STRUCTURE	CONSISTENCY
A	0.6	104R 2/2	FSL .	1 fage	VFE
Bur	6-14	10/R5/4	FSL	Zfaz	FR
Buz	14-78"	104R:46	FSL	262	FR
C	28-86"	104R 6/3	FSL	MASTINE	FR
	antennin ant	for an and the second		an a	•
	and de la fait de la fait de la fait de la fait de la seu avant de la fait de la fait de la fait de la fait de				
			an a		

11 E.S.H.W.T. = (02 AOTTLE REMARKS: Redox () Observed (2) Distinct & Common] M **OTHER COMMENTS:** Water Observed Bandards & Stones observed @ Glacial Till)Paren Material ///Nothardpan Observed @

BAG

LAND CINSULTANTS

Bruc FA, Gilday 13 Rockmannin Street - Joncord, New Hampshire 03301 Fricine F x 604/228-5775 Done F #Comcast.net www.tstv - doorsultants.com

5-73-22 DATE: JOB NO: INVESTIGATOR BAGilday

PROJECT SITE:

APPLICANT / OWNER:

NH RTE 4; Nothughny, NH sher

Lot:

TP#

HOR. DEPTH MATRIX COL OR STRUCTURE CONSISTENCY TEXTURE

1t **MOTTLE REMARKS:** E.S.H.W.T. = Redox () Observed @ " Distinct & Common] iit. OTHER COMMENTS: '11 Water Observed @ W Bouldens & Stones observed @ Yn W Glacial Till)Paren Material // No Hardpan Observed

LAND - NSULTANTS

Bru, 14 Gilday 21 Bootsnamam Street + Son pord, New Hampshire 03301 reponded a (. 192228-5775 Darido - an Dirichist not wave trug- all prisolitants com

5-12-22 DATE JOB NO: BAGilday INVESTIGATOR

Lot:

PROJEC

Jottning ham, NH NH APPLICANT / OWNER:

TP#

HOR.	DEPTH	MATRIX COL R	TEXTURE	STRUCTURE	CONSISTENCY
A	0-5"	18yeth	FSL	1.FGR	VFR
Bur	.5-14"	10 yr 4/4	FSL	1.FGR	YFR
Buz	H - 25"	1041856	FSL	Z.FGR	FR
C	8-92"	10/12/6/4	FSL	MABIVE	FR
	and the second				

11 **MOTTLE REMARKS:** E.S.H.W.T. " [Distinct & Common] Redox) Observed (a) FCW OTHER COMMENTS: Water Observed Glacial Till Paren Material // No Hardpan Observed @ 9 4

I AND I INSULTANTS

End 13 A. Gilday 40 Rectanotem Street - Second New Compshire 03301 Product - CO3/228-577) Daglic - Reconcustment www.bdg--docesultents.com

DATE: 5-73-77 JOB NO: INVESTIGATOR BAGilday

PROJECT STTE:

te NUT

Lot:

APPLICANT / OWNER:

0

TP#

HOR.	DEPTH	MATRIX COL	TE XTURE	STRUCTURE	CONSISTENCY
A	0-5"	104R 72	FSL'	1.fal	VER
Bu,	. 5-17"	104R 5/4	FSL	1 fgr	V.TR
BWZ	17-36"	104R.5/6	FSL	Ztar	FR
C	36-84"	10ye 93	FSZ	MABLE	FR
-	and the state of the				r. f
	ning an and a start of the		and a supervised of the superv		

AOTTLE REMARKS: E.S.H.W.T. = Redox Observed @ Distinct & Common 06 **OTHER COMMENTS** // Bouiders & Stones observed @ Water Observed Glacial Till)Parer Material // No Hardpan Observed