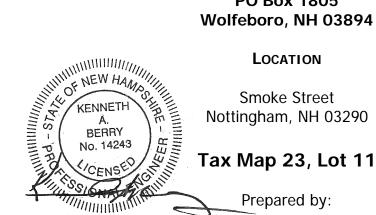
DRAINAGE ANALYSIS & **EROSION & SEDIMENT CONTROL PLAN**


Prepared for:

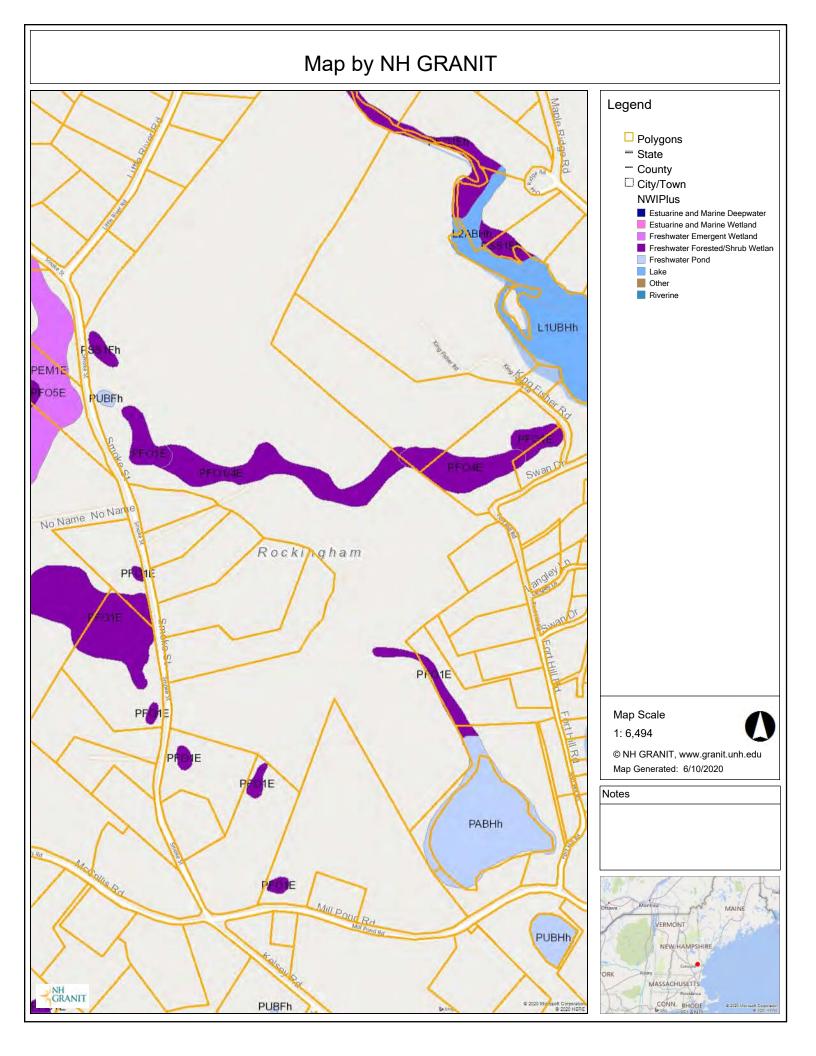
Owl Ridge Builders 104 Raymond Road Nottingham, NH 03290

Land of:

Frederick Fernald PO Box 1805 Wolfeboro, NH 03894

LOCATION

Berry Surveying & Engineering 335 Second Crown Point Road Barrington, NH 03825


> Project Number: DB 2020-065

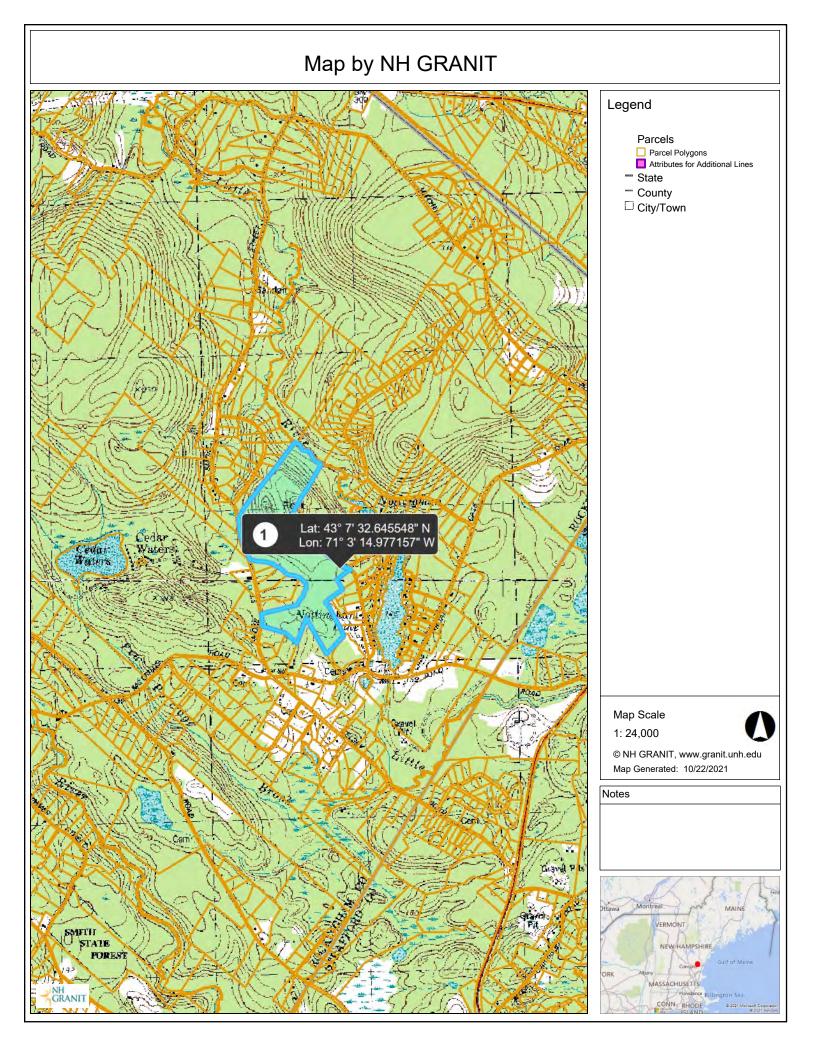

February 15, 2023 Revised: December 11, 2023

Table of Contents

	angle Location Map od Objectives	Page 2
1.0	Existing Conditions Analysis	Page 2
2.0	Proposed Subdivision Analysis	Page 5
3.1	Treatment	Page 9
3.2	Infiltration (See also Infiltration Feasibility Study)	Page 9
3.3	Full Comparative Analysis	Page 9
3.4	Swale Capacity Analysis	Page 11
4.0	Erosion and Sediment Control, BMP's	
5.0	Conclusion	Page 17
	 Appendix I - Existing Conditions Analysis 2 Yr- 24 Hr Node Listing 10 Yr -24 Hr. Node Listing 25 Yr-24 Hr. Node Listing 50 Yr-24 Hr. Node Listing 100 Yr-24 Hr. Node Listing 25 Yr-24 Hr. Node Listing 25 Yr-24 Hr. Full Summary Appendix II - Proposed Conditions Analysis 2 Yr-24 Hr. Node Listing 10 Yr-24 Hr. Node Listing 10 Yr-24 Hr. Node Listing 25 Yr-24 HR. Node Listing 50 Yr-24 Hr. Swale Capacity Analysis 	
	Appendix III - Calculations, Charts, & Graphs Extreme Precipitation Tables Rip Rap Calculations AoT Stormwater Treatment Spreadsheets NCRS USDA Web-soil Map Site Specific Soil Survey Report & Map Inspection and Maintenance Manual Stormwater System Manag Watershed Report Card, 303(d) List, & ORW List	

Enclosed:	W-1 Sheet	Existing Conditions Watershed Plan	Sheets 1-11
	W-2 Sheet	Post Construction Watershed Plan	Sheets 12-22
	Erosion & Sedimen	t Control Plan	

DESIGN METHOD OBJECTIVES

The applicant of Tax Map 23, Lot 11, Owl Ridge Builders, is proposing to develop the property on Smoke Street. The site is currently wooded vacant land.

An Existing and Proposed Conditions analysis was conducted for the purpose of estimating the peak rate of stormwater run-off and to subsequently design adequate mitigation of drainage. There are nine existing drainage discharge points which were identified in the existing conditions analysis and duplicated in the proposed conditions Designing two watershed models we have compared the differences in these analysis. rates of peak run-off and surface water volume. Sheet W1: Existing Conditions Watershed Plan Overview, and the 10 detail layouts, outlines the characteristics of the site in its existing or pre-construction conditions. The second analysis displays the proposed (post-construction) conditions (See Sheet W2 and its 10 detail layouts). The analysis was conducted using data for; 2 Yr-24 Hr (3.06"), 10 Yr-24 Hr (4.63"), 25 Yr-24 Hr (5.86"), 50 Yr-24 Hr (7.01"), and 100 Yr-24 Hr (8.39") storm events. Storm event analysis was accomplished using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment. Rainfall guantities are based on the Extreme Precipitation Table for this location from the Northeast Regional Climate Center / Cornell University (<u>http://precip.eas.cornell.edu</u>).

1.0 Existing Conditions Analysis:

Reference: W1 - Existing Conditions Watershed Overview Plan (Enclosed) W1 - Existing conditions Watershed Detail Layouts Existing Conditions Plan

The existing parcel is currently vacant land, The soils within the development area are made up of multiple soil types, containing Hydrologic Soil Group (HSG) A, B, C & D. See Site Specific Soils Map and report for more information. The land cover types involved are grassed land, woods, roofs, and road pavement.

Wetland Investigation: The project site was reviewed for Wetlands by John P. Hayes III, CSS, CWS based on the following standards. 1. Regional supplement to the Corps of Engineers Wetland Delineation Manual, Northcentral and Northeast Region, (Version 2.0) dated January 2012, by U.S. Army Corps of Engineers 2. Field Indicators of Hydric Soils in the United States, A Guide For Identifying and Delineating Hydric Soils, Version 8.0 United States Department of Agriculture dated in 2016. 3. National Wetland Plant List (Current Version). Delineation was field located during the spring and summer of 2021 and demonstrated on the Existing Conditions Plan and Existing Watershed Plans.

Soil Investigation: The soils were analyzed by John P. Hayes III, CSS and his report is included with this narrative. Dated November 29, 2022 and amended December 5, 2022. The Site Specific Soil Survey (S.S.S.S.) was conducted in accordance with the New Hampshire Supplement of the Site-Specific Soil Mapping Standard for New

Hampshire and Vermont, Special Publication #3, Version 7.0 dated July 2021 published by the Society of Soil Scientist of Northern New England. Site-Specific Soil Map Units identified are taken from the New Hampshire State-Wide Numerical Soils Legend, Issue #10, Dated January 2011. The Hydrological Soil Groups for each of the soil series was determined using SSSNNE Publication No. 5, Ksat Values for New Hampshire soils, dated September 2009. Erodibility (K) values were determined by BS&E based on the EnviroCert International Inc. CPESC Manual and other USDA / NRCS Public documents and Websoil. Ninety-four test pits were conducted by the Soil Scientist and located by a survey field crew utilizing conventional and RTK / GPS survey methodology oriented to the boundary survey traverse. The analyzed watershed area consists of 106.70 acres, of which 102.77 acres make up the locus parcel. The parcel has been divided into 10 subcatchments which drain to nine separate final reaches at different points surrounding the parcel. All of the runoff drains to the Little River generally to the east.

<u>Receiving Waters and Impairments</u>: The Little River (NHRIV600030707-03) watershed will receive all of the runoff from the site either directly or indirectly. The impairment of the watershed are as follows:

Mercury, NE Regional Mercury TMDL, December 20, 2008, TMDL #33883 pH, Low Priority, Non-ORW.

Existing Vegetation: The property is a mix of Pine & Deciduous Forest.

Drainage Analysis: Ten subcatchments discharging to nine final analysis points:

Final Reach #100

Subcatchment #10 consists of a small portion of the southwestern edge of the parcel as well as a small portion of offsite land along Smoke Street. Runoff flows offsite to a nonpoint area (analyzed as **Final Reach #100**) and subsequently northerly along Smoke Street.

Final Reach #200

Subcatchment #1 is land area in the western corner of the property and extends up the northwestern property line toward Little River. Runoff in this subcatchment is captured by a delineated wetland (**Pond #1**) which drains in the direction of **Subcatchment #2**. Runoff from **Subcatchment #1** flows through **Subcatchment #2** via an overland reach (**Reach #1**) directed to **Final Reach #200**.

Subcatchment #2 makes up a majority of the central portion of the locus parcel. Runoff flows eastward toward **Final Reach #200** which is analyzed as a non-point discharge at the property line on the eastern side of the parcel.

Final Reach #300

Subcatchment #3 consists of a portion of land surrounding a southeastern corner of the locus parcel, extending west to the opposite property line at one of the narrower areas on the property. Runoff flows east into a small wetland where it is directed to the property line which is being analyzed as a non-point discharge, **Final Reach #300**.

Final Reach #400

Subcatchment #4 consists of a portion of land toward the northern edge of the parcel. This subcatchment is divided from the northernmost subcatchment (**Subcatchment #5**) by a natural ridge line which directs runoff flow northwest before it reaches Little River. A portion of the northwestern property line is being analyzed as non-point discharge **Final Reach #400.**

Final Reach #500

Subcatchment #5 consists of the northernmost portion of land along Little River on the northern edge of the parcel. Runoff flows to the river and is being analyzed at **Final Reach #500** along the adjacent jurisdictional wetland to the river bank of the Little River.

Final Reach #600

Subcatchment #6 consists of a portion of land at the southernmost corner of the property. Runoff flows to the southwest property line, partially via a small wetland, and is being analyzed as non-point discharge at **Final Reach #600**.

Final Reach #700

Subcatchment #7 consists of a small portion of land at one of the southern corners of the parcel. Runoff flows south to the property corner; a non-point discharge being analyzed as **Final Reach #700**.

Final Reach #800

Subcatchment #8 consists of a portion of land near a southwestern edge of the parcel. Runoff flows northerly to the property line which is being analyzed as non-point discharge **Final Reach #800**.

Final Reach #900

Subcatchment #9 consists of a portion of land in the southern area of the parcel along Smoke Street. Runoff flows southwest to the southern property line which is analyzed as non-point discharge **Final Reach #900**.

2.0 Proposed Conditions Analysis:

Reference: Sheet W2 - Proposed Conditions Watershed Plan (Enclosed) Proposed Grading & Drainage Plan

The proposal for development includes 25 single family houses on 2 cul-de-sac roads consisting of a total of 2,740 feet of roadway. The proposal is supported by multiple practices including subsurface gravel wetlands, rain gardens, detention ponds, and infiltration ponds.

Final Reach #200

Subcatchment #1 is moderately reduced in size due to the construction of Peekaboo Drive and multiple houses off the street. Runoff in this subcatchment is still captured by a delineated wetland (**Pond #1**) which drains in the direction of **Subcatchment #2**. Runoff from **Subcatchment #1** flows through **Subcatchment #2** via a pair of 24-inch culverts under Peekaboo Drive and a series of overland reaches (**Reach #1 etc.**) directed to **Final Reach #200**.

Subcatchment #2 is reduced in size considerably, yet still makes up a majority of the central portion of the locus parcel. Runoff still flows eastward toward **Final Reach #200** which is analyzed as a non-point discharge at the property line on the eastern side of the parcel.

Subcatchment #33a is made up of a small portion of land along the north side of the mouth of Peekaboo Drive. Runoff is collected in a roadside swale, treatment swale (**Pond #33**) and directed toward **Final Reach #200** through a series of overland reaches. **Subcatchment #33b** is made up of a small portion of land over the treatment swale, which in turn is routed toward **Final Reach #200** through a series of overland reaches.

Subcatchment #24 is made up of the cul-de-sac of Peekaboo Drive, consisting of the roadway and the detention pond in the middle of the cul-de-sac (**Pond #104**). Runoff is collected in **Pond #104** and directed to **Pond #107** through an outlet structure and culvert.

Subcatchment #27 consists of a small portion of land adjacent to the cul-de-sac of Peekaboo including a single house and the related driveway. Runoff is collected in a small rain garden (**Pond #107**) and directed toward **Final Reach #200** through an outlet structure and a series of overland reaches.

Subcatchment #22 is made up of a majority of the land along the south side of Peekaboo Drive, encompassing portions of multiple houses as well as their driveways. Runoff flows to a gravel wetland (**Pond #102**) and directed toward **Pond #106** though an outlet structure and culvert.

Subcatchment #26 is made up of a portion of land adjacent to **Subcatchment #22** encompassing portions of multiple houses. Runoff flows to an infiltration pond (**Pond #106**) where it is infiltrated into the soil to fulfill the GRV requirement of the site development. Runoff is routed via a series of reaches (106aR, 106bR, 107bR) to the final analysis point.

Subcatchment #32 is an inlet sump (**32P**) connected to a roadside swale on the left side of Peekaboo Drive that collects a portion of Peekaboo Drive, but primarily residential homes, driveways, and yards. Runoff is routed to Gravel Wetland #102 (**102P**) and subsequently to Infiltration Basin #106 (**106P**) and series of reaches to the final analysis point.

Subcatchment #34 is an inlet sump (**34P**) connected to a roadside swale on the right side of Peekaboo Drive that collects a portion of Peekaboo Drive, but primarily residential homes, driveways, and yards. Runoff is routed to Gravel Wetland #102 (**102P**) and subsequently to Infiltration Basin #106 (**106P**) and series of reaches to the final analysis point.

Subcatchments #41, 42, 43, 44, are the areas of roadway that drain to catch basins on Peekaboo Drive (**C01P, C02P, C03P, C04P**, respectively). Runoff is routed to Gravel Wetland #102 (**102P**) and subsequently to Infiltration Basin #106 (**106P**) and series of reaches to the final analysis point.

Subcatchment #45, is the right side of Peekaboo Drive that drains to a rain guardian turret (C05P). Runoff is routed to the treatment swale forebay (**33P**) and subsequently through Treatment Swale (**33R**). Runoff is routed via a series of reaches (**33aR**, **33bR**, **22bR**, **106bR**, **107bR**) to the final analysis point.

Final Reach #300

Subcatchment #3 remains virtually unchanged with a small decrease in overall size due to the construction of the cul-de-sac of Frederick Lane. Runoff still flows to the property line which is being analyzed as a non-point discharge, **Final Reach #300**.

Subcatchment #31 is made up of a small portion of land along the south side of the bend in Frederick Lane leading into the cul-de-sac. Runoff is collected in a cross culvert (**Pond #31**) and directed toward **Pond #103** through a short overland reach (**Reach #31**).

Subcatchment #23 consists of a portion of land surrounding the cul-de-sac of Frederick Lane. Runoff is collected in a small rain garden (**Pond #103**) and directed toward **Final Reach #300** through an outlet structure and an overland reach (**Reach #103**).

Subcatchment #25 is made up of the cul-de-sac of Frederick Lane, consisting of the roadway and the infiltration pond in the middle of the cul-de-sac (**Pond #105**). Runoff is collected in **Pond #105** and infiltrated into the soil.

Subcatchment #30 consists of an area of land along the south side of the middle portion of Frederick Lane including a small portion of one of the houses and its driveway. Runoff is collected in a cross culvert (**Pond #30**) and directed toward **Final Reach #300** through an overland reach (**Reach #30**).

Final Reach #400

Subcatchment #4 is marginally reduced in size by the construction of Peekaboo Drive and multiple houses. There is also a minor increase of the weighted curve number caused by the clearing of lots and the construction of houses. Runoff still flows northwest to **Final Reach #400.**

Final Reach #500

Subcatchment #5 remains unchanged.

Final Reach #600

Subcatchment #6 is also virtually unchanged with a small decrease in overall size due to the construction of the cul-de-sac of Frederick Lane. Runoff continues to flow to the southwest property line, partially via a small wetland, and is still being analyzed as non-point discharge at **Final Reach #600**.

Final Reach #700

Subcatchment #7 is marginally reduced in size by the construction of Frederick Lane and a home. Runoff still flows south to **Final Reach #700.**

Final Reach #800

Subcatchment #8 greatly decreased in size due to the construction of Frederick Lane, multiple houses, and the related drainage treatment practices. Runoff still flows to the property line which is being analyzed as non-point discharge **Final Reach #800**.

Final Reach #900

Subcatchment #9 decreased in size considerably due to the construction of Frederick and multiple related drainage practices. Runoff still flows southwest to the southern property line which is analyzed as non-point discharge **Final Reach #900**. **Subcatchment #29** consists of a small portion of land along the south side of Frederick Lane encompassing a short roadside swale leading to a cross culvert. Runoff is collected in the swale and culvert (**Pond #29**) and directed toward **Pond #108**.

Subcatchment #28 is made up of land along the north side of Frederick Lane encompassing a single house and its driveway. Runoff flows to a gravel wetland (**Pond #108**) and directed toward **Final Reach #900** though an outlet structure and a short overland reach (**Reach #108**).

Final Reach #100

Subcatchment #10 is virtually unchanged aside from a small portion being removed to accommodate the grading of **Pond #108**. Runoff still flows offsite to a nonpoint area (analyzed as **Final Reach #100**) and subsequently northerly along Smoke Street.

3.1 Stormwater Treatment:

Treatment takes place within the subsurface gravel wetlands and rain gardens designed to support the development on site. Pre-treatment will be provided in the sediment forebay's of the Best Management Practices. The stormwater quality volume capability is treated within provided treatment area of the BMPs. It is of note that the Erosion & Sediment Control Plan shows two tree lines. The drainage analysis considers the more conservative treeline within the proposed model. Tree lines were expanded to show tree cutting around the 4k leaching areas. The second, less conservative treeline shown on the Erosion & Sediment control plan is provided as the probable treeline, as the leachfields will most likely not be constructed where the 4k leaching areas are shown in the plan set. The 4k leaching areas are done in this manner to obtain NHDES subdivision approval.

3.2 Infiltration:

See Infiltration Feasibility Study published separately.

<u>ANALYSIS</u>	<u>COMPONEN</u>	IT: <u>PEAK</u>	<u>RATE DIS</u>	CHARGE	(Cubic Fe	<u>et / Seconc</u>
		2 Yr	10 Yr	25 Yr	50 Yr	100 Yr
Final Decem #200	Existing	1.23	9.37	21.52	35.88	55.70
Final Reach #200	Proposed	1.01	8.43	20.59	35.04	54.13
Final Reach #300	Existing	0.02	0.60	2.26	4.65	8.30
	Proposed	0.02	0.60	2.24	4.60	8.26
Final Reach #400	Existing	3.57	10.00	15.93	21.89	29.36
FINAL REACT #400	Proposed	3.28	9.19	14.62	20.09	26.95
Final Deach #E00	Existing	0.68	4.93	10.18	15.98	23.71
Final Reach #500	Proposed	0.68	4.93	10.18	15.98	23.71
Final Decen #(00	Existing	0.01	0.24	1.13	2.55	4.83
Final Reach #600	Proposed	0.01	0.24	1.13	2.54	4.80
	Existing	0.00	0.01	0.07	0.23	0.55
Final Reach #700	Proposed	0.00	0.01	0.07	0.23	0.55
Final Deach #000	Existing	0.56	2.92	5.53	8.32	11.98
Final Reach #800	Proposed	0.22	0.79	1.36	1.95	2.71
	Existing	0.23	1.20	2.28	3.44	4.97
Final Reach #900	Proposed	0.10	0.38	1.11	2.39	3.21
	Existing	0.06	0.29	0.53	0.78	1.10
Final Reach #100	Proposed	0.06	0.26	0.47	0.70	0.98

3.3 FULL COMPARATIVE ANALYSIS

ANALYSIS

COMPONENT: VOLUME (Acre Feet)

		2 Yr	10 Yr	25 Yr	50 Yr	100 Yr
Final Deceb #200	Existing	0.662	3.190	6.099	9.304	13.618
Final Reach #200	Proposed	0.656	3.313	6.332	9.599	13.992
Final Reach #300	Existing	0.015	0.237	0.557	0.946	1.503
	Proposed	0.015	0.250	0.757	1.252	2.168
Final Reach #400	Existing	0.578	1.427	2.215	3.013	4.026
	Proposed	0.526	1.298	2.015	2.742	3.663
Final Reach #500	Existing	0.200	0.763	1.370	2.032	2.914
	Proposed	0.200	0.763	1.370	2.032	2.914
Final Reach #600	Existing	0.003	0.121	0.310	0.547	0.894
	Proposed	0.003	0.120	0.308	0.544	0.889
Final Reach #700	Existing	0.000	0.007	0.026	0.053	0.096
	Proposed	0.000	0.007	0.026	0.053	0.096
Final Deach #200	Existing	0.133	0.444	0.764	1.106	1.556
Final Reach #800	Proposed	0.032	0.091	0.148	0.207	0.283
Final Deach #000	Existing	0.048	0.159	0.273	0.395	0.556
Final Reach #900	Proposed	0.013	0.113	0.243	0.381	0.544
	Existing	0.011	0.033	0.055	0.079	0.110
Final Reach #100	Proposed	0.010	0.029	0.049	0.070	0.098

SWALE CAPACITY ANALYSIS 3.4

<u>ANALYSIS</u> COMPONENT: PEAK RATE DISCHARGE (Cubic Feet / Second)

50YR 24-HR Storm Event Used	Area (Ac.)	Swale Depth (ft.)	Bottom Width (Ft.)	Lt. Slope (X:1)	Rt. Slope (X:1)	Peak Rate (CFS)	50Yr Avg. Depth (Ft.)
Reach #28R Frederick Entrance Swale (Lt.)	1.333	2	2	4	3	3.31	0.25
Reach #29R Frederick Entrance Swale (Rt.)	0.138	2	2	3	4	0.61	0.10
Reach #30R Frederick Conveyance Swale	0.918	1	8	3	3	1.87	0.20
Reach #30aR Frederick Conveyance Swale	0.918	1	5	3	3	1.86	0.21
Reach #31R Frederick Conveyance Swale	0.186	2	2	4	3	0.63	0.17
Reach #33a1R Peekaboo Pre- Treatment Swale	0.222	1	2	3	3	1.17	0.21
Reach #32R Peekaboo Swale (Lt.)	2.822	3	3	4	3	11.65	0.63
Reach #34R Peekaboo Swale (Rt.)	0.922	3	3	3	4	4.45	0.38

4.0 EROSION and SEDIMENT CONTROL PLAN & BEST MANAGEMENT PRACTICES (BMP's)

Reference: Proposed Site Plan and Grading Plan Erosion & Sediment Control Plans Erosion & Sediment Control Details (E-101 & E-102)

The proposed site development is protected from erosion and the abutting properties are protected from sediment by the use of Best Management Practices as outlined in the <u>New Hampshire Stormwater Manual</u>, Volume 2, Post-Construction Best <u>Management Practices Selection & Design</u> (December 2008, NHDES & US EPA). Any area disturbed by construction will be re-stabilized within 45 days (Env-Wq1504.16) and abutting properties will not be adversely affected by this development. All swales and drainage structures will be constructed and stabilized prior to having run-off directed to them. Reference is also made to the <u>Stormwater System Management: Inspection & Maintenance Manual</u> which has been written specifically for this project and available to the owner. IAW EPA 2022 CGP 2.2.14 Site Stabilization will be initiated immediately in any areas of exposed soil where construction activities have permanently ceased or will be temporarily inactive for 14 or more calendar days. The installation of stabilization will be completed as soon as practicable but no later than 14 calendar days.

Perimeter Control (e.g., Silt Fence / SiltSoxx / Erosion Control Mix Berm)

The plan set demonstrates the location of perimeter sediment control. The Erosion and Sediment Control Details, Sheet E-101 and E-102, have the specifications for installation and maintenance of the silt fence, Filtrexx mulch filled SiltSoxx (or approved equal), and Erosion Control Mix Berm. There are locations on the site, for example bio-media rain garden protection, where SiltSoxx protection is specified. Please note that the use of the Erosion Control Mix Berm is limited to slopes less than 5% and others to slopes less than 2:1 (50%). See also Slope Interrupter installation on slopes longer than 100=feet of disturbance. (Erosion and Sediment Control Plans)

Detention Ponds

<u>Description</u>: Detention Ponds are also constructed ponds with the purpose of detaining runoff but not necessarily for infiltration purposes. During construction it is important that the ground surface not be exposed to traffic or construction equipment to preserve the infiltration capabilities of the existing soil. Construction specifications are included in the plan set and New Hampshire Stormwater Manual, Volume 2, 4-3 Treatment Practices, 3B, In-ground Infiltration Basin and Section 4-6, Conveyance Practices, 2. Detention Basins.

Maintenance Considerations:

Infiltration Basins and Detention Ponds should be inspected at least twice annually and following any rainfall event exceeding 0.25 inches in a twenty-four-hour period. Maintenance rehabilitation will be conducted as warranted by each inspection. Trash and debris will be removed at each inspection.

On an annual basis the infiltration capabilities need to be confirmed by evaluation the drawdown time. If the infiltration system does not drain within 72-hours following a rainfall event, a qualified professional will assess the condition of the basin to determine measures required to restore the infiltration function. This is normally the direct result of sediment accumulation which will be removed to restore the filter media ratio.

Also, on an annual basis the vegetation should be inspected to ensure healthy condition. Invasive species need to be removed along with dead or diseased vegetation.

Vegetated Stabilization

All areas that are disturbed during construction will be stabilized with vegetated material within 30 days of breaking ground. Construction will be managed in such a manner that erosion is prevented and that no abutter's property will be subjected to any siltation, unless otherwise permitted. All areas to be planted with grass for long-term cover will follow the specification and on Sheet E-102 using seeding mixture C, as follows:

Mixture	Pounds per Acre	Pounds per 1,000 Sq. Ft.
Tall Fescue	24	0.55
Creeping Red Fescue	24	0.55
Total	48	1.10
Conservation Mix		
Tall Fescue	15	0.35
Creeping Red Fescue	15	0.35
Annual Ryegrass	5	0.12
Perennial Ryegrass	5	0.12
Kentucky Bluegrass	15	0.35
White Clover	7	0.16
Total	62	1.45

Conservation Mix will used to stabilize all 2:1 slopes and all land area disturbed within the wetland buffer. (If applicable).

Rain Garden Mix: The grass that is planted within a rain garden bio-filtration system within the bio-media must consist of a combination of warm season grass seed and cold season grass seed in order for the grass to start growing for stabilization and continue growing in the sandy well-drained environment. Planting specification will meet the requirements as outlined in 'Vegetation New Hampshire Sand and Gravel Pits' mix 1 (warm season grasses) (15 lbs/ac) and include annual and perennial rye grass seed (15 lbs/ac); the New England native warm season grass mix (23 lbs/ac) by New England Wetland Plants, Inc.; rain garden mix 180 (15 lbs/ac & 15 lbs/ac of rye) / rain garden grass mix 180-1 (20 lbs/ac & 10 lbs/ac of rye) by Ernst Conservation Seeds; or approved equal.

<u>Detention Pond Mix</u>: The grass that is planted within a Detention Pond will be a mix designed for both inundation and dry conditions such as Ernst Seeds, Retention Basin Floor Mix ERNMX-126.

Stabilized Construction Entrance

A temporary crushed stone construction entrance / exit provides an area where mud can be dislodged from tires before the vehicle leaves the construction site to reduce the amount of mud and sediment transported onto paved municipal and state roads. The stone size for the pad should be 3" angular coarse aggregate, and the pad itself constructed to a minimum length of 75' for the full width of the access road. The aggregate should be placed at least six inches thick. A plan view and profile are shown on Sheet E-101- Erosion & Sediment Control Detail Plan. (If applicable).

Environmental Dust Control

Dust will be controlled on the site by the use of multiple Best Management Practices. Mulching and temporary seeding will be the first line of protection to be utilized where problems occur. If dust problems are not solved by these applications, the use of water and calcium chloride can be applied. Calcium chloride will be applied at a rate that will keep the surface moist but not cause pollution. If used, a MSDS Sheet will be inserted into the project binder / Stormwater Pollution Prevention Plan. **Vegetated Filter Strips / Buffers**

Filter strips are areas of land with natural or planted vegetation designed to receive sheet run-off from up gradient development. These natural areas, preferably wooded, are effective in removing sediment and sediment-laden pollutants from such run-off, although their effectiveness is severely diminished when forced to deal with concentrated flow and must therefore be equipped with a level-spreading device. Filter strips should not have a slope exceeding fifteen percent and have a minimum length of seventy-five feet. Each buffer is individually specified and limits are located on the Sediment & Erosion Control Plan

Drainage Swales / Stormwater Conveyance Channels

Drainage swales will be stabilized with vegetation for long term cover as outlined below, and on Sheet E-102 using seed mixture C. As a general rule, velocities in the swale should not exceed 3.0 feet per second for a vegetated swale although velocities as high as 4.5 FPS are allowed under certain soil conditions (If applicable).

Construction Sequence

- 1. Cut and remove trees in construction area only as required.
- 2. Construct and/or install temporary and permanent sediment erosion and detention control facilities as required.
- 3. Erosion, sediment and detention control facility shall be installed & stabilized prior to any earth moving operation & or directing runoff to them.
- 4. Clear, cut and dispose of debris in approved facility.
- 5. Construct temporary culverts as required, or directed.
- 6. Construct roadways for access to desired construction areas. All roads shall be stabilized immediately.
- 7. Install pipe and construction associated appurtenances as required or directed. Install rain gardens. All disturbed areas shall stabilized immediately after grading.
- 8. Begin permanent and temporary seeding and mulching. All cut and fill slopes and disturbed areas shall be seeded or mulched as required, or directed. No area is allowed to be disturbed for a length of time that exceeds 45 days before being stabilized. Daily, or as required. All roadways and parking areas shall be stabilized within 72 hours of achieving finished grades. All cut and fill slopes shall be stabilized within 72 hours of achieving finished grades. Additional time constraints regarding stabilization can be found in the EPA 2022 CGP.
- 9. Construct temporary berms, drains ditches, silt fences, sediment traps, etc. mulch and seed as required.
- 10. Inspect and maintain all erosion and sediment control measures during construction.
- 11. Complete permanent seeding and landscaping.

- 12. Remove temporary erosion control measures after seeding areas have established themselves and site improvements are complete.
- 13. Smooth and revegetate all disturbed areas.
- 14. Finish paving all roadways.

Temporary Erosion Control Measures

- 1. The smallest practical area of land shall be exposed at any one time.
- 2. Erosion, sediment control measures shall be installed as shown on the plans and at locations as required, or directed by the engineer.
- 3. All disturbed areas shall be returned to original grades and elevations. Disturbed areas shall be loamed with a minimum of 4" of loam and seeded with not less than 1.10 pound of seed per 1,000 square feet (48 pounds per acre) of area.
- 4. Silt fences and other barriers shall be inspected periodically and after every rainstorm during the life of the project. All damaged areas shall be repaired, sediment deposits shall periodically be removed and properly disposed of.
- 5. After all disturbed areas have been stabilized, the temporary erosion control measures are to be removed and the area disturbed by the removal smoothed and re-vegetated.
- 6. Areas must be seeded and mulched within 5 days of final grading, permanently stabilized within 15 days of final grading, or temporarily stabilized within 30 days of initial disturbance of soil.

Inspection and Maintenance Schedule

Fencing (if used) will be inspected during and after storm events to ensure that the fence still has integrity and is not allowing sediment to pass. Depending on SWPPP criteria, all controls will be inspected either once every 7 days and after storm events. Inspection reports must be submitted to Town of Nottingham Planning Department. See also <u>Stormwater System Management: Inspection & Maintenance Manual</u> published separately also by Berry Surveying & Engineering. See also Storm Water Pollution Prevention Plan (SWPPP) developed in accordance with EPA NPDES 2022 CGP requirements. In accordance with US EPA 2022 Construction General Permit, Inspections will be conducted by a qualified person. This requirement includes Erosion and Sediment Control Education and Professional Certification.

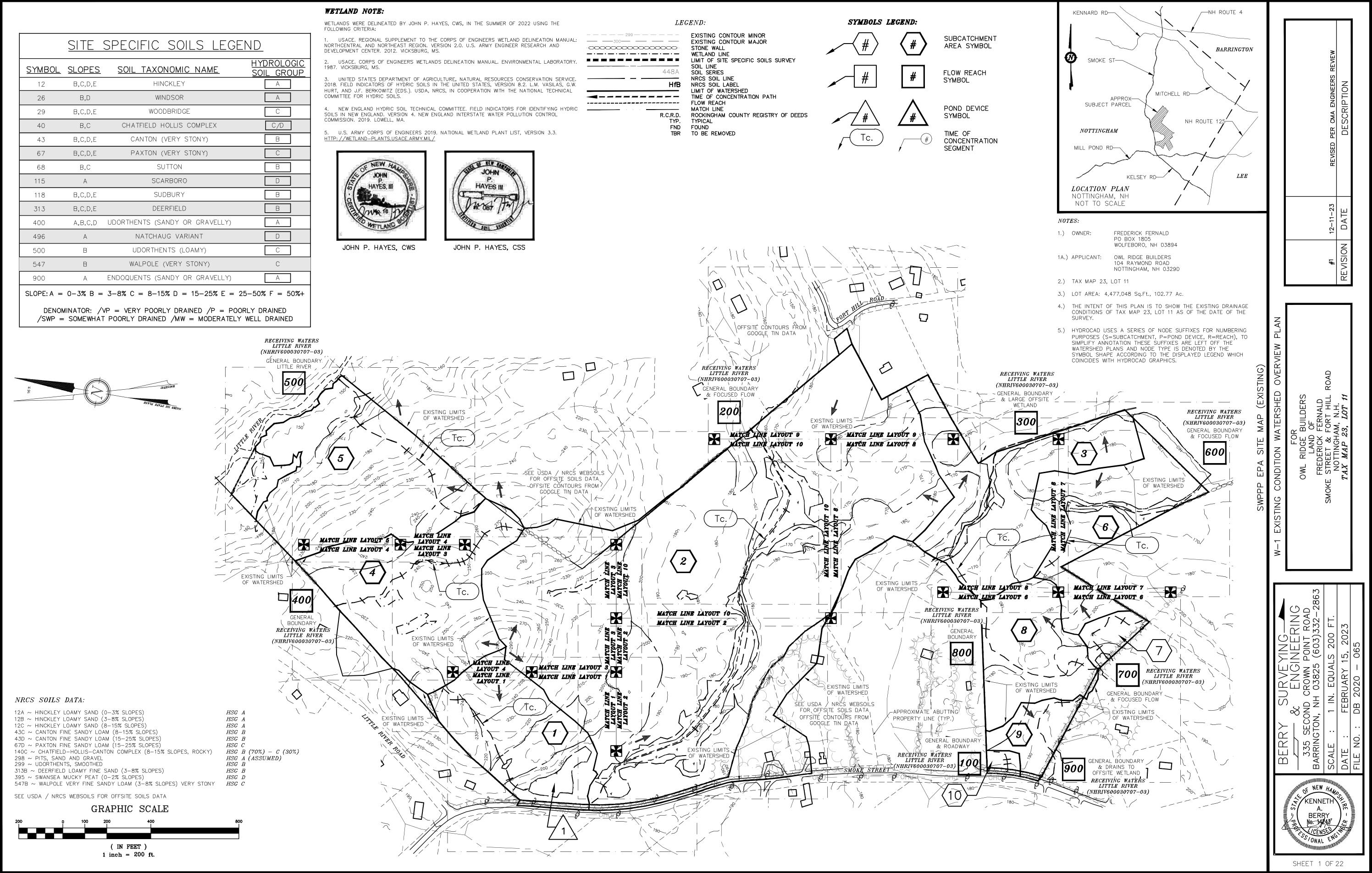
Corrective Action measures will be made in accordance with SWPPP requirements and records maintained on site by the Contractor.

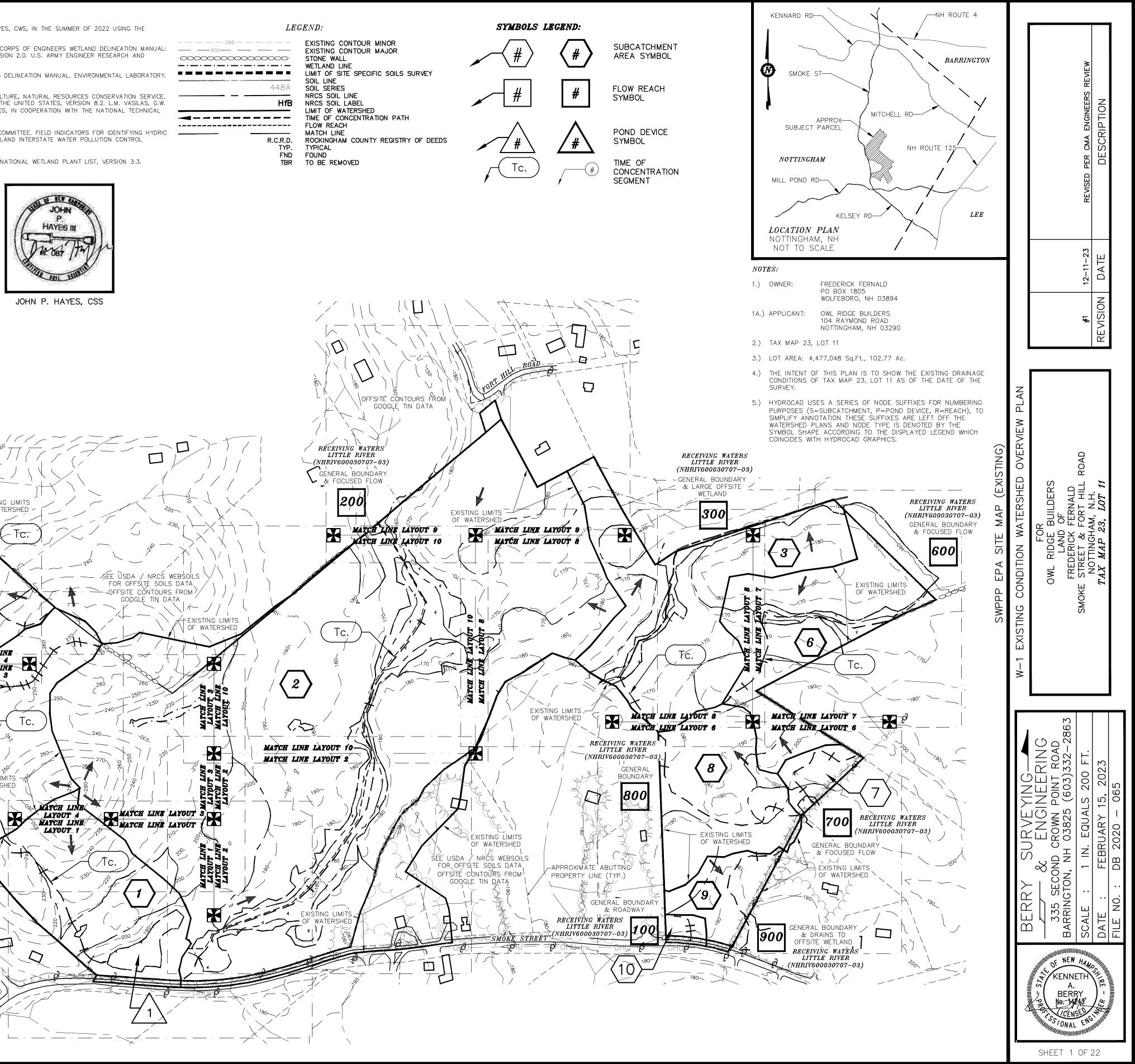
5.0 CONCLUSION

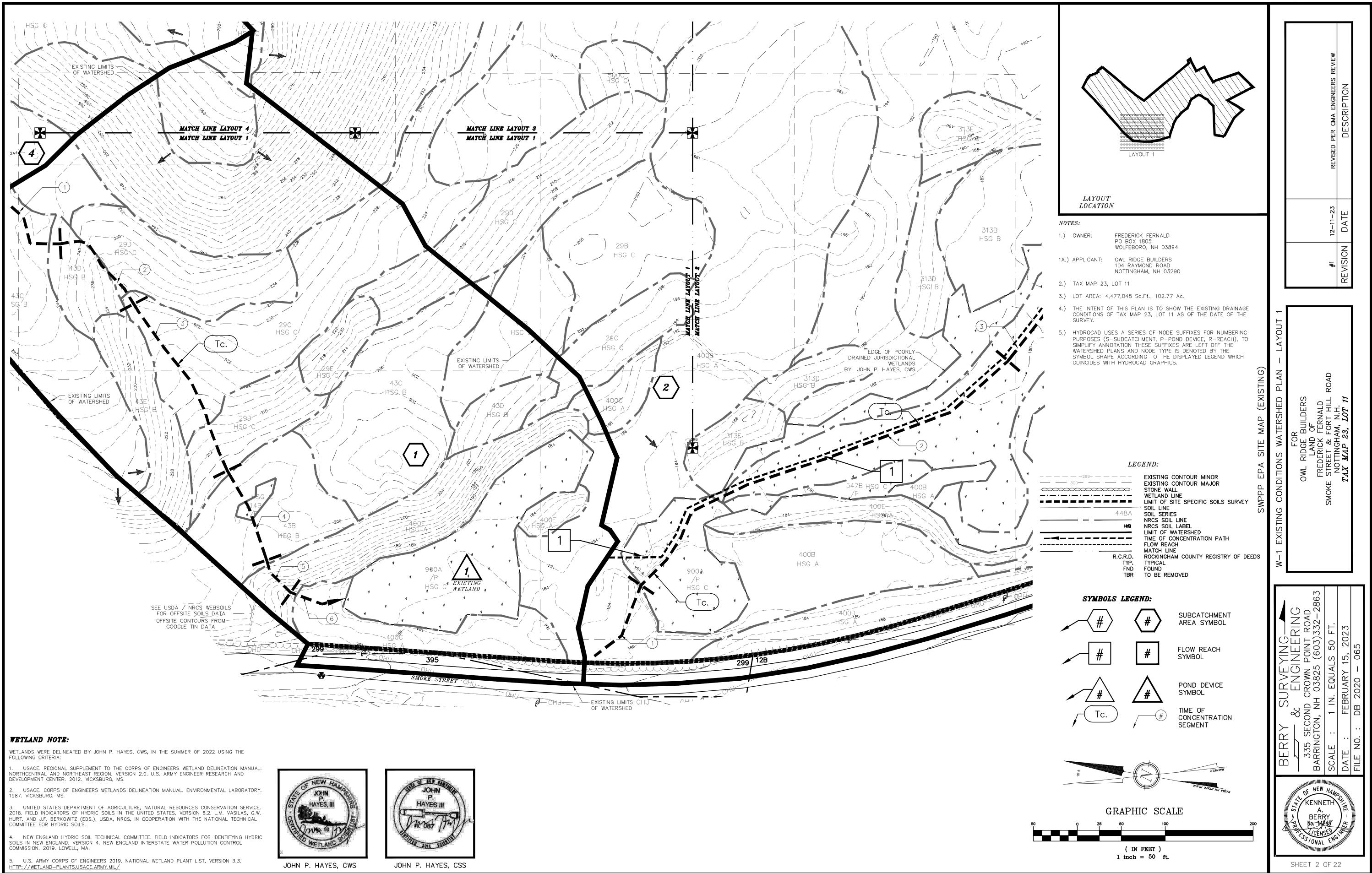
Peak rates of runoff flow are modeled to be equal or reduced in the post-construction analysis / condition, as compared to the pre-construction peak rates of runoff flow during all storm events due to the installation of the Best Management Practices and stormwater devices, specifically Subsurface Gravel Wetlands, Rain Gardens, Treatment Swales and Detention Ponds.

Channel protection volume conforms to the requirements of RSA 485: A-17 and Env.-Wq. 1500.

A Site Specific, Terrain Alteration Permit (RSA 485: A-17) is required for this site plan due to the area of disturbance being greater than 100,000 SF. The impact is approximately 744,285 square feet, so that an EPA Notice of Intent will be required to be filed two weeks prior to construction initiation and a Stormwater Pollution Prevention Plan is required to be prepared.

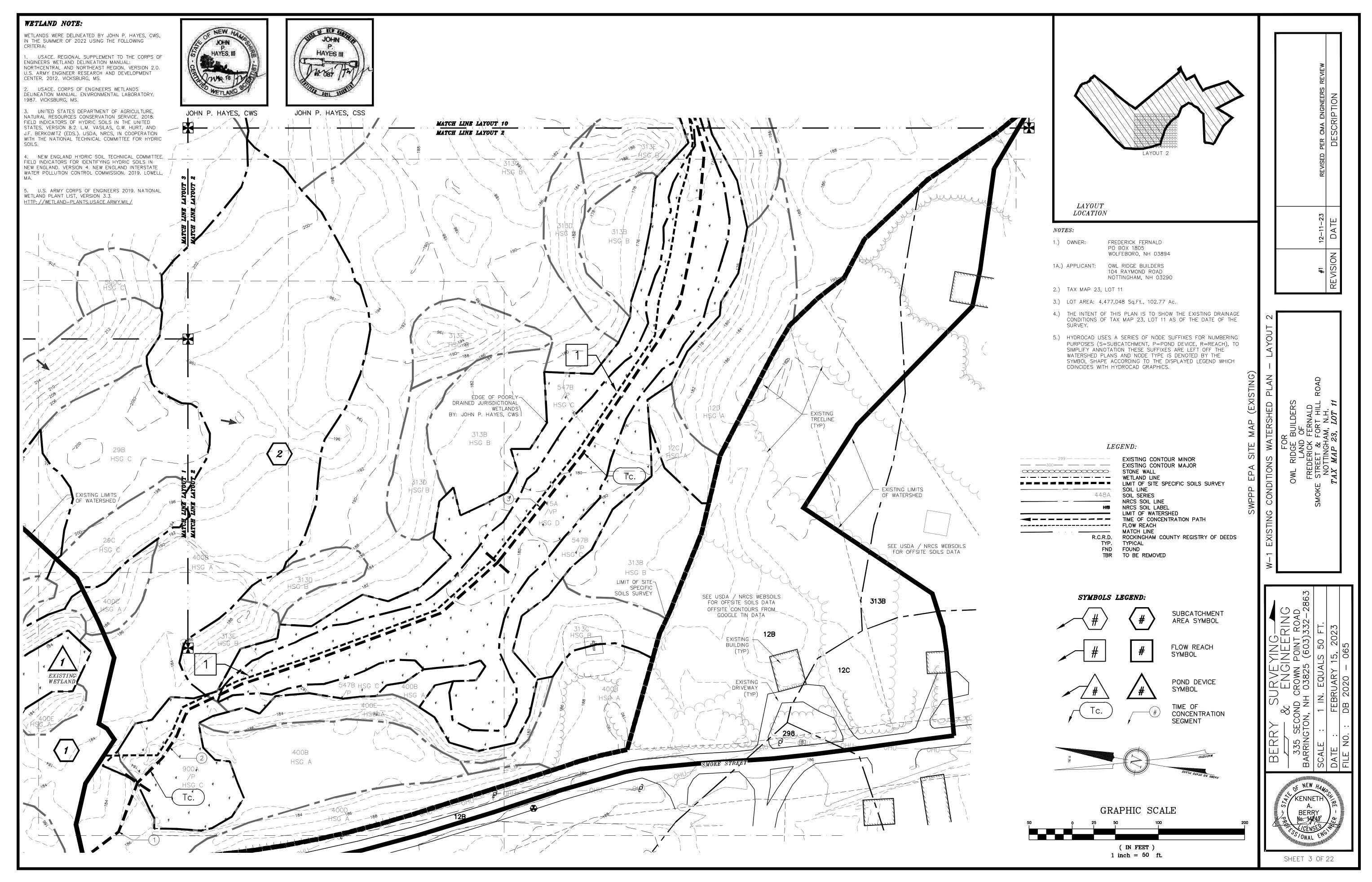

Respectfully Submitted, BERRY SURVEYING & ENGINEERING

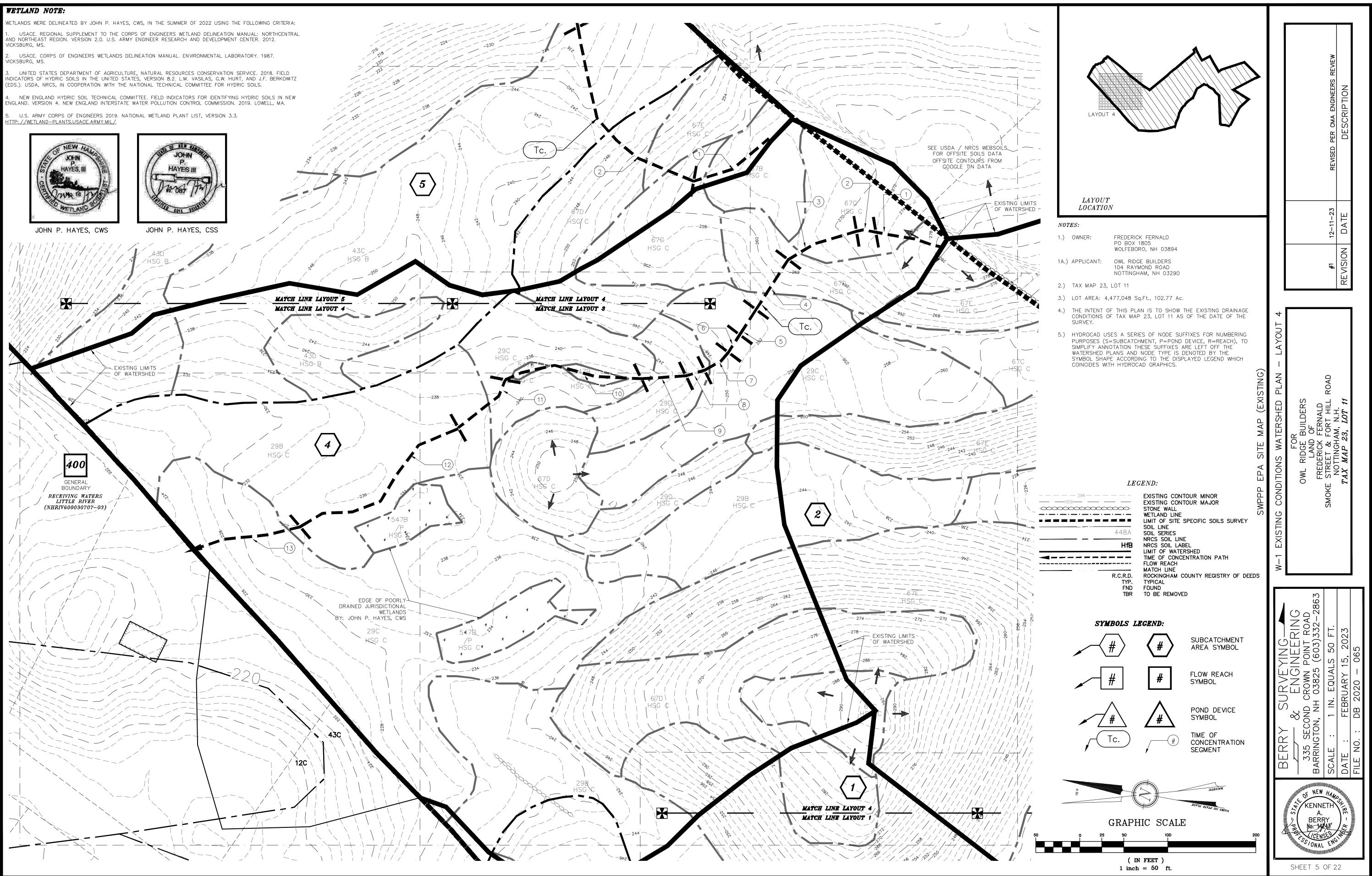

Christopher R. Berry, SIT 567 Principal, President Project Manager

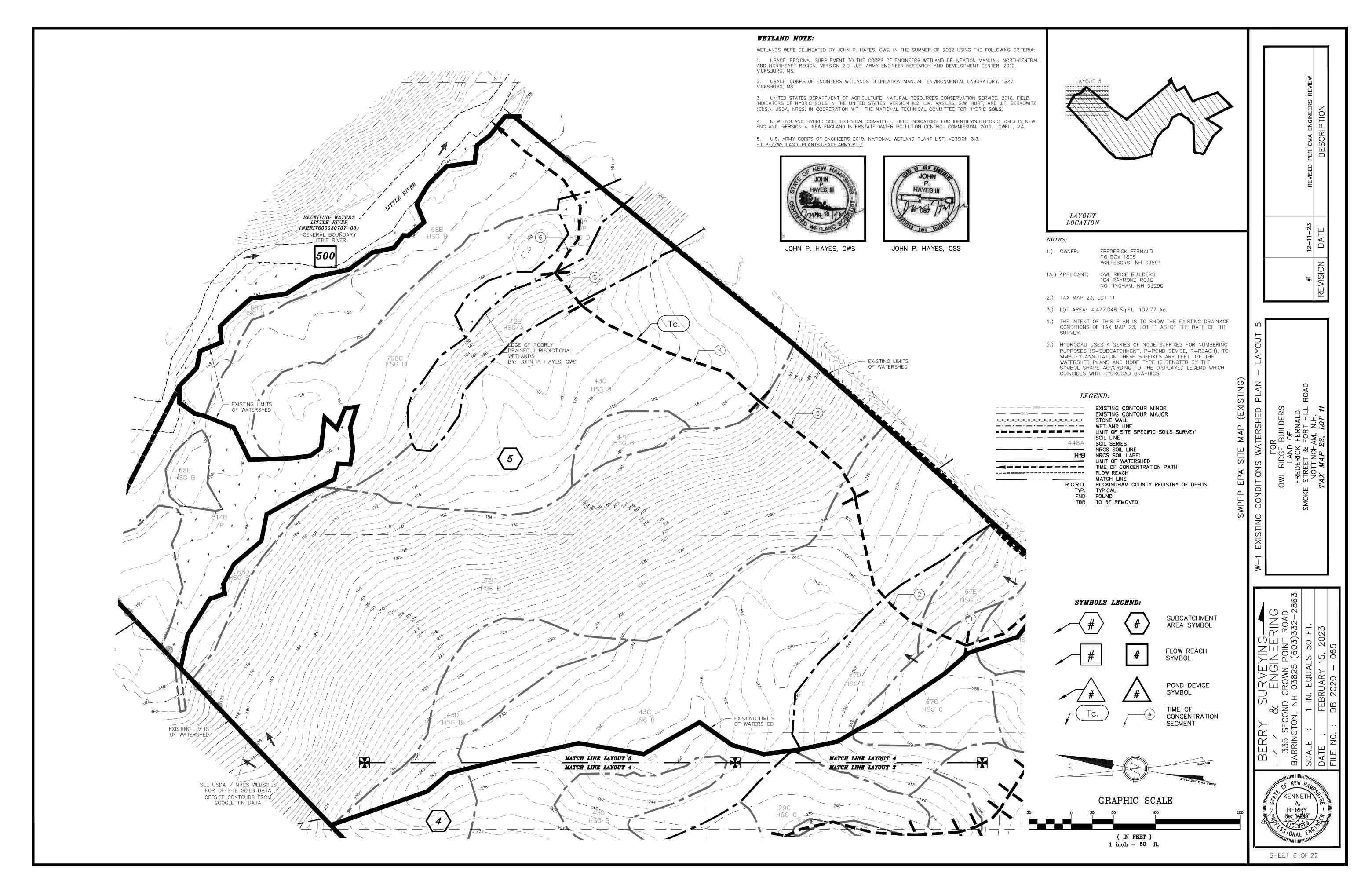

Kevin R. Poulin, PE Project Engineer

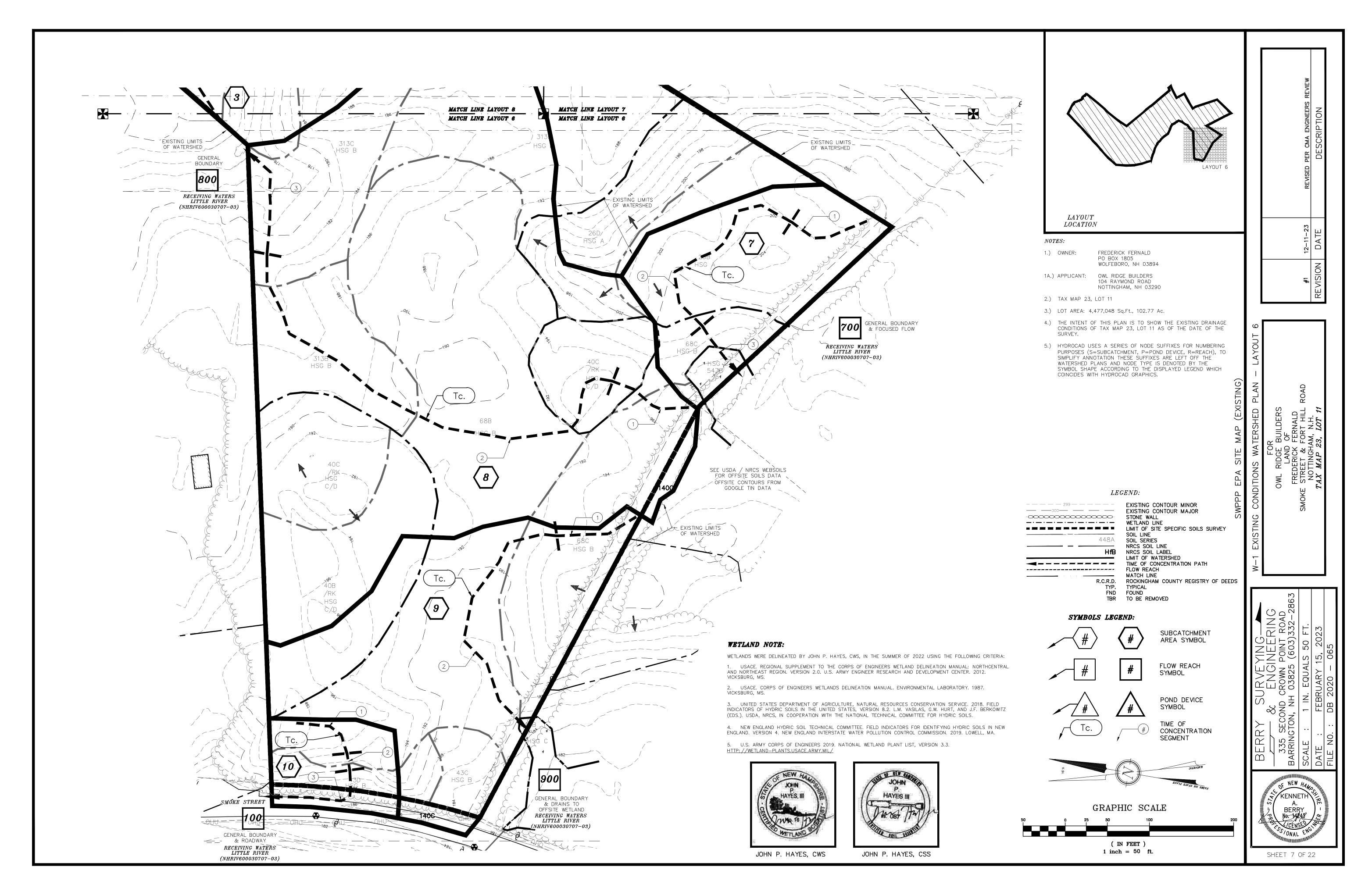
Kenneth A. Berry PE, LLS, CPSWQ, CPESC, CESSWI Principal, VP - Technical Operations

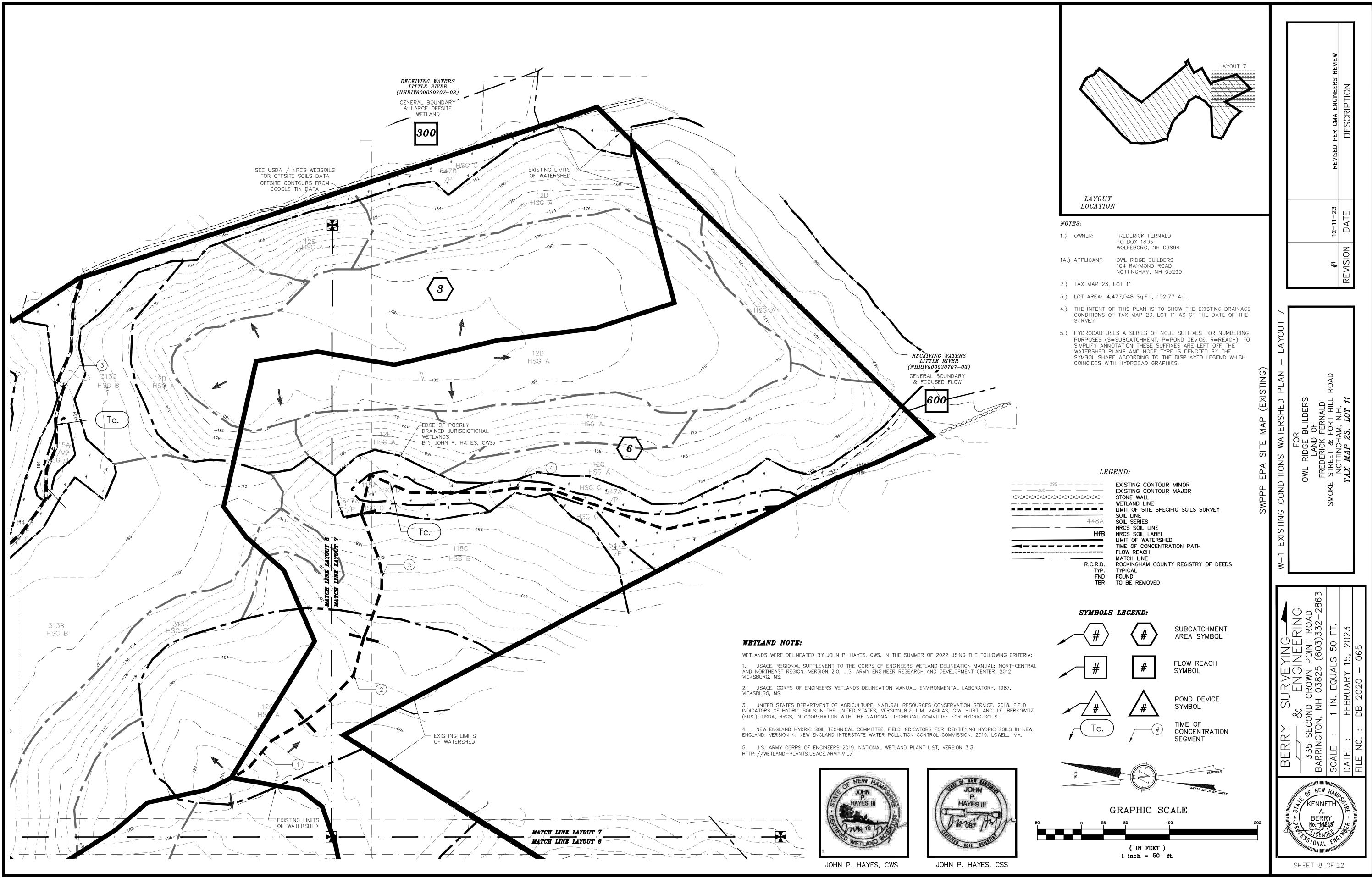
NOT FOR	CONSTRUCTION

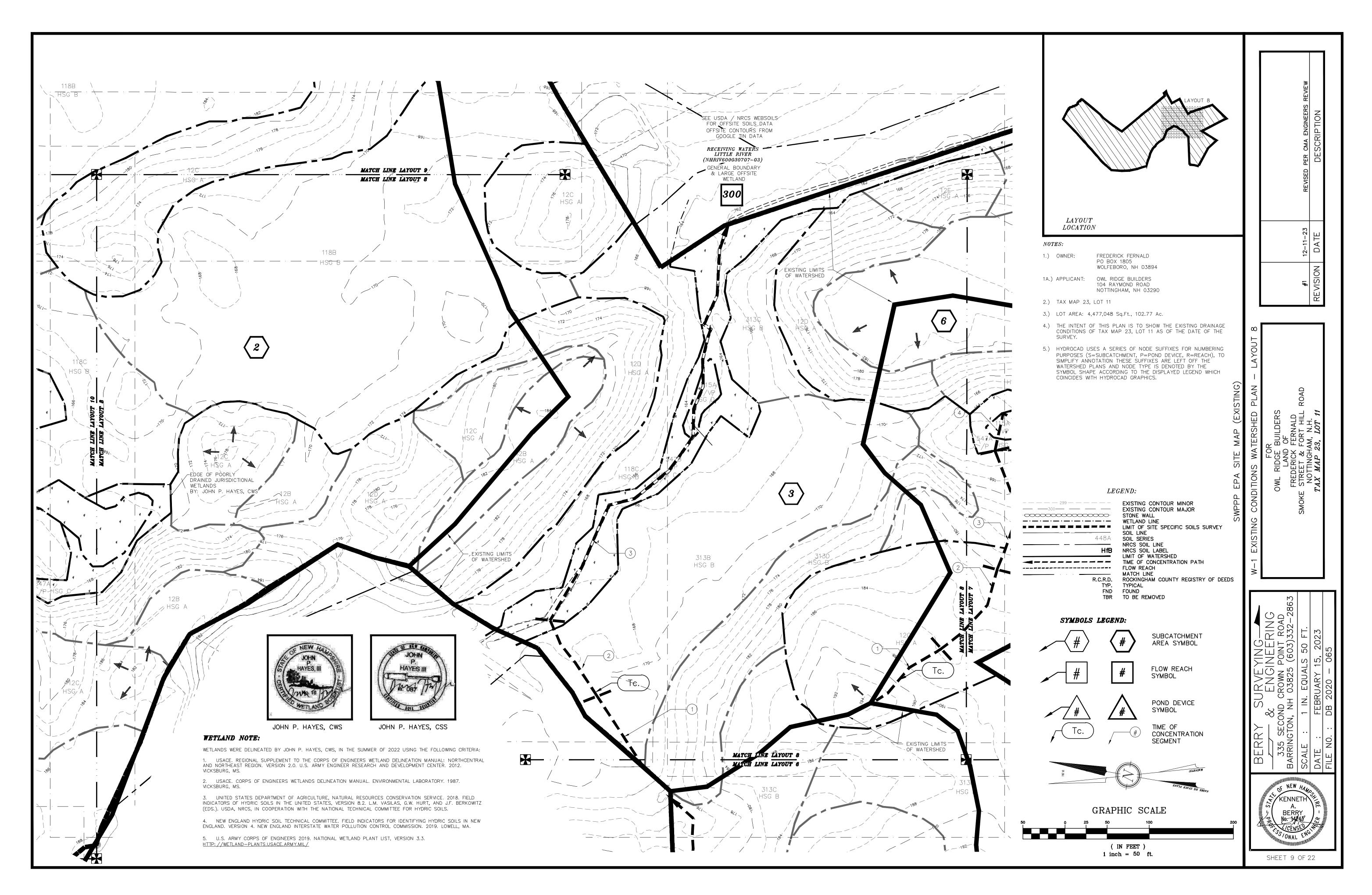


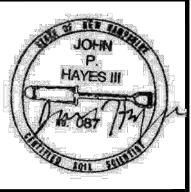


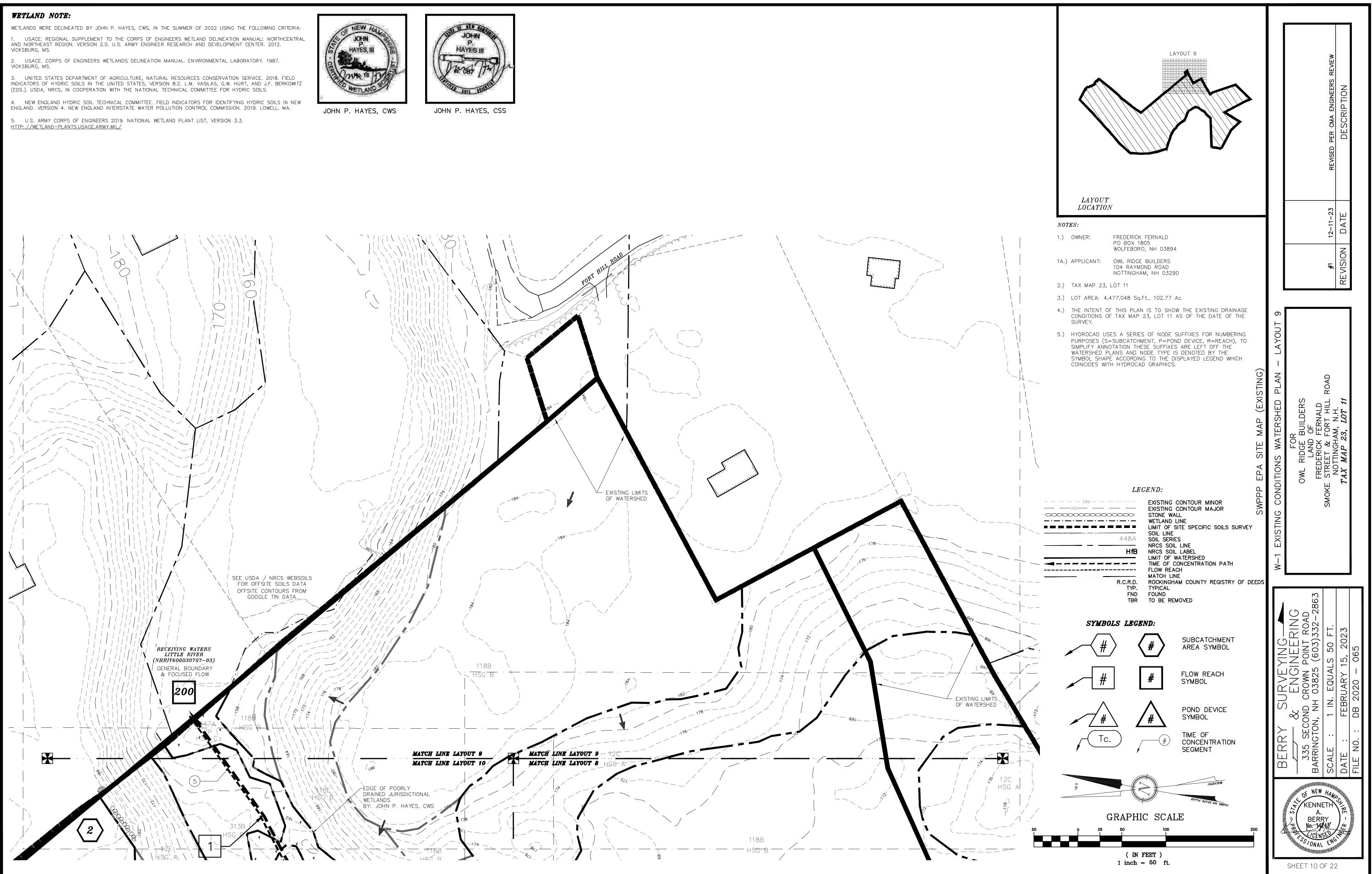


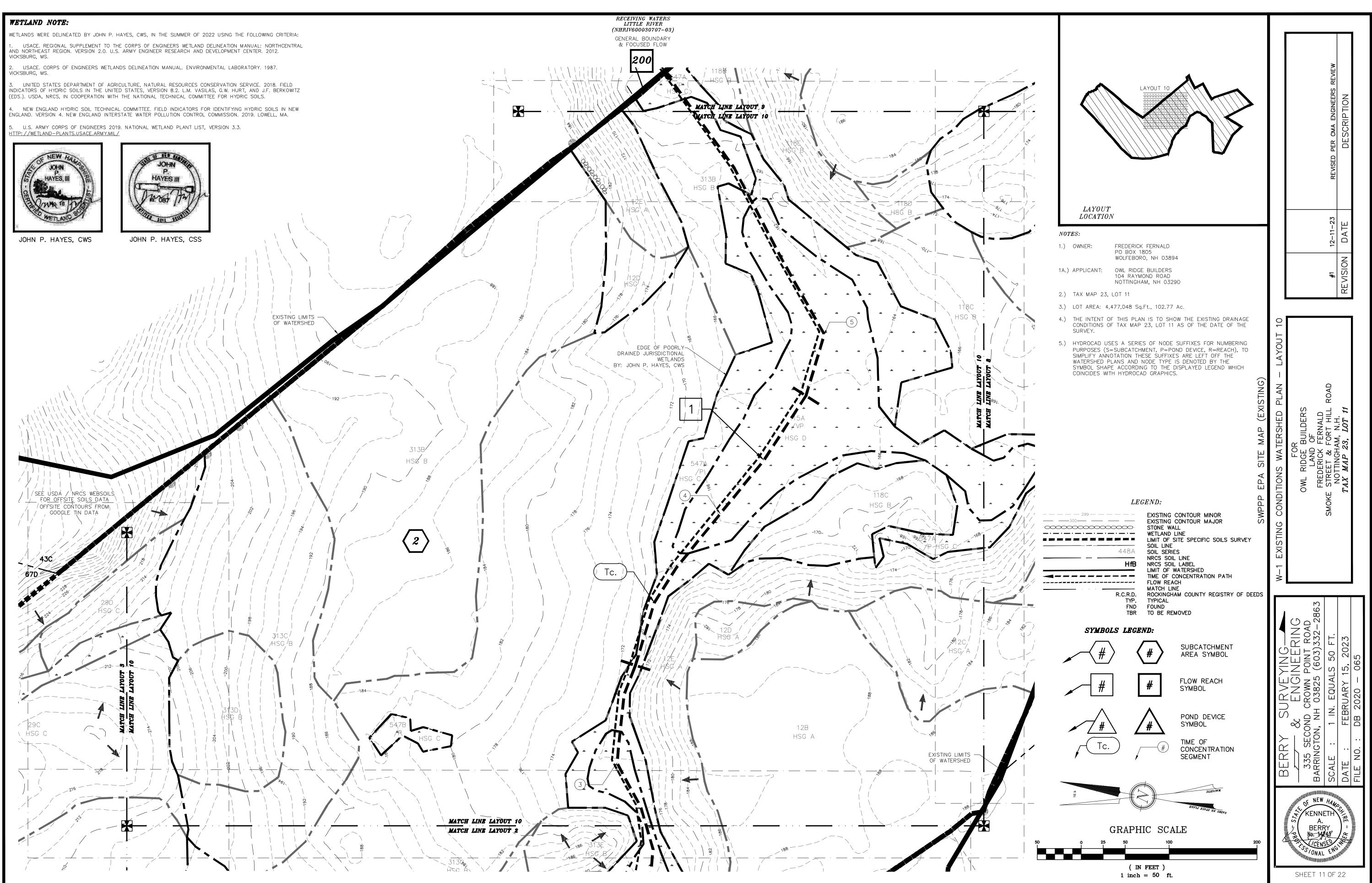


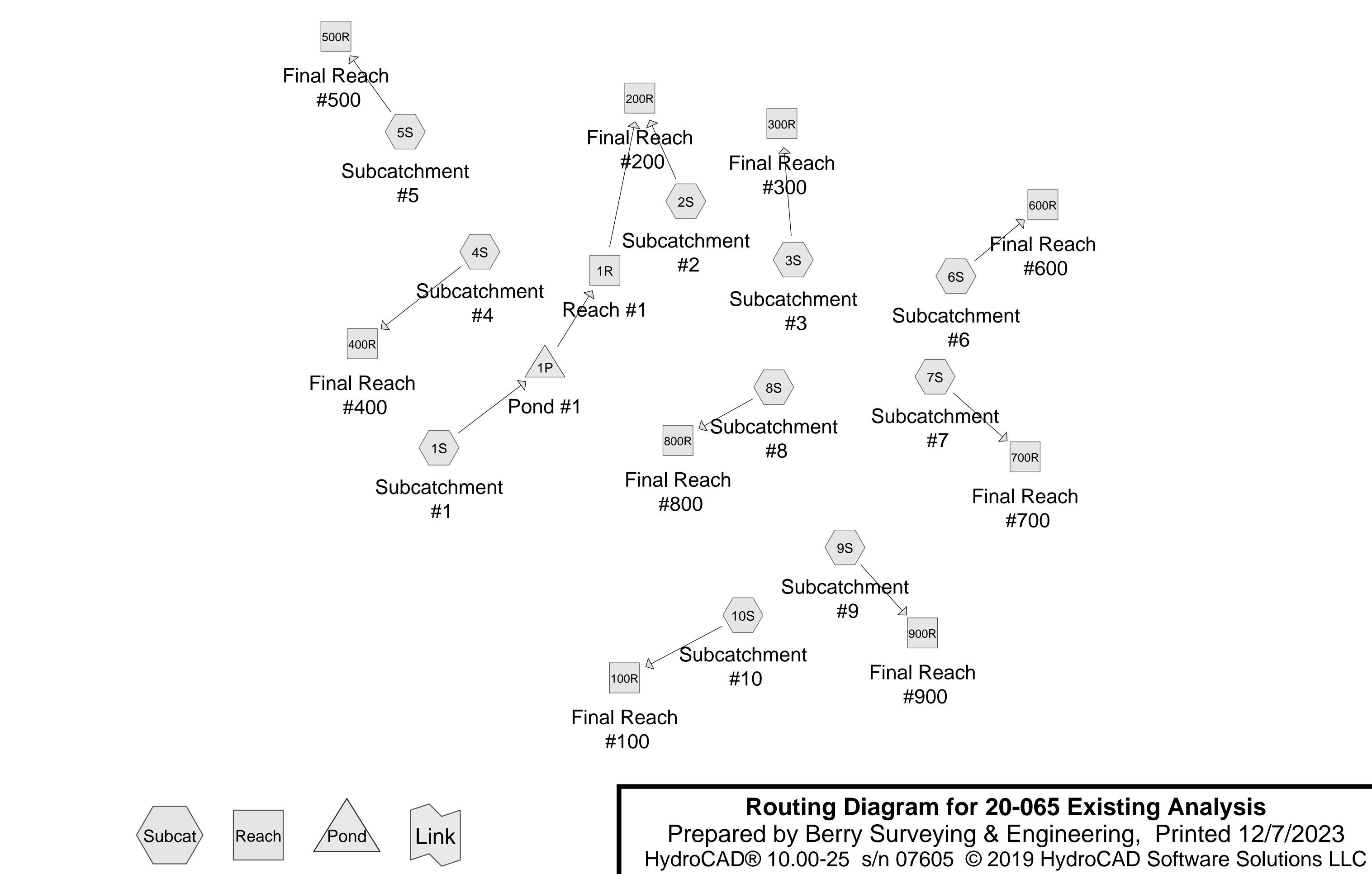












600R

Final Reach #600

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment#1	Runoff Area=321,010 sf 1.12% Impervious Runoff Depth>0.32" Flow Length=663' Tc=24.8 min CN=59 Runoff=0.97 cfs 0.197 af
Subcatchment 2S: Subcatchment #2	Runoff Area=2,247,467 sf 0.82% Impervious Runoff Depth>0.15" Flow Length=2,208' Tc=87.6 min CN=53 Runoff=1.23 cfs 0.662 af
Subcatchment3S: Subcatchment#3	Runoff Area=433,657 sf 0.00% Impervious Runoff Depth>0.02" Flow Length=753' Tc=46.0 min CN=44 Runoff=0.02 cfs 0.015 af
Subcatchment 4S: Subcatchment #4	Runoff Area=464,510 sf 0.00% Impervious Runoff Depth>0.65" Flow Length=1,007' Tc=36.5 min CN=68 Runoff=3.57 cfs 0.578 af
Subcatchment5S: Subcatchment#5	Runoff Area=502,048 sf 0.00% Impervious Runoff Depth>0.21" Flow Length=1,017' Tc=26.5 min CN=55 Runoff=0.68 cfs 0.200 af
Subcatchment6S: Subcatchment#6	Runoff Area=291,221 sf 0.00% Impervious Runoff Depth>0.01" Flow Length=888' Tc=44.0 min CN=42 Runoff=0.01 cfs 0.003 af
Subcatchment7S: Subcatchment#7	Runoff Area=44,849 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.00 cfs 0.000 af
Subcatchment8S: Subcatchment#8	Runoff Area=241,146 sf 0.00% Impervious Runoff Depth>0.29" Flow Length=792' Tc=31.1 min CN=58 Runoff=0.56 cfs 0.133 af
Subcatchment9S: Subcatchment#9	Runoff Area=85,918 sf 1.13% Impervious Runoff Depth>0.29" Flow Length=417' Tc=21.9 min CN=58 Runoff=0.23 cfs 0.048 af
Subcatchment10S: Subcatchment#10	Runoff Area=15,853 sf 10.22% Impervious Runoff Depth>0.35" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.06 cfs 0.011 af
Reach 1R: Reach #1 n=0.080 L=	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af 2,168.8' S=0.0127 '/' Capacity=25.14 cfs Outflow=0.00 cfs 0.000 af
Reach 100R: Final Reach #100	Inflow=0.06 cfs 0.011 af Outflow=0.06 cfs 0.011 af
Reach 200R: Final Reach #200	Inflow=1.23 cfs 0.662 af Outflow=1.23 cfs 0.662 af
Reach 300R: Final Reach #300	Inflow=0.02 cfs 0.015 af Outflow=0.02 cfs 0.015 af
Reach 400R: Final Reach #400	Inflow=3.57 cfs 0.578 af Outflow=3.57 cfs 0.578 af
Reach 500R: Final Reach #500	Inflow=0.68 cfs 0.200 af Outflow=0.68 cfs 0.200 af

20-065 Existing Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solu	Type III 24-hr 2Yr-24Hr Rainfall=3.06" Printed 12/7/2023 utions LLC Page 2
Reach 600R: Final Reach #600	Inflow=0.01 cfs 0.003 af Outflow=0.01 cfs 0.003 af
Reach 700R: Final Reach #700	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach 800R: Final Reach #800	Inflow=0.56 cfs 0.133 af Outflow=0.56 cfs 0.133 af
Reach 900R: Final Reach #900	Inflow=0.23 cfs 0.048 af Outflow=0.23 cfs 0.048 af
	8.37' Storage=8,117 cf Inflow=0.97 cfs 0.197 af ry=0.00 cfs 0.000 af Outflow=0.01 cfs 0.010 af
Total Runoff Area = 106.696 ac Runoff Volum	ne = 1.847 af Average Runoff Depth = 0.21"

 $106.696 \text{ ac} \quad \text{Runoff volume} = 1.847 \text{ at} \quad \text{Average Runoff Depth} = 0.21^{\circ}$ $99.47\% \text{ Pervious} = 106.133 \text{ ac} \quad 0.53\% \text{ Impervious} = 0.563 \text{ ac}$

20-065 Existing Analysis	Type III 24-hr	10Yr-24Hr Rainfall=4.63"
Prepared by Berry Surveying & Engineering		Printed 12/7/2023
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Softwar	e Solutions LLC	Page 3

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment#1	Runoff Area=321,010 sf 1.12% Impervious Runoff Depth>1.02" Flow Length=663' Tc=24.8 min CN=59 Runoff=4.64 cfs 0.628 af
Subcatchment 2S: Subcatchment #2	Runoff Area=2,247,467 sf 0.82% Impervious Runoff Depth>0.67" Flow Length=2,208' Tc=87.6 min CN=53 Runoff=9.31 cfs 2.886 af
Subcatchment3S: Subcatchment#3	Runoff Area=433,657 sf 0.00% Impervious Runoff Depth>0.29" Flow Length=753' Tc=46.0 min CN=44 Runoff=0.60 cfs 0.237 af
Subcatchment 4S: Subcatchment #4	Runoff Area=464,510 sf 0.00% Impervious Runoff Depth>1.61" Flow Length=1,007' Tc=36.5 min CN=68 Runoff=10.00 cfs 1.427 af
Subcatchment5S: Subcatchment#5	Runoff Area=502,048 sf 0.00% Impervious Runoff Depth>0.79" Flow Length=1,017' Tc=26.5 min CN=55 Runoff=4.93 cfs 0.763 af
Subcatchment6S: Subcatchment#6	Runoff Area=291,221 sf 0.00% Impervious Runoff Depth>0.22" Flow Length=888' Tc=44.0 min CN=42 Runoff=0.24 cfs 0.121 af
Subcatchment7S: Subcatchment#7	Runoff Area=44,849 sf 0.00% Impervious Runoff Depth>0.08" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.01 cfs 0.007 af
Subcatchment8S: Subcatchment#8	Runoff Area=241,146 sf 0.00% Impervious Runoff Depth>0.96" Flow Length=792' Tc=31.1 min CN=58 Runoff=2.92 cfs 0.444 af
Subcatchment9S: Subcatchment#9	Runoff Area=85,918 sf 1.13% Impervious Runoff Depth>0.96" Flow Length=417' Tc=21.9 min CN=58 Runoff=1.20 cfs 0.159 af
Subcatchment10S: Subcatchment#10	Runoff Area=15,853 sf 10.22% Impervious Runoff Depth>1.09" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.29 cfs 0.033 af
Reach 1R: Reach #1 n=0.080 L=	Avg. Flow Depth=0.08' Max Vel=0.30 fps Inflow=0.84 cfs 0.348 af =2,168.8' S=0.0127 '/' Capacity=25.14 cfs Outflow=0.52 cfs 0.304 af
Reach 100R: Final Reach #100	Inflow=0.29 cfs 0.033 af Outflow=0.29 cfs 0.033 af
Reach 200R: Final Reach #200	Inflow=9.37 cfs 3.190 af Outflow=9.37 cfs 3.190 af
Reach 300R: Final Reach #300	Inflow=0.60 cfs 0.237 af Outflow=0.60 cfs 0.237 af
Reach 400R: Final Reach #400	Inflow=10.00 cfs 1.427 af Outflow=10.00 cfs 1.427 af
Reach 500R: Final Reach #500	Inflow=4.93 cfs 0.763 af Outflow=4.93 cfs 0.763 af

20-065 Existing Analysis Prepared by Berry Surveying & Engineer HydroCAD® 10.00-25 s/n 07605 © 2019 Hydro	
Reach 600R: Final Reach #600	Inflow=0.24 cfs 0.121 af Outflow=0.24 cfs 0.121 af
Reach 700R: Final Reach #700	Inflow=0.01 cfs 0.007 af Outflow=0.01 cfs 0.007 af
Reach 800R: Final Reach #800	Inflow=2.92 cfs 0.444 af Outflow=2.92 cfs 0.444 af
Reach 900R: Final Reach #900	Inflow=1.20 cfs 0.159 af Outflow=1.20 cfs 0.159 af
Pond 1P: Pond #1 Discarded=0.01 ct	Peak Elev=183.59' Storage=12,367 cf Inflow=4.64 cfs 0.628 af fs 0.014 af Primary=0.84 cfs 0.348 af Outflow=0.86 cfs 0.362 af
Total Runoff Area – 106 696 a	c Runoff Volume – 6 704 af Average Runoff Depth – 0 75

Total Runoff Area = 106.696 acRunoff Volume = 6.704 afAverage Runoff Depth = 0.75"99.47% Pervious = 106.133 ac0.53% Impervious = 0.563 ac

20-065 Existing Analysis	Type III 24-hr 25Yr-24Hr Rainfall=5.86"
Prepared by Berry Surveying & Engineering	Printed 12/7/2023
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Softwa	re Solutions LLC Page 5

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment#1	Runoff Area=321,010 sf 1.12% Impervious Runoff Depth>1.74" Flow Length=663' Tc=24.8 min CN=59 Runoff=8.59 cfs 1.068 af
Subcatchment 2S: Subcatchment #2	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Subcatchment3S: Subcatchment#3	Runoff Area=433,657 sf 0.00% Impervious Runoff Depth>0.67" Flow Length=753' Tc=46.0 min CN=44 Runoff=2.26 cfs 0.557 af
Subcatchment 4S: Subcatchment #4	Runoff Area=464,510 sf 0.00% Impervious Runoff Depth>2.49" Flow Length=1,007' Tc=36.5 min CN=68 Runoff=15.93 cfs 2.215 af
Subcatchment 5S: Subcatchment #5	Runoff Area=502,048 sf 0.00% Impervious Runoff Depth>1.43" Flow Length=1,017' Tc=26.5 min CN=55 Runoff=10.18 cfs 1.370 af
Subcatchment6S: Subcatchment#6	Runoff Area=291,221 sf 0.00% Impervious Runoff Depth>0.56" Flow Length=888' Tc=44.0 min CN=42 Runoff=1.13 cfs 0.310 af
Subcatchment7S: Subcatchment#7	Runoff Area=44,849 sf 0.00% Impervious Runoff Depth>0.30" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.07 cfs 0.026 af
Subcatchment8S: Subcatchment#8	Runoff Area=241,146 sf 0.00% Impervious Runoff Depth>1.66" Flow Length=792' Tc=31.1 min CN=58 Runoff=5.53 cfs 0.764 af
Subcatchment9S: Subcatchment#9	Runoff Area=85,918 sf 1.13% Impervious Runoff Depth>1.66" Flow Length=417' Tc=21.9 min CN=58 Runoff=2.28 cfs 0.273 af
Subcatchment10S: Subcatchment#1	0 Runoff Area=15,853 sf 10.22% Impervious Runoff Depth>1.82" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.53 cfs 0.055 af
Reach 1R: Reach #1 n=0.080 L	Avg. Flow Depth=0.14' Max Vel=0.43 fps Inflow=3.96 cfs 0.781 af =2,168.8' S=0.0127 '/' Capacity=25.14 cfs Outflow=1.56 cfs 0.723 af
Reach 100R: Final Reach #100	Inflow=0.53 cfs 0.055 af Outflow=0.53 cfs 0.055 af
Reach 200R: Final Reach #200	Inflow=21.52 cfs 6.099 af Outflow=21.52 cfs 6.099 af
Reach 300R: Final Reach #300	Inflow=2.26 cfs 0.557 af Outflow=2.26 cfs 0.557 af
Reach 400R: Final Reach #400	Inflow=15.93 cfs 2.215 af Outflow=15.93 cfs 2.215 af
Reach 500R: Final Reach #500	Inflow=10.18 cfs 1.370 af Outflow=10.18 cfs 1.370 af

20-065 Existing Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software S	Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/7/2023 olutions LLC Page 6
Reach 600R: Final Reach #600	Inflow=1.13 cfs 0.310 af
	Outflow=1.13 cfs 0.310 af
Reach 700R: Final Reach #700	Inflow=0.07 cfs_0.026 af
	Outflow=0.07 cfs 0.026 af
Reach 800R: Final Reach #800	Inflow=5.53 cfs 0.764 af
	Outflow=5.53 cfs 0.764 af
Reach 900R: Final Reach #900	Inflow=2.28 cfs 0.273 af
	Outflow=2.28 cfs 0.273 af
	3.73' Storage=15,315 cf Inflow=8.59 cfs 1.068 af nary=3.96 cfs 0.781 af Outflow=3.98 cfs 0.796 af
Total Runoff Area = 106.696 ac Runoff Volu 99.47% Pervious	

20-065 Existing Analysis	Type III 24-hr 50Yr-24Hr Rainfall=7.01"
Prepared by Berry Surveying & Engineering	Printed 12/7/2023
HvdroCAD® 10.00-25 s/n 07605 © 2019 HvdroCAD Sof	tware Solutions LLC Page 7

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment#1	Runoff Area=321,010 sf 1.12% Impervious Runoff Depth>2.50" Flow Length=663' Tc=24.8 min CN=59 Runoff=12.81 cfs 1.534 af
Subcatchment 2S: Subcatchment #2	Runoff Area=2,247,467 sf 0.82% Impervious Runoff Depth>1.89" Flow Length=2,208' Tc=87.6 min CN=53 Runoff=32.55 cfs 8.132 af
Subcatchment 3S: Subcatchment #3	Runoff Area=433,657 sf 0.00% Impervious Runoff Depth>1.14" Flow Length=753' Tc=46.0 min CN=44 Runoff=4.65 cfs 0.946 af
Subcatchment4S: Subcatchment#4	Runoff Area=464,510 sf 0.00% Impervious Runoff Depth>3.39" Flow Length=1,007' Tc=36.5 min CN=68 Runoff=21.89 cfs 3.013 af
Subcatchment5S: Subcatchment#5	Runoff Area=502,048 sf 0.00% Impervious Runoff Depth>2.12" Flow Length=1,017' Tc=26.5 min CN=55 Runoff=15.98 cfs 2.032 af
Subcatchment6S: Subcatchment#6	Runoff Area=291,221 sf 0.00% Impervious Runoff Depth>0.98" Flow Length=888' Tc=44.0 min CN=42 Runoff=2.55 cfs 0.547 af
Subcatchment7S: Subcatchment#7	Runoff Area=44,849 sf 0.00% Impervious Runoff Depth>0.62" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.23 cfs 0.053 af
Subcatchment8S: Subcatchment#8	Runoff Area=241,146 sf 0.00% Impervious Runoff Depth>2.40" Flow Length=792' Tc=31.1 min CN=58 Runoff=8.32 cfs 1.106 af
Subcatchment9S: Subcatchment#9	Runoff Area=85,918 sf 1.13% Impervious Runoff Depth>2.40" Flow Length=417' Tc=21.9 min CN=58 Runoff=3.44 cfs 0.395 af
Subcatchment10S: Subcatchment#1	0 Runoff Area=15,853 sf 10.22% Impervious Runoff Depth>2.60" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.78 cfs 0.079 af
Reach 1R: Reach #1 n=0.080 L	Avg. Flow Depth=0.20' Max Vel=0.54 fps Inflow=8.03 cfs 1.242 af =2,168.8' S=0.0127 '/' Capacity=25.14 cfs Outflow=3.33 cfs 1.172 af
Reach 100R: Final Reach #100	Inflow=0.78 cfs 0.079 af Outflow=0.78 cfs 0.079 af
Reach 200R: Final Reach #200	Inflow=35.88 cfs 9.304 af Outflow=35.88 cfs 9.304 af
Reach 300R: Final Reach #300	Inflow=4.65 cfs 0.946 af Outflow=4.65 cfs 0.946 af
Reach 400R: Final Reach #400	Inflow=21.89 cfs 3.013 af Outflow=21.89 cfs 3.013 af
Reach 500R: Final Reach #500	Inflow=15.98 cfs 2.032 af Outflow=15.98 cfs 2.032 af

20-065 Existing Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software So	Type III 24-hr 50Yr-24Hr Rainfall=7.01"Printed 12/7/2023plutions LLCPage 8		
Reach 600R: Final Reach #600	Inflow=2.55 cfs 0.547 af Outflow=2.55 cfs 0.547 af		
Reach 700R: Final Reach #700	Inflow=0.23 cfs 0.053 af Outflow=0.23 cfs 0.053 af		
Reach 800R: Final Reach #800	Inflow=8.32 cfs 1.106 af Outflow=8.32 cfs 1.106 af		
Reach 900R: Final Reach #900	Inflow=3.44 cfs 0.395 af Outflow=3.44 cfs 0.395 af		
	86' Storage=18,638 cf Inflow=12.81 cfs 1.534 af ary=8.03 cfs 1.242 af Outflow=8.04 cfs 1.258 af		
Total Runoff Area - 106 606 ac Runoff Volume - 17 837 af Average Runoff Denth - 2 01			

Total Runoff Area = 106.696 acRunoff Volume = 17.837 afAverage Runoff Depth = 2.01"99.47% Pervious = 106.133 ac0.53% Impervious = 0.563 ac

20-065 Existing Analysis Prepared by Berry Surveying & Engi HydroCAD® 10.00-25 s/n 07605 © 2019 P		2 <i>4Hr Rainfall=</i> 8.39" Printed 12/7/2023 Page 9
Runoff by SC	00-24.00 hrs, dt=0.05 hrs, 481 points x 3 S TR-20 method, UH=SCS, Weighted-CN r-Ind method - Pond routing by Dyn-Stor-Ind r	method
Subcatchment1S: Subcatchment#1	Runoff Area=321,010 sf 1.12% Impervious Flow Length=663' Tc=24.8 min CN=59 Run	•
Subcatchment2S: Subcatchment#2	Runoff Area=2,247,467 sf 0.82% Impervious Flow Length=2,208' Tc=87.6 min CN=53 Runo	•
Subcatchment3S: Subcatchment#3	Runoff Area=433,657 sf 0.00% Impervious Flow Length=753' Tc=46.0 min CN=44 Ru	
Subcatchment4S: Subcatchment#4	Runoff Area=464,510 sf 0.00% Impervious Flow Length=1,007' Tc=36.5 min CN=68 Run	•
Subcatchment5S: Subcatchment#5	Runoff Area=502,048 sf 0.00% Impervious Flow Length=1,017' Tc=26.5 min CN=55 Run	•
Subcatchment6S: Subcatchment#6	Runoff Area=291,221 sf 0.00% Impervious Flow Length=888' Tc=44.0 min CN=42 Ru	•
Subcatchment7S: Subcatchment#7	Runoff Area=44,849 sf 0.00% Impervious Flow Length=424' Tc=25.7 min CN=37 Ru	
Subcatchment8S: Subcatchment#8	Runoff Area=241,146 sf 0.00% Impervious Flow Length=792' Tc=31.1 min CN=58 Run	
Subcatchment9S: Subcatchment#9	Runoff Area=85,918 sf 1.13% Impervious Flow Length=417' Tc=21.9 min CN=58 Ru	•
Subcatchment10S: Subcatchment#1	0 Runoff Area=15,853 sf 10.22% Impervious Flow Length=226' Tc=16.6 min CN=60 Ru	•
Reach 1R: Reach #1 n=0.080 L	Avg. Flow Depth=0.26' Max Vel=0.65 fps Infle =2,168.8' S=0.0127 '/' Capacity=25.14 cfs Out	
Reach 100R: Final Reach #100		flow=1.10 cfs 0.110 af flow=1.10 cfs 0.110 af
Reach 200R: Final Reach #200		w=55.70 cfs 13.618 af w=55.70 cfs 13.618 af
Reach 300R: Final Reach #300		flow=8.30 cfs 1.503 af flow=8.30 cfs 1.503 af
Reach 400R: Final Reach #400		ow=29.36 cfs 4.026 af ow=29.36 cfs 4.026 af
Reach 500R: Final Reach #500		ow=23.71 cfs 2.914 af ow=23.71 cfs 2.914 af
	Outfl	ow=23.71 cts 2.914 af

20-065 Existing Analysis 7Prepared by Berry Surveying & Engineering7HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solut	Type III 24-hr 100Yr-24Hr Rainfall=8.39" Printed 12/7/2023 tions LLC Page 10
Reach 600R: Final Reach #600	Inflow=4.83 cfs 0.894 af
	Outflow=4.83 cfs 0.894 af
Reach 700R: Final Reach #700	Inflow=0.55 cfs 0.096 af
	Outflow=0.55 cfs 0.096 af
Reach 800R: Final Reach #800	Inflow=11.98 cfs 1.556 af
	Outflow=11.98 cfs 1.556 af
Reach 900R: Final Reach #900	Inflow=4.97 cfs 0.556 af
	Outflow=4.97 cfs 0.556 af
	Storage=22,461 cf Inflow=18.29 cfs 2.145 af
Discarded=0.02 cfs 0.016 af Primary=1	14.18 cfs 1.848 af Outflow=14.20 cfs 1.864 af

Total Runoff Area = 106.696 acRunoff Volume = 25.653 afAverage Runoff Depth = 2.89"99.47% Pervious = 106.133 ac0.53% Impervious = 0.563 ac

Area Listing (all nodes)

Area	CN	Description			
(acres)		(subcatchment-numbers)			
1.282	39	>75% Grass cover, Good, HSG A (2S)			
0.194	61	>75% Grass cover, Good, HSG B (2S, 10S)			
0.008	74	>75% Grass cover, Good, HSG C (10S)			
0.040	80	>75% Grass cover, Good, HSG D (1S)			
0.089	30	Meadow, non-grazed, HSG A (7S)			
0.214	58	Meadow, non-grazed, HSG B (7S, 9S)			
0.031	71	Meadow, non-grazed, HSG C (7S, 9S)			
0.052	98	Paved parking, HSG B (1S, 9S, 10S)			
0.018	98	Paved parking, HSG C (9S, 10S)			
0.072	98	Paved parking, HSG D (1S)			
0.306	98	Unconnected pavement, HSG A (2S)			
0.048	98	Unconnected pavement, HSG B (2S)			
0.046	98	Unconnected roofs, HSG A (2S)			
0.022	98	Unconnected roofs, HSG B (2S)			
25.092	30	Woods, Good, HSG A (1S, 2S, 3S, 5S, 6S, 7S, 8S)			
46.953	55	Woods, Good, HSG B (1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S)			
29.098	70	Woods, Good, HSG C (1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S)			
3.130	77	Woods, Good, HSG D (2S, 3S, 5S, 6S)			
106.696	54	TOTAL AREA			

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
26.814	HSG A	1S, 2S, 3S, 5S, 6S, 7S, 8S
47.483	HSG B	1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S
29.156	HSG C	1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S
3.243	HSG D	1S, 2S, 3S, 5S, 6S
0.000	Other	
106.696		TOTAL AREA

20-065 Existing Analysis

Prepared by Berry	Surveying	g & Engineering	
HydroCAD® 10.00-25	s/n 07605	© 2019 HydroCAD	Software Solutions LL

Printed 12/7/2023 LC Page 3

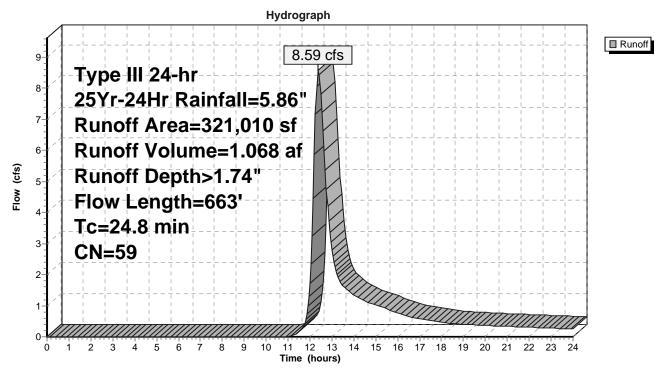
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
1.282	0.194	0.008	0.040	0.000	1.525	>75% Grass cover, Good	1S, 2S, 10S
0.089	0.214	0.031	0.000	0.000	0.335	Meadow, non-grazed	7S, 9S
0.000	0.052	0.018	0.072	0.000	0.142	Paved parking	1S, 9S, 10S
0.306	0.048	0.000	0.000	0.000	0.354	Unconnected pavement	2S
0.046	0.022	0.000	0.000	0.000	0.067	Unconnected roofs	2S
25.092	46.953	29.098	3.130	0.000	104.273	Woods, Good	1S, 2S,
							3S, 4S,
							5S, 6S,
							7S, 8S,
							9S, 10S
26.814	47.483	29.156	3.243	0.000	106.696	TOTAL AREA	

Ground Covers (all nodes)

20-065 Existing Analysis	Type III 24-hr 25Yr-24Hr Rainfall=5.86"
Prepared by Berry Surveying & Engineering	Printed 12/7/2023
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software	e Solutions LLC Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment#1	Runoff Area=321,010 sf 1.12% Impervious Runoff Depth>1.74" Flow Length=663' Tc=24.8 min CN=59 Runoff=8.59 cfs 1.068 af
Subcatchment 2S: Subcatchment #2	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Subcatchment3S: Subcatchment#3	Runoff Area=433,657 sf 0.00% Impervious Runoff Depth>0.67" Flow Length=753' Tc=46.0 min CN=44 Runoff=2.26 cfs 0.557 af
Subcatchment 4S: Subcatchment #4	Runoff Area=464,510 sf 0.00% Impervious Runoff Depth>2.49" Flow Length=1,007' Tc=36.5 min CN=68 Runoff=15.93 cfs 2.215 af
Subcatchment 5S: Subcatchment #5	Runoff Area=502,048 sf 0.00% Impervious Runoff Depth>1.43" Flow Length=1,017' Tc=26.5 min CN=55 Runoff=10.18 cfs 1.370 af
Subcatchment6S: Subcatchment#6	Runoff Area=291,221 sf 0.00% Impervious Runoff Depth>0.56" Flow Length=888' Tc=44.0 min CN=42 Runoff=1.13 cfs 0.310 af
Subcatchment7S: Subcatchment#7	Runoff Area=44,849 sf 0.00% Impervious Runoff Depth>0.30" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.07 cfs 0.026 af
Subcatchment8S: Subcatchment#8	Runoff Area=241,146 sf 0.00% Impervious Runoff Depth>1.66" Flow Length=792' Tc=31.1 min CN=58 Runoff=5.53 cfs 0.764 af
Subcatchment9S: Subcatchment#9	Runoff Area=85,918 sf 1.13% Impervious Runoff Depth>1.66" Flow Length=417' Tc=21.9 min CN=58 Runoff=2.28 cfs 0.273 af
Subcatchment10S: Subcatchment#1	0 Runoff Area=15,853 sf 10.22% Impervious Runoff Depth>1.82" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.53 cfs 0.055 af
Reach 1R: Reach #1 n=0.080 L	Avg. Flow Depth=0.14' Max Vel=0.43 fps Inflow=3.96 cfs 0.781 af =2,168.8' S=0.0127 '/' Capacity=25.14 cfs Outflow=1.56 cfs 0.723 af
Reach 100R: Final Reach #100	Inflow=0.53 cfs 0.055 af Outflow=0.53 cfs 0.055 af
Reach 200R: Final Reach #200	Inflow=21.52 cfs 6.099 af Outflow=21.52 cfs 6.099 af
Reach 300R: Final Reach #300	Inflow=2.26 cfs 0.557 af Outflow=2.26 cfs 0.557 af
Reach 400R: Final Reach #400	Inflow=15.93 cfs 2.215 af Outflow=15.93 cfs 2.215 af
Reach 500R: Final Reach #500	Inflow=10.18 cfs 1.370 af Outflow=10.18 cfs 1.370 af


20-065 Existing Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software So	Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/7/2023 Plutions LLC Page 5
Reach 600R: Final Reach #600	Inflow=1.13 cfs 0.310 af
	Outflow=1.13 cfs 0.310 af
Reach 700R: Final Reach #700	Inflow=0.07 cfs_0.026 af
	Outflow=0.07 cfs 0.026 af
Reach 800R: Final Reach #800	Inflow=5.53 cfs_0.764 af
	Outflow=5.53 cfs 0.764 af
Reach 900R: Final Reach #900	Inflow=2.28 cfs 0.273 af
	Outflow=2.28 cfs 0.273 af
	8.73' Storage=15,315 cf Inflow=8.59 cfs 1.068 af ary=3.96 cfs 0.781 af Outflow=3.98 cfs 0.796 af
Total Runoff Area = 106.696 ac Runoff Volur 99.47% Pervious	

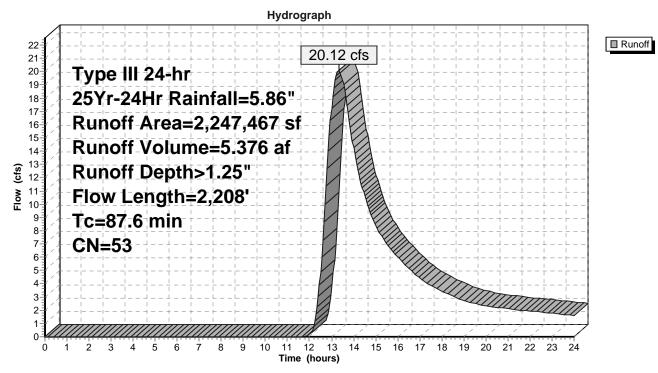
Summary for Subcatchment 1S: Subcatchment #1

Runoff = 8.59 cfs @ 12.38 hrs, Volume= 1.068 af, Depth> 1.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

A	rea (sf)	CN D	escription				
	435	98 P	aved park	ing, HSG B			
	3,156	98 P	aved park	ing, HSG D			
	51,043	30 V	Voods, Go	od, HSG A			
1	11,534	55 V	Voods, Go	od, HSG B			
1	53,082	70 V	Voods, Go	od, HSG C			
	1,760	80 >	>75% Grass cover, Good, HSG D				
3	21,010	59 V	Veighted A	verage			
3	17,419			vious Area			
	3,591	1	.12% Impe	ervious Area	a		
			·				
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
18.7	100	0.0300	0.09		Sheet Flow, Segment #1		
					Woods: Light underbrush n= 0.400 P2= 3.06"		
1.1	129	0.1512	1.94		Shallow Concentrated Flow, Segment #2		
					Woodland Kv= 5.0 fps		
2.4	219	0.0913	1.51		Shallow Concentrated Flow, Segment #3		
					Woodland Kv= 5.0 fps		
1.6	112	0.0538	1.16		Shallow Concentrated Flow, Segment #4		
					Woodland Kv= 5.0 fps		
0.3	47	0.3389	2.91		Shallow Concentrated Flow, Segment #5		
					Woodland Kv= 5.0 fps		
0.7	56	0.0710	1.33		Shallow Concentrated Flow, Segment #6		
					Woodland Kv= 5.0 fps		
24.8	663	Total					

Subcatchment 1S: Subcatchment #1


Summary for Subcatchment 2S: Subcatchment #2

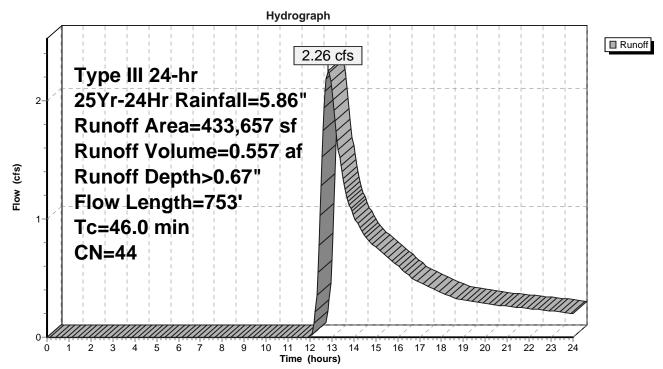
Runoff = 20.12 cfs @ 13.34 hrs, Volume= 5.376 af, Depth> 1.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

	Area (sf)	CN D	Description							
	1,982	98 L	98 Unconnected roofs, HSG A							
	55,833	39 >								
	13,331			ed pavemer						
	580,879	30 V	Voods, Go	od, HSG A						
	952	98 L	Inconnecte	ed roofs, HS	SG B					
	7,608	61 >	75% Gras	s cover, Go	ood, HSG B					
	2,097	98 L	Inconnecte	ed pavemer	nt, HSG B					
	925,073	55 V	Voods, Go	od, HSG B						
:	546,670	70 V	Voods, Go	od, HSG C						
	113,042	77 V	Voods, Go	od, HSG D						
2,	247,467	53 V	Veighted A	verage						
2,	229,105	9	9.18% Pei	vious Area						
	18,362	0	.82% Impe	ervious Area	a					
	18,362	1	00.00% U	nconnected	1					
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
22.0	100	0.0200	0.08		Sheet Flow, Segment #1					
					Woods: Light underbrush n= 0.400 P2= 3.06"					
19.0	506	0.0079	0.44		Shallow Concentrated Flow, Segment #2					
					Woodland Kv= 5.0 fps					
27.4	813	0.0098	0.49		Shallow Concentrated Flow, Segment #3					
					Woodland Kv= 5.0 fps					
8.3	367	0.0218	0.74		Shallow Concentrated Flow, Segment #4					
					Woodland Kv= 5.0 fps					
10.9	422	0.0166	0.64		Shallow Concentrated Flow, Segment #5					
					Woodland Kv= 5.0 fps					
076	2 200	Total								

87.6 2,208 Total

Subcatchment 2S: Subcatchment #2

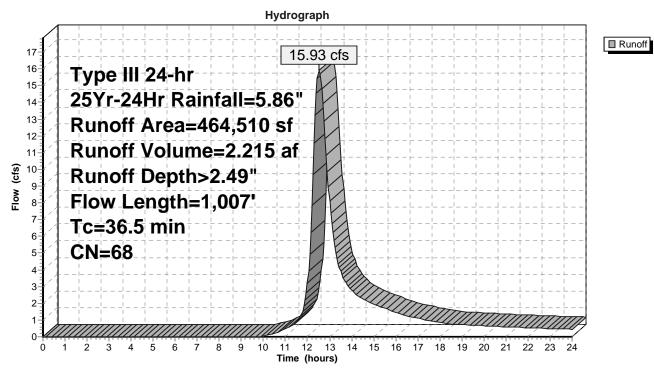

Summary for Subcatchment 3S: Subcatchment #3

Runoff = 2.26 cfs @ 12.84 hrs, Volume= 0.557 af, Depth> 0.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

	A	rea (sf)	CN	Description		
	2	20,867	30	Woods, Go	od, HSG A	
	1	75,802	55	Woods, Go	od, HSG B	
		35,137		Woods, Go	,	
		1,851	77	Woods, Go	od, HSG D	
	4	33,657	44	Weighted A	verage	
	4	33,657		100.00% Pe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
((min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	24.6	100	0.0150	0.07		Sheet Flow, Segment #1
						Woods: Light underbrush n= 0.400 P2= 3.06"
	2.3	106	0.0236	6 0.77		Shallow Concentrated Flow, Segment #2
						Woodland Kv= 5.0 fps
	19.1	547	0.0091	0.48		Shallow Concentrated Flow, Segment #3
						Woodland Kv= 5.0 fps
	46.0	753	Total			

Subcatchment 3S: Subcatchment #3

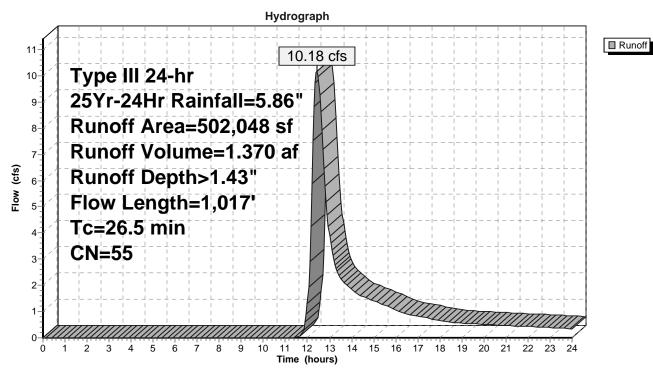

Summary for Subcatchment 4S: Subcatchment #4

Runoff = 15.93 cfs @ 12.53 hrs, Volume= 2.215 af, Depth> 2.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

Α	rea (sf)	CN D	escription		
	62,739	55 V	Voods, Go	od, HSG B	
4	01,771	70 V	Voods, Go	od, HSG C	
4	64,510	68 V	Veighted A	verage	
4	64,510	1	00.00% Pe	ervious Area	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.9	78	0.1150	0.15		Sheet Flow, 1
					Woods: Light underbrush n= 0.400 P2= 3.06"
5.0	23	0.0434	0.08		Sheet Flow, 2
					Woods: Light underbrush n= 0.400 P2= 3.06"
1.0	85	0.0823	1.43		Shallow Concentrated Flow, 3
	07	0 4704	0.40		Woodland $Kv = 5.0 \text{ fps}$
0.5	67	0.1791	2.12		Shallow Concentrated Flow, 4
0.7	24	0.0004	0.00		Woodland Kv= 5.0 fps
0.7	34	0.0294	0.86		Shallow Concentrated Flow, 5 Woodland Kv= 5.0 fps
0.4	23	0.0434	1.04		Shallow Concentrated Flow, 6
0.4	23	0.0434	1.04		Woodland Kv= 5.0 fps
0.8	35	0.0200	0.71		Shallow Concentrated Flow, 7
0.0	00	0.0200	0.7 1		Woodland Kv= 5.0 fps
0.2	23	0.1363	1.85		Shallow Concentrated Flow, 8
•					Woodland Kv= 5.0 fps
0.5	52	0.1176	1.71		Shallow Concentrated Flow, 9
					Woodland Kv= 5.0 fps
7.5	159	0.0050	0.35		Shallow Concentrated Flow, 10
					Woodland Kv= 5.0 fps
1.6	79	0.0256	0.80		Shallow Concentrated Flow, 11
					Woodland Kv= 5.0 fps
7.9	224	0.0089	0.47		Shallow Concentrated Flow, 12
	4.0-				Woodland Kv= 5.0 fps
1.5	125	0.0725	1.35		Shallow Concentrated Flow, 13
	4 007				Woodland Kv= 5.0 fps

36.5 1,007 Total


Subcatchment 4S: Subcatchment #4

Summary for Subcatchment 5S: Subcatchment #5

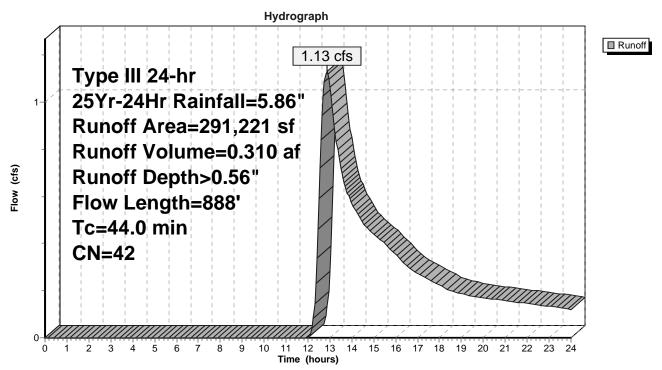
Runoff = 10.18 cfs @ 12.43 hrs, Volume= 1.370 af, Depth> 1.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

Α	rea (sf)	CN D	Description		
	19,851	30 V	Voods, Go	od, HSG A	
4	39,083	55 V	Voods, Go	od, HSG B	
	35,954	70 V	Voods, Go	od, HSG C	
	7,160	77 V	Voods, Go	od, HSG D	
5	02,048	55 V	Veighted A	verage	
5	02,048	1	00.00% Pe	ervious Area	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.6	100	0.0400	0.10		Sheet Flow, Segment #1
					Woods: Light underbrush n= 0.400 P2= 3.06"
2.4	239	0.1129	1.68		Shallow Concentrated Flow, Segment #2
					Woodland Kv= 5.0 fps
1.0	164	0.2808	2.65		Shallow Concentrated Flow, Segment #3
					Woodland Kv= 5.0 fps
3.0	242	0.0743	1.36		Shallow Concentrated Flow, Segment #4
					Woodland Kv= 5.0 fps
0.3	48	0.2496	2.50		Shallow Concentrated Flow, Segment #5
					Woodland Kv= 5.0 fps
3.2	224	0.0535	1.16		Shallow Concentrated Flow, Segment #6
					Woodland Kv= 5.0 fps
26.5	1,017	Total			

Subcatchment 5S: Subcatchment #5

Summary for Subcatchment 6S: Subcatchment #6

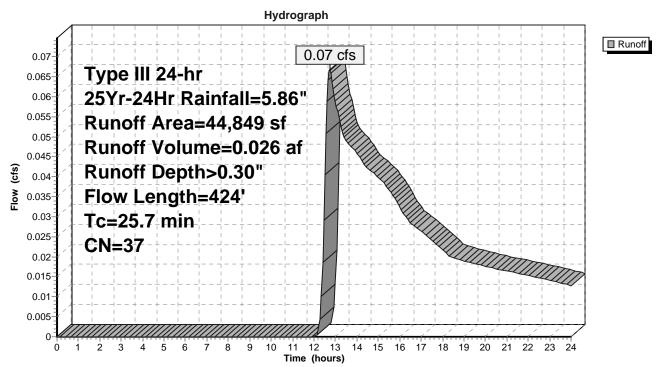

Runoff = 1.13 cfs @ 12.85 hrs, Volume= 0.310 af, Depth> 0.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

_	A	rea (sf)	CN	Description		
	1	79,805	30	Woods, Go	od, HSG A	
		78,325	55	Woods, Go	od, HSG B	
		18,788		Woods, Go		
_		14,303	77	Woods, Go	od, HSG D	
	2	91,221		Weighted A		
	2	91,221		100.00% Pe	ervious Are	a
	То	Longth	Slope	Volocity	Conocity	Description
	Tc (min)	Length	Slope (ft/ft)	•	Capacity (cfs)	Description
-		(feet)			(015)	
	12.5	100	0.0825	0.13		Sheet Flow, Segment #1
						Woods: Light underbrush n= 0.400 P2= 3.06"
	1.8	119	0.0482	1.10		Shallow Concentrated Flow, Segment #2
						Woodland Kv= 5.0 fps
	1.6	149	0.1008	1.59		Shallow Concentrated Flow, Segment #3
						Woodland Kv= 5.0 fps
	28.1	520	0.0038	0.31		Shallow Concentrated Flow, Segment #4
_						Woodland Kv= 5.0 fps

44.0 888 Total

Subcatchment 6S: Subcatchment #6

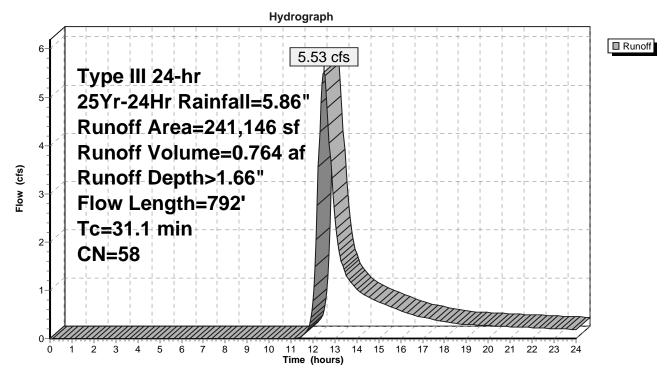

Summary for Subcatchment 7S: Subcatchment #7

Runoff = 0.07 cfs @ 12.73 hrs, Volume= 0.026 af, Depth> 0.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

A	rea (sf)	CN I	Description						
	30,264	30 \	Noods, Go	/oods, Good, HSG A					
	6,501	55 \	Voods, Good, HSG B						
	1,500		Woods, Good, HSG C						
	3,889		Meadow, non-grazed, HSG A						
	1,549		Meadow, non-grazed, HSG B						
	1,146	71 I	Meadow, non-grazed, HSG C						
	44,849	37 \	37 Weighted Average						
	44,849		a						
Тс	Length	Slope		Capacity	Description				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
					Sheet Flow, Segment #1				
(min)	(feet)	(ft/ft)	(ft/sec)						
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" Shallow Concentrated Flow, Segment #2				
<u>(min)</u> 17.6	(feet) 100	(ft/ft) 0.0350 0.0137	(ft/sec) 0.09		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" Shallow Concentrated Flow, Segment #2 Woodland Kv= 5.0 fps				
<u>(min)</u> 17.6	(feet) 100	(ft/ft) 0.0350	(ft/sec) 0.09		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" Shallow Concentrated Flow, Segment #2 Woodland Kv= 5.0 fps Shallow Concentrated Flow, Segment #3				
(min) 17.6 7.3	(feet) 100 256	(ft/ft) 0.0350 0.0137	(ft/sec) 0.09 0.59		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" Shallow Concentrated Flow, Segment #2 Woodland Kv= 5.0 fps				

Subcatchment 7S: Subcatchment #7


Summary for Subcatchment 8S: Subcatchment #8

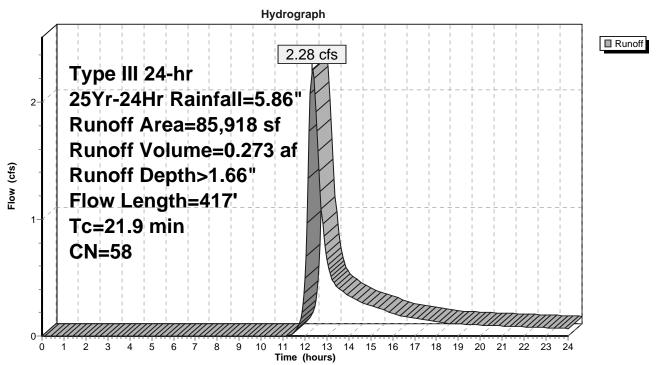
Runoff = 5.53 cfs @ 12.48 hrs, Volume= 0.764 af, Depth> 1.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

A	rea (sf)	CN [Description		
	10,293	30 V	Voods, Go	od, HSG A	
1	70,503	55 N	Voods, Go	od, HSG B	
	60,350	70 V	Voods, Go	od, HSG C	
2	241,146	58 V	Veighted A	verage	
2	241,146 100.00% Pervious Area		ervious Are	a	
_		~		•	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.2	100	0.0500	0.11		Sheet Flow, Segment #1
					Woods: Light underbrush n= 0.400 P2= 3.06"
14.0	562	0.0178	0.67		Shallow Concentrated Flow, Segment #2
					Woodland Kv= 5.0 fps
1.9	130	0.0538	1.16		Shallow Concentrated Flow, Segment #3
					Woodland Kv= 5.0 fps
31.1	792	Total			

Subcatchment 8S: Subcatchment #8

Summary for Subcatchment 9S: Subcatchment #9

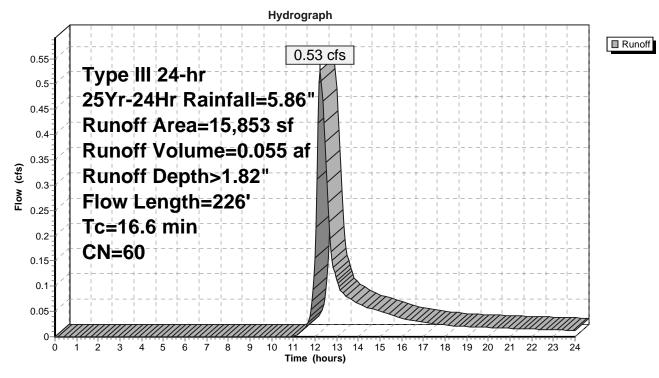

Runoff = 2.28 cfs @ 12.34 hrs, Volume= 0.273 af, Depth> 1.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

_	A	rea (sf)	CN [Description		
		678	98 F	Paved park	ing, HSG B	3
		290	98 F	Paved park	ing, HSG C	
		62,963	55 \	Noods, Go	od, HSG B	
		7,784	58 N	Meadow, no	on-grazed,	HSG B
		214			on-grazed,	
_		13,989	70 \	Noods, Go	od, HSG C	
		85,918	58 \	Neighted A	verage	
		84,950	ç	98.87% Pei	rvious Area	
		968	1	I.13% Impe	ervious Area	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.2	100	0.0500	0.11		Sheet Flow, Segment #1
						Woods: Light underbrush n= 0.400 P2= 3.06"
	6.7	317	0.0252	0.79		Shallow Concentrated Flow, Segment #2
_						Woodland Kv= 5.0 fps
	21.0	117	Total			

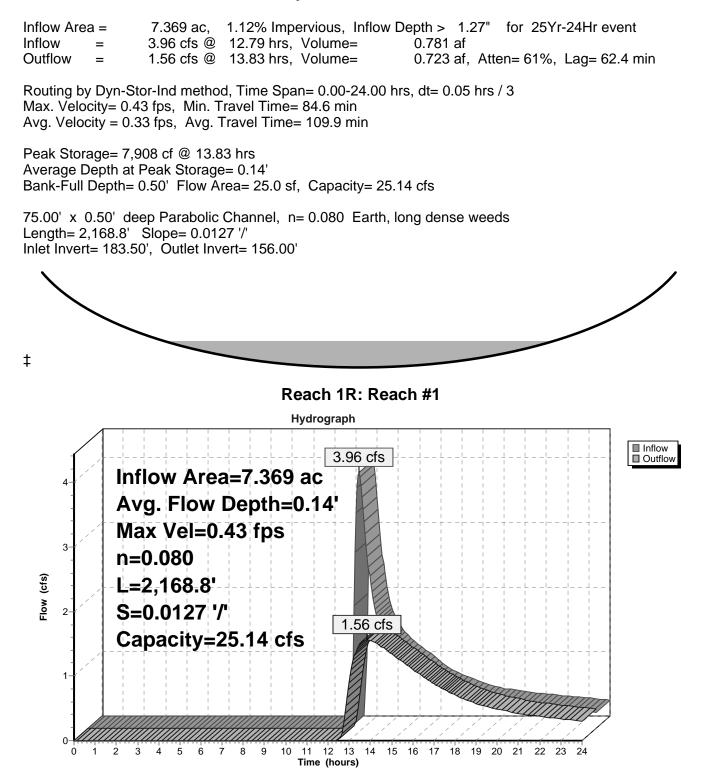
21.9 417 Total

Subcatchment 9S: Subcatchment #9



Summary for Subcatchment 10S: Subcatchment #10

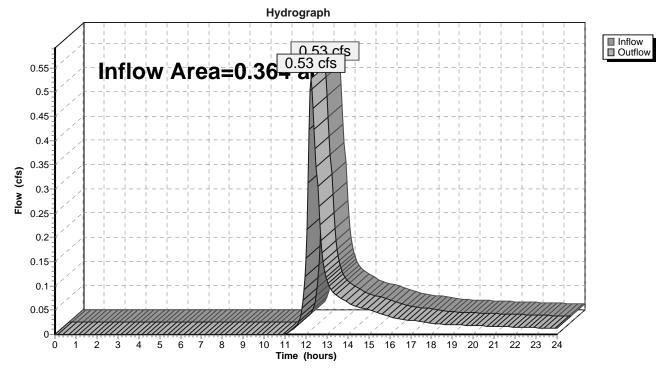
Runoff = 0.53 cfs @ 12.25 hrs, Volume= 0.055 af, Depth> 1.82"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

^	rea (sf)	CN E	Description						
	1,134	98 F	Paved parking, HSG B						
	486	98 F	Paved parking, HSG C						
	12,737	55 V	Woods, Good, HSG B						
	275	70 V	Woods, Good, HSG C						
	855	61 >	75% Gras	s cover, Go	ood, HSG B				
	366	74 >	75% Gras	s cover, Go	ood, HSG C				
	15,853	60 V	Veighted A	verage					
	14,233	8	9.78% Pei	vious Area					
	1,620	1	0.22% Imp	pervious Ar	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
12.1	80	0.0563	0.11						
			• • • •		Sheet Flow, Segment #1				
			••••		Woods: Light underbrush n= 0.400 P2= 3.06"				
2.4	20	0.1990	0.14		Woods: Light underbrush n= 0.400 P2= 3.06" Sheet Flow, Segment #2				
	20	0.1990			Woods: Light underbrush n= 0.400 P2= 3.06" Sheet Flow, Segment #2 Woods: Light underbrush n= 0.400 P2= 3.06"				
2.4 2.1	20 126	0.1990 0.0398			Woods: Light underbrush n= 0.400 P2= 3.06" Sheet Flow, Segment #2 Woods: Light underbrush n= 0.400 P2= 3.06" Shallow Concentrated Flow, Segment #3				
			0.14		Woods: Light underbrush n= 0.400 P2= 3.06" Sheet Flow, Segment #2 Woods: Light underbrush n= 0.400 P2= 3.06"				
			0.14		Woods: Light underbrush n= 0.400 P2= 3.06" Sheet Flow, Segment #2 Woods: Light underbrush n= 0.400 P2= 3.06"				

Subcatchment 10S: Subcatchment #10

Summary for Reach 1R: Reach #1

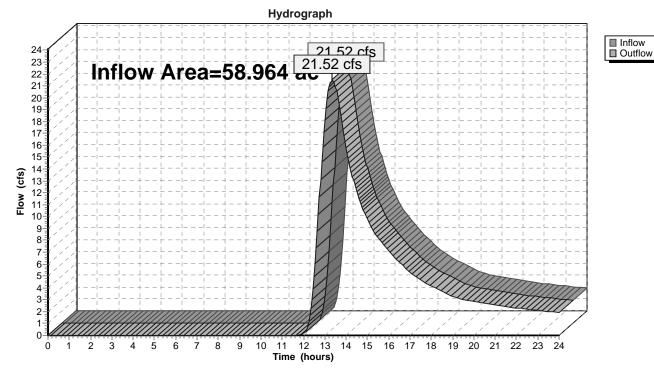


Summary for Reach 100R: Final Reach #100

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	0.364 ac, 1	0.22% Imp	ervious,	Inflow Depth	n > 1.82"	for 25Yr-24Hr event
Inflow	=	0.53 cfs @	12.25 hrs,	Volume	= 0.0	055 af	
Outflow	=	0.53 cfs @	12.25 hrs,	Volume	= 0.0	055 af, Att	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

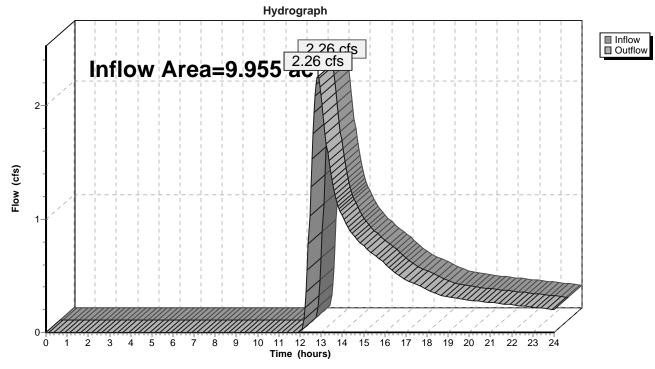

Reach 100R: Final Reach #100

Summary for Reach 200R: Final Reach #200

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	58.964 ac,	0.85% Impervious, Inflow E	Depth > 1.24"	for 25Yr-24Hr event
Inflow	=	21.52 cfs @	13.35 hrs, Volume=	6.099 af	
Outflow	=	21.52 cfs @	13.35 hrs, Volume=	6.099 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

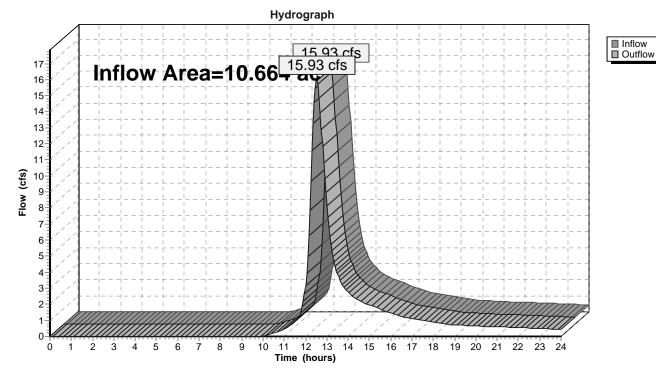

Reach 200R: Final Reach #200

Summary for Reach 300R: Final Reach #300

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	9.955 ac,	0.00% Impervious, Inflow	/ Depth > 0.67"	for 25Yr-24Hr event
Inflow	=	2.26 cfs @	12.84 hrs, Volume=	0.557 af	
Outflow	=	2.26 cfs @	12.84 hrs, Volume=	0.557 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

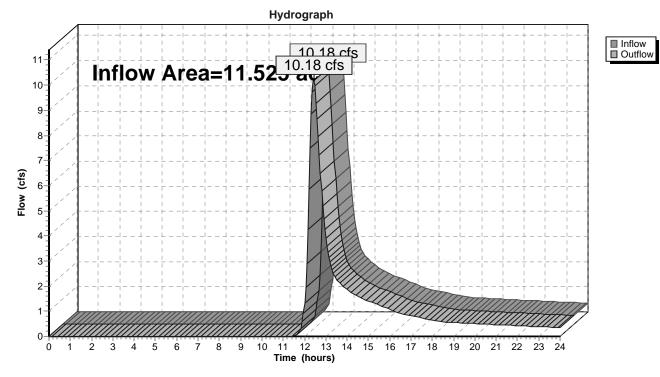

Reach 300R: Final Reach #300

Summary for Reach 400R: Final Reach #400

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	10.664 ac,	0.00% Impervious, Inflow [Depth > 2.49"	for 25Yr-24Hr event
Inflow	=	15.93 cfs @	12.53 hrs, Volume=	2.215 af	
Outflow	=	15.93 cfs @	12.53 hrs, Volume=	2.215 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

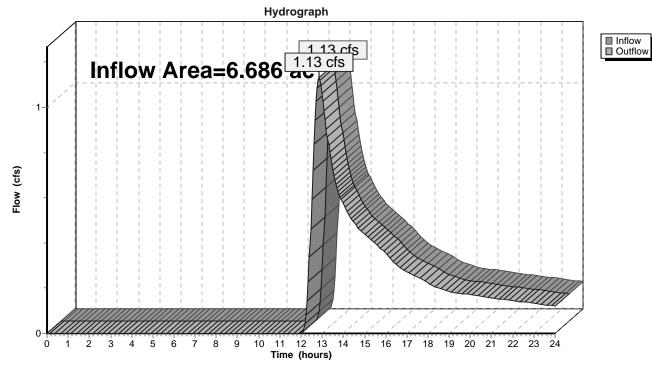

Reach 400R: Final Reach #400

Summary for Reach 500R: Final Reach #500

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		11.525 ac,	0.00% Impervious, In	flow Depth > 1.43"	for 25Yr-24Hr event
Inflow	=	10.18 cfs @	12.43 hrs, Volume=	1.370 af	
Outflow	=	10.18 cfs @	12.43 hrs, Volume=	1.370 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

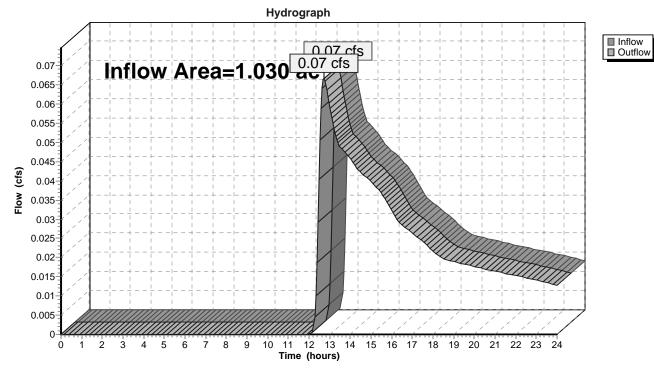

Reach 500R: Final Reach #500

Summary for Reach 600R: Final Reach #600

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	6.686 ac,	0.00% Impervious, Inflow	Depth > 0.56"	for 25Yr-24Hr event
Inflow	=	1.13 cfs @	12.85 hrs, Volume=	0.310 af	
Outflow	=	1.13 cfs @	12.85 hrs, Volume=	0.310 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

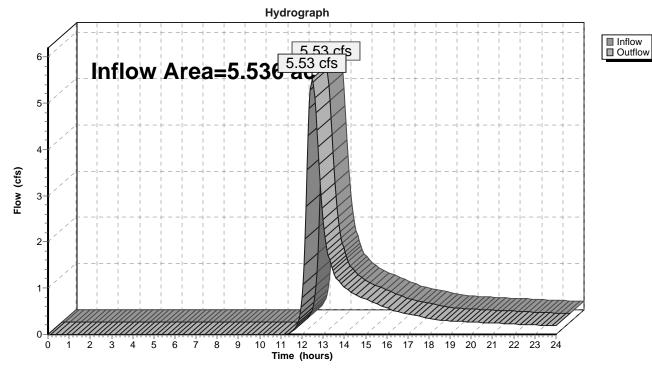

Reach 600R: Final Reach #600

Summary for Reach 700R: Final Reach #700

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	= 1.0	30 ac, 0.00% l	mpervious,	Inflow Depth >	0.30" fo	or 25Yr-24Hr event
Inflow =	0.07	7 cfs @ 12.73 h	irs, Volume	= 0.026	af	
Outflow =	0.07	7 cfs @ 12.73 h	irs, Volume	= 0.026	af, Atten:	= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

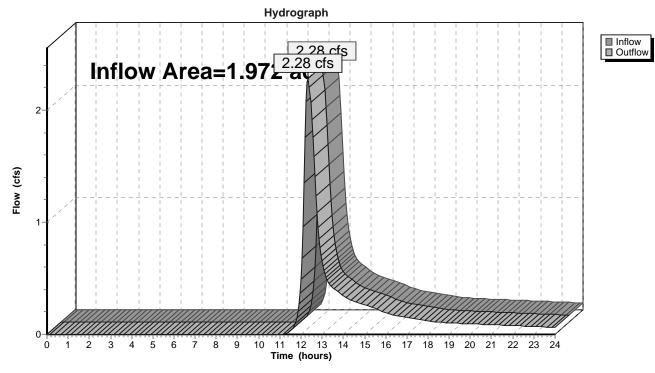

Reach 700R: Final Reach #700

Summary for Reach 800R: Final Reach #800

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	5.536 ac,	0.00% Impervious, Inflow	Depth > 1.66"	for 25Yr-24Hr event
Inflow =	5.53 cfs @	12.48 hrs, Volume=	0.764 af	
Outflow =	5.53 cfs @	12.48 hrs, Volume=	0.764 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3


Reach 800R: Final Reach #800

Summary for Reach 900R: Final Reach #900

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	1.972 ac,	1.13% Impervious, Inflow I	Depth > 1.66"	for 25Yr-24Hr event
Inflow	=	2.28 cfs @	12.34 hrs, Volume=	0.273 af	
Outflow	=	2.28 cfs @	12.34 hrs, Volume=	0.273 af, Atte	en= 0%, Lag= 0.0 min

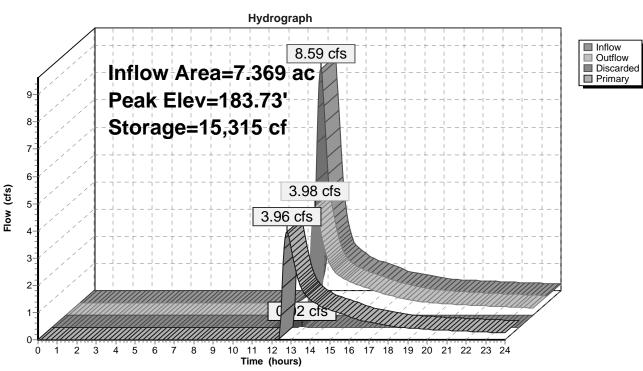
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Reach 900R: Final Reach #900

Summary for Pond 1P: Pond #1

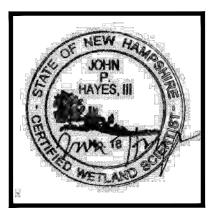
Inflow Area =	7.369 ac,	1.12% Impervious, Inflow De	epth > 1.74" for 25Yr-24Hr event
Inflow =	8.59 cfs @	12.38 hrs, Volume=	1.068 af
Outflow =	3.98 cfs @	12.79 hrs, Volume=	0.796 af, Atten= 54%, Lag= 24.7 min
Discarded =	0.02 cfs @	12.83 hrs, Volume=	0.015 af
Primary =	3.96 cfs @	12.79 hrs, Volume=	0.781 af

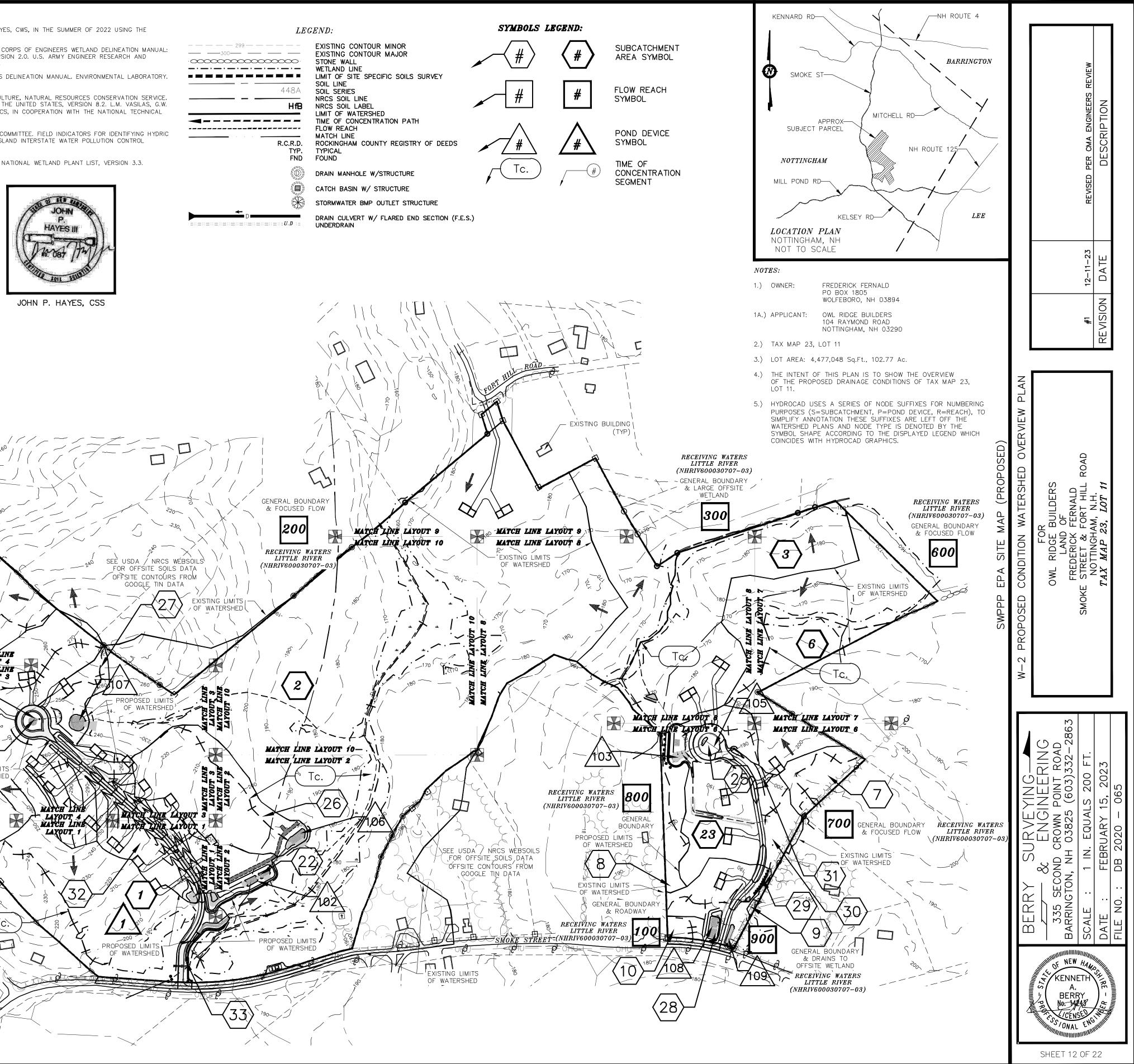
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 183.73' @ 12.83 hrs Surf.Area= 23,487 sf Storage= 15,315 cf

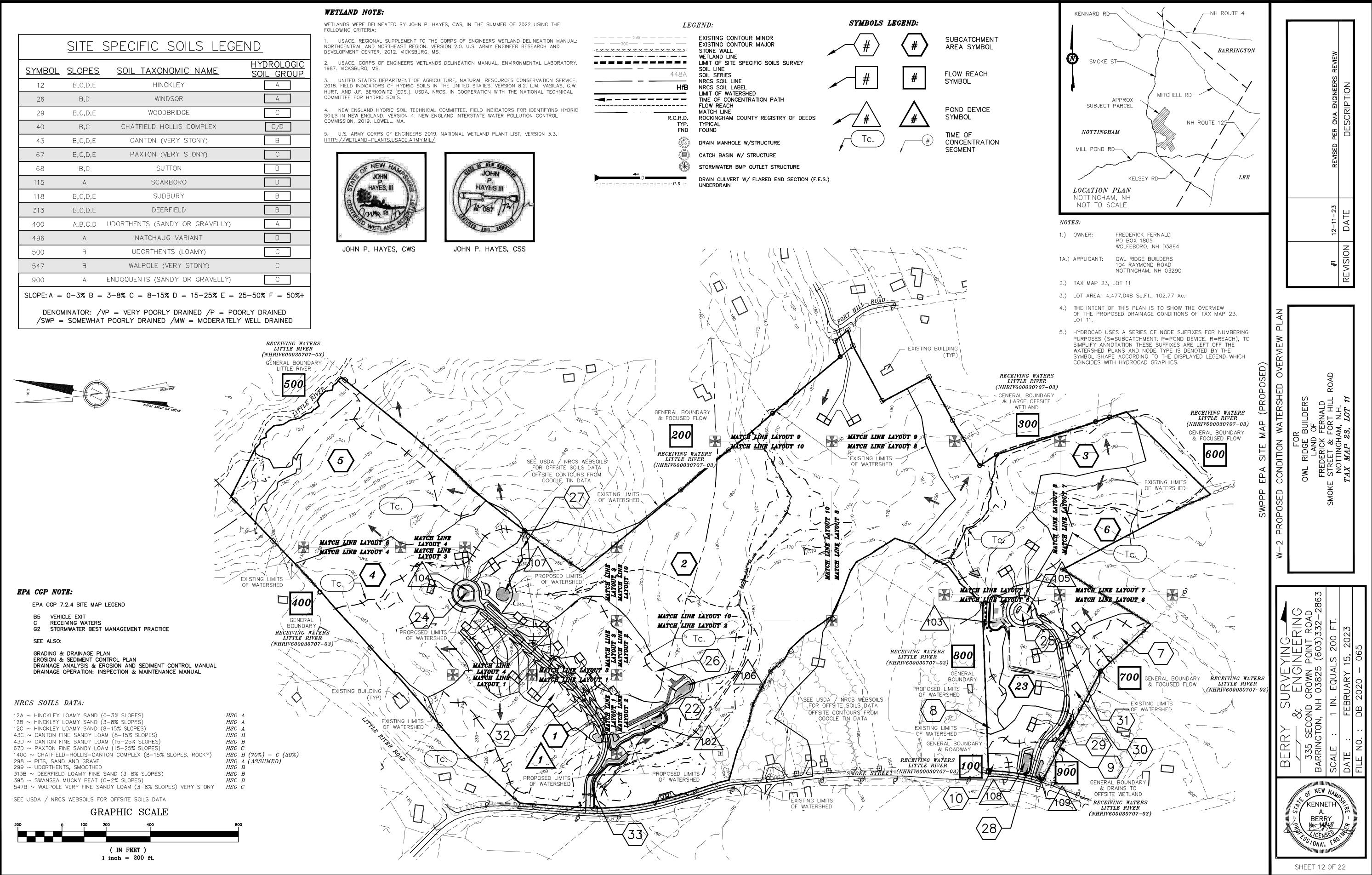

Plug-Flow detention time= 161.7 min calculated for 0.796 af (75% of inflow) Center-of-Mass det. time= 68.6 min (949.4 - 880.7)

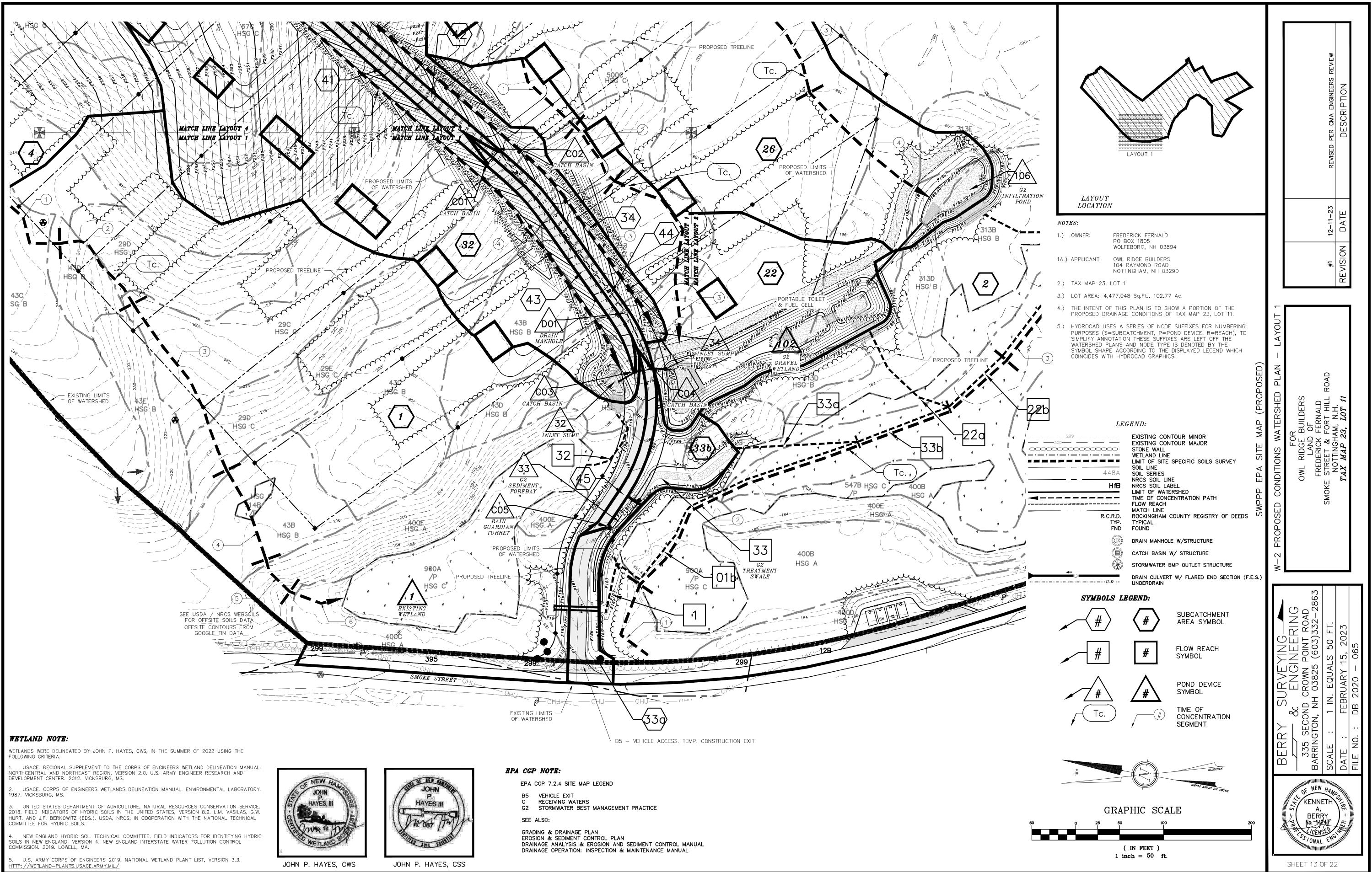
Volume	Inve	ert Avail.S	Storage	Storage Description	on		
#1	182.5	0' 22	,461 cf	Open Water Stor	age (Irregular) Liste	ed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
182.5 183.0 184.0	00	596 12,210 28,701	133.6 625.2 903.8	0 2,584 19,877	0 2,584 22,461	596 30,281 64,188	
Device	Routing	Inve	rt Outle	et Devices			
#1	Primary	183.5	Head	long x 30.0' brea d (feet) 0.20 0.40 . (English) 2.68 2.	0.60 0.80 1.00 1		
#2	Discarde	d 182.5		0 in/hr Exfiltration			

Discarded OutFlow Max=0.02 cfs @ 12.83 hrs HW=183.73' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

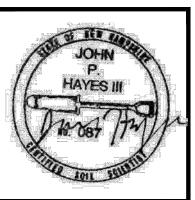

Primary OutFlow Max=3.96 cfs @ 12.79 hrs HW=183.72' TW=183.57' (Dynamic Tailwater) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 3.96 cfs @ 1.17 fps)

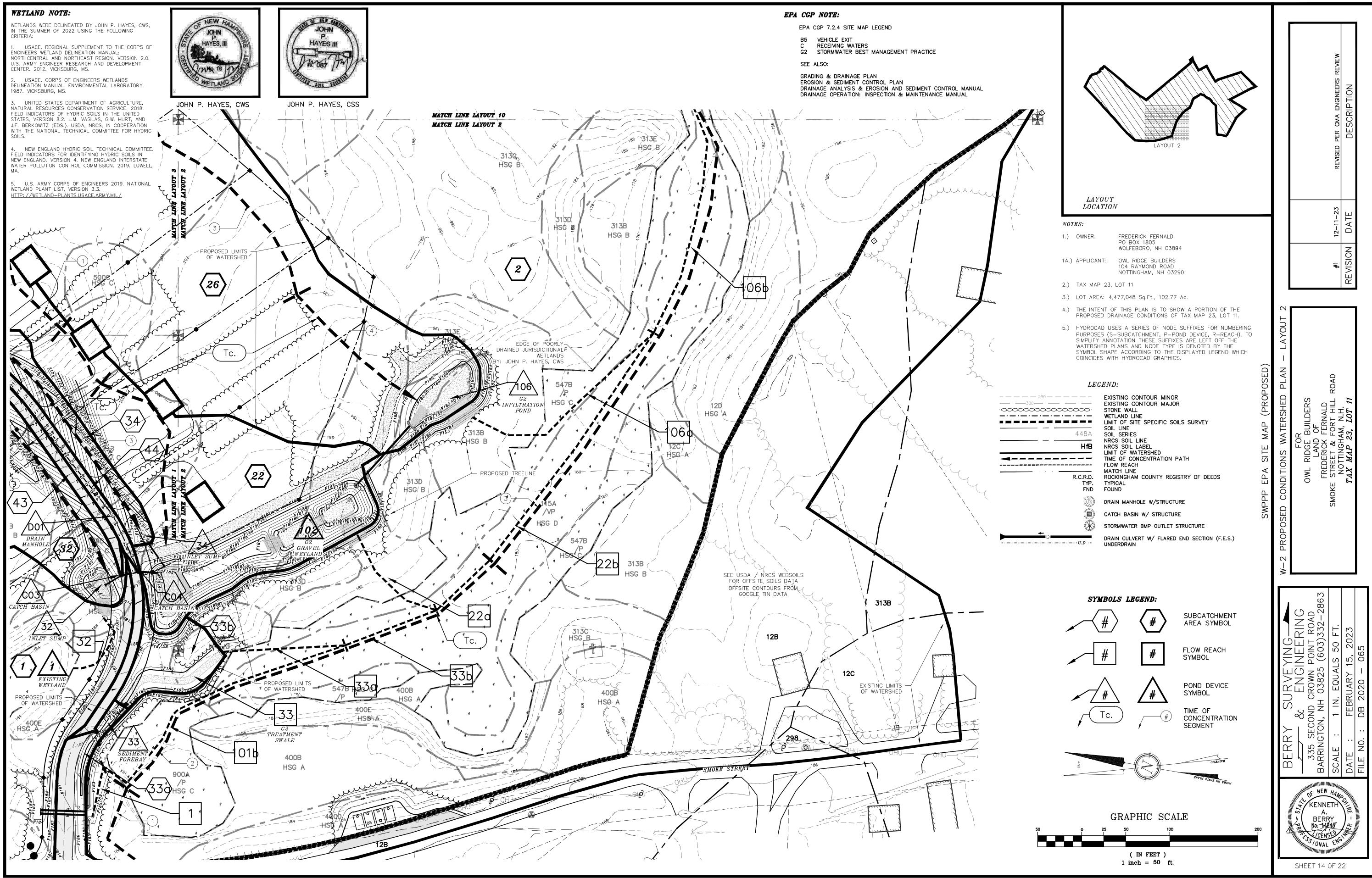

Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/7/2023 ions LLC Page 32

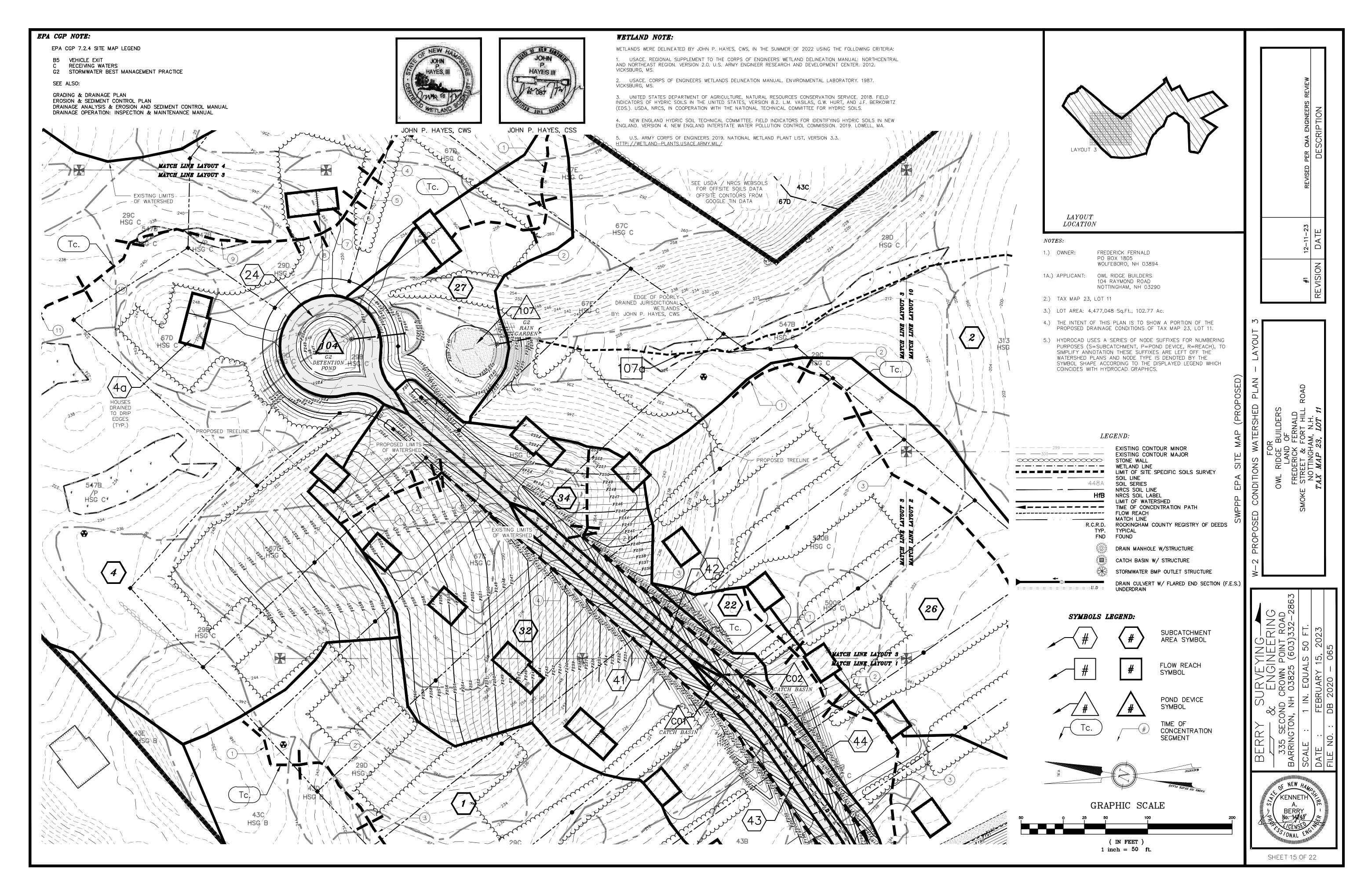


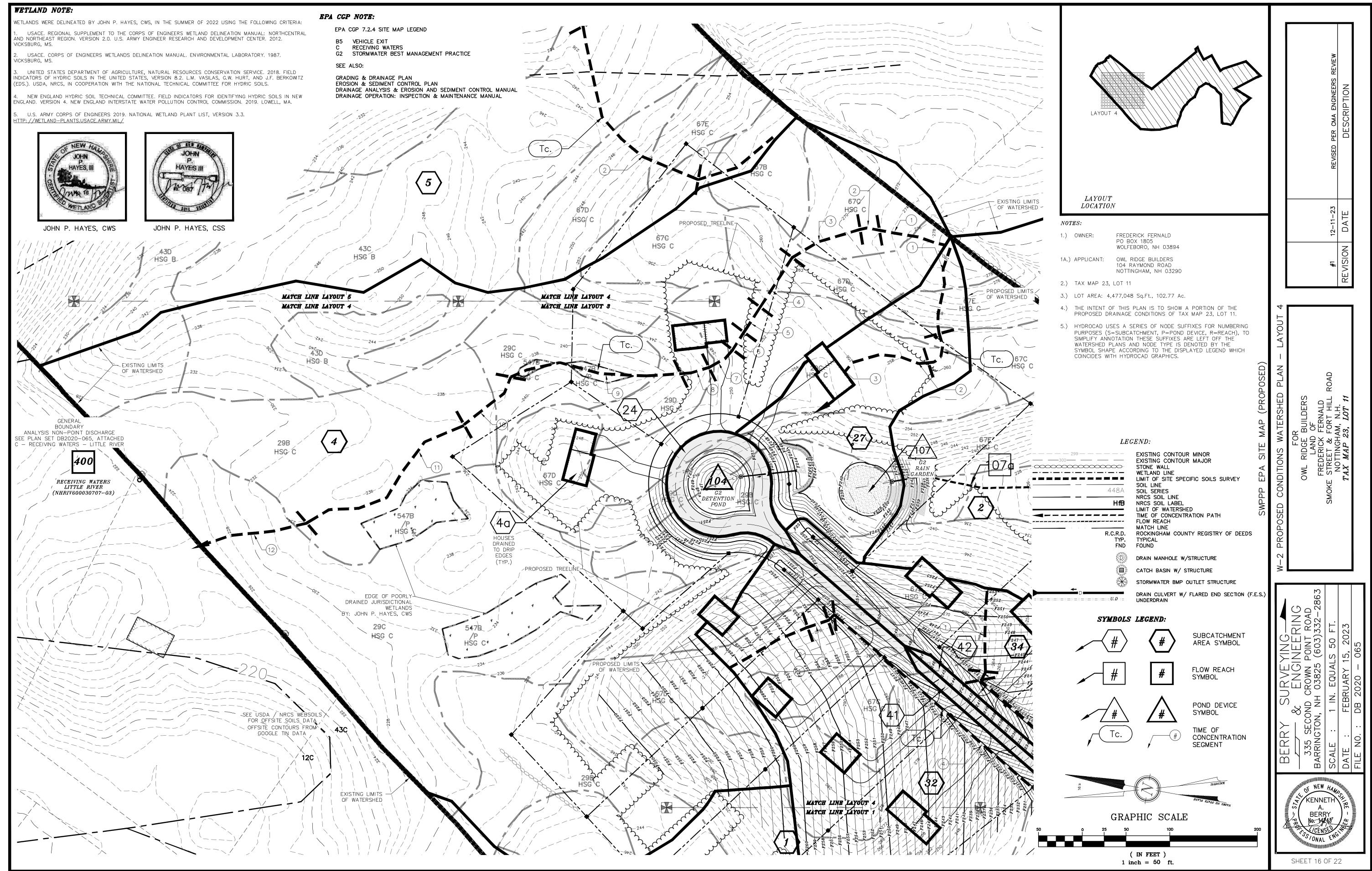

Pond 1P: Pond #1

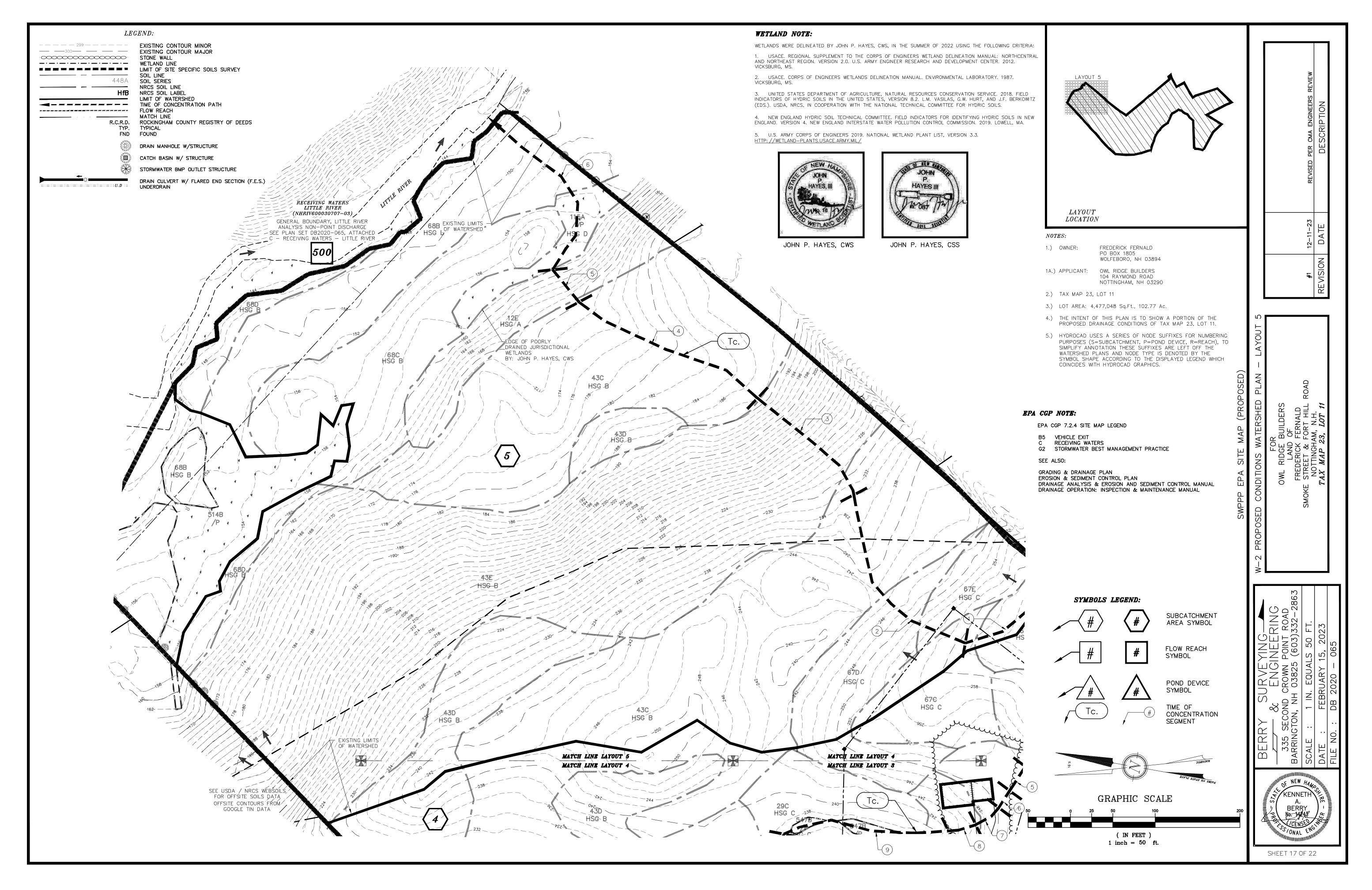
	<u>SITE</u>	<u>SPECIFIC SOILS LEGE</u>	<u>ND</u>
<u>SYMBOL</u>	<u>SLOPES</u>	SOIL TAXONOMIC NAME	HYDROLOGI SOIL GROU
12	B,C,D,E	HINCKLEY	A
26	B,D	WINDSOR	A
29	B,C,D,E	WOODBRIDGE	С
40	B,C	CHATFIELD HOLLIS COMPLEX	C/D
43	B,C,D,E	CANTON (VERY STONY)	В
67	B,C,D,E	PAXTON (VERY STONY)	С
68	B,C	SUTTON	В
115	А	SCARBORO	D
118	B,C,D,E	SUDBURY	В
313	B,C,D,E	DEERFIELD	В
400	A,B,C,D	UDORTHENTS (SANDY OR GRAVELLY)	A
496	А	NATCHAUG VARIANT	D
500	В	UDORTHENTS (LOAMY)	С
547	В	WALPOLE (VERY STONY)	С
900	А	ENDOQUENTS (SANDY OR GRAVELLY)	С

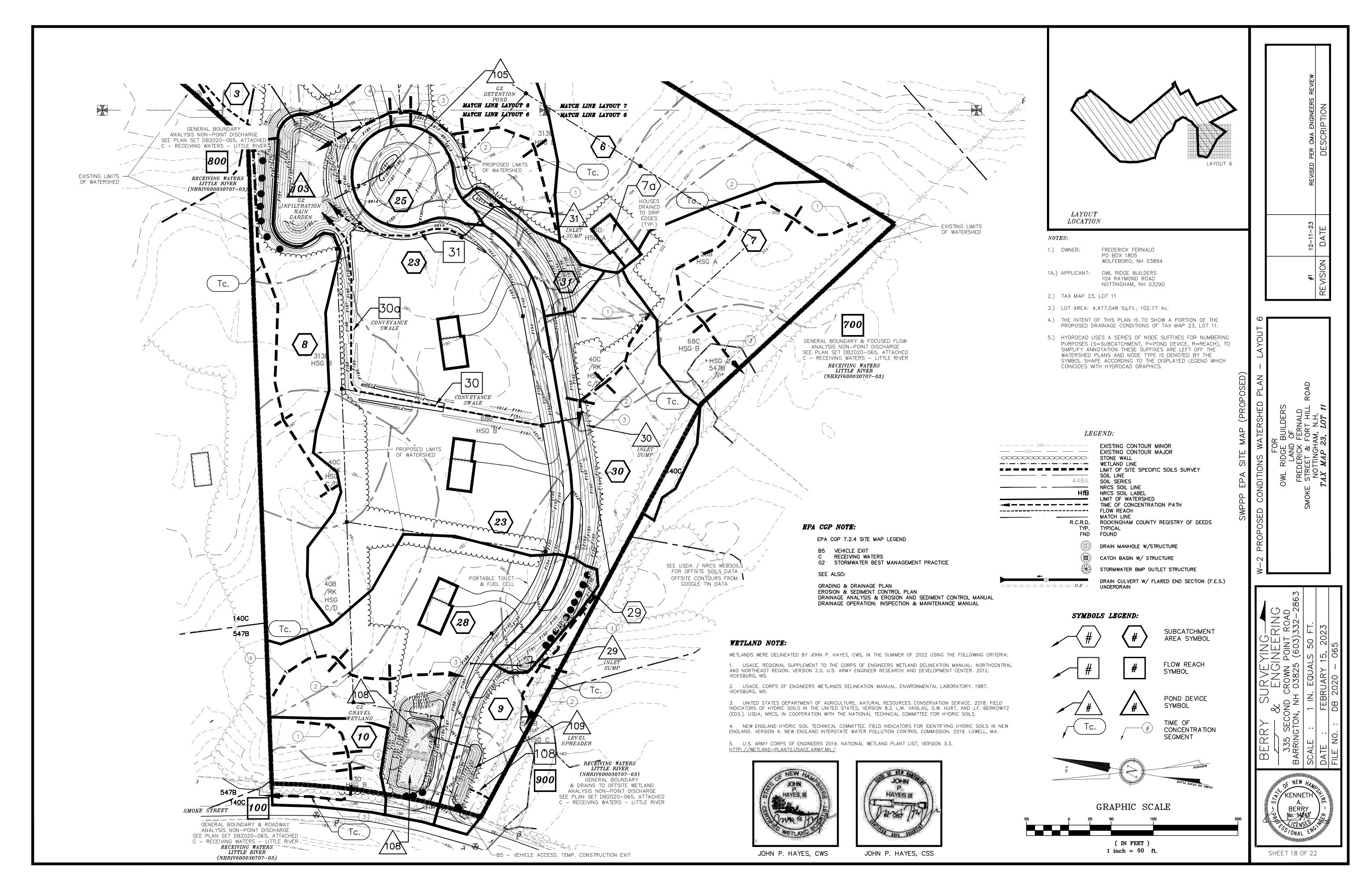


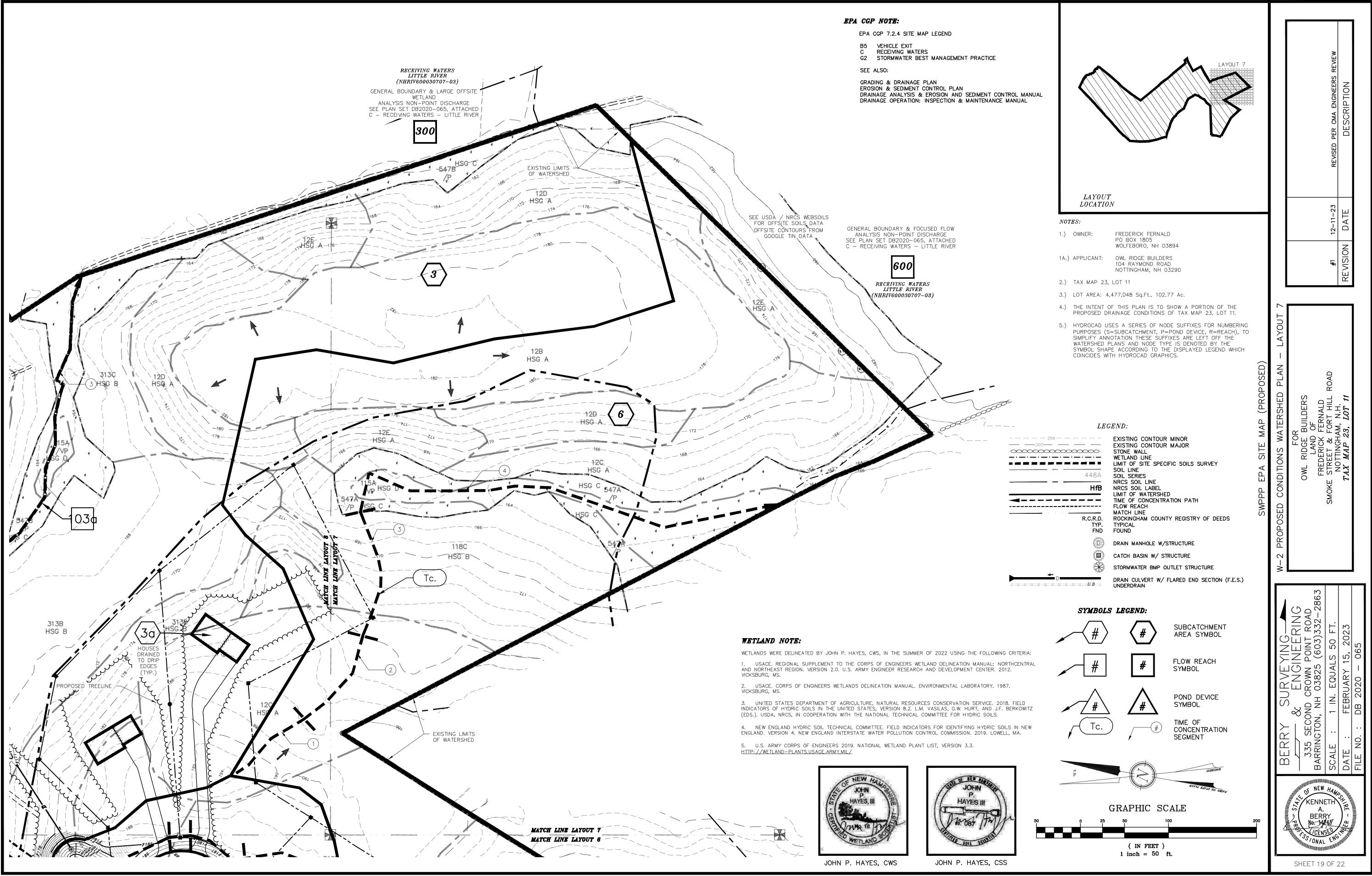


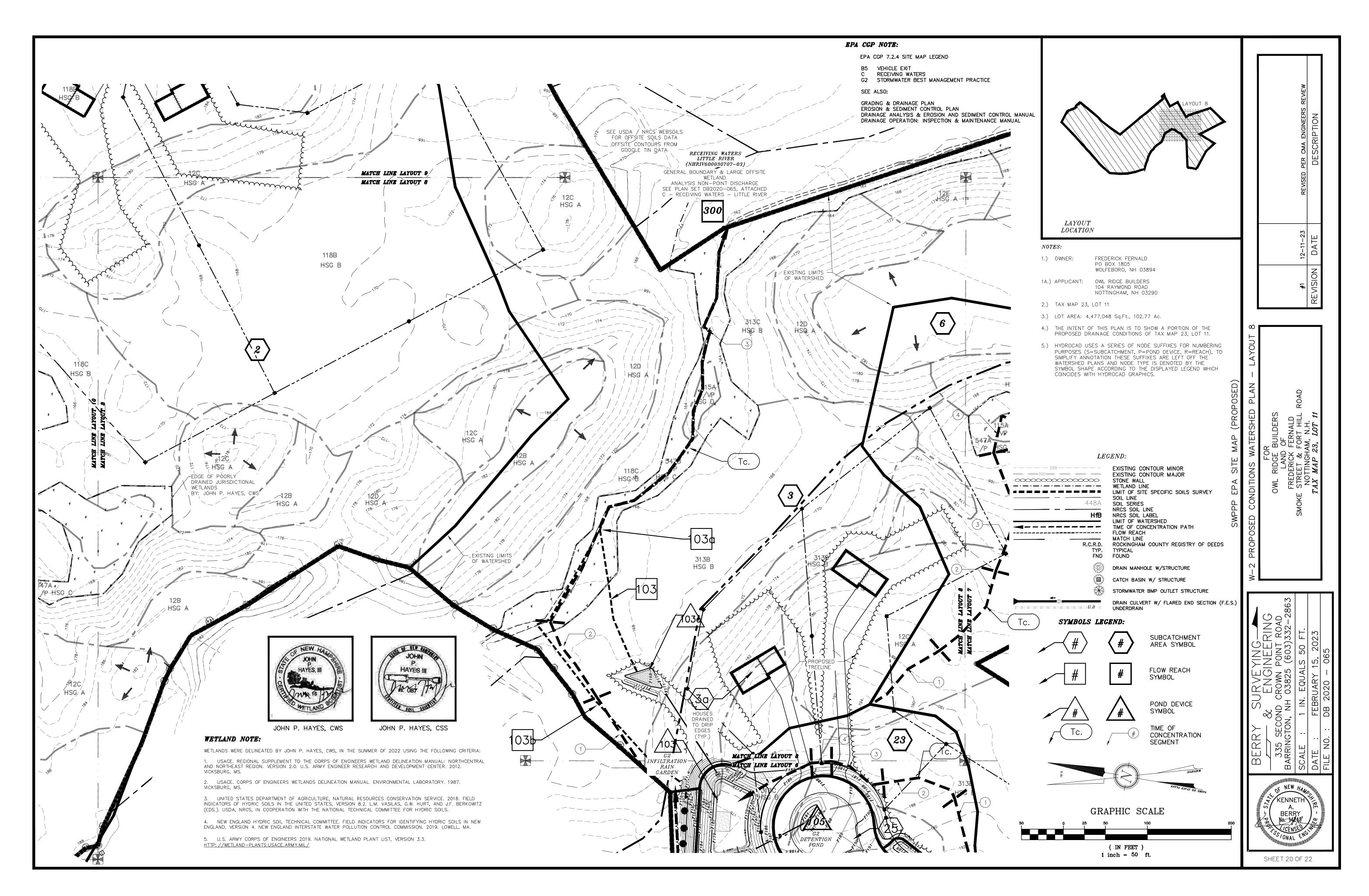


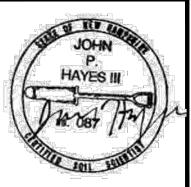


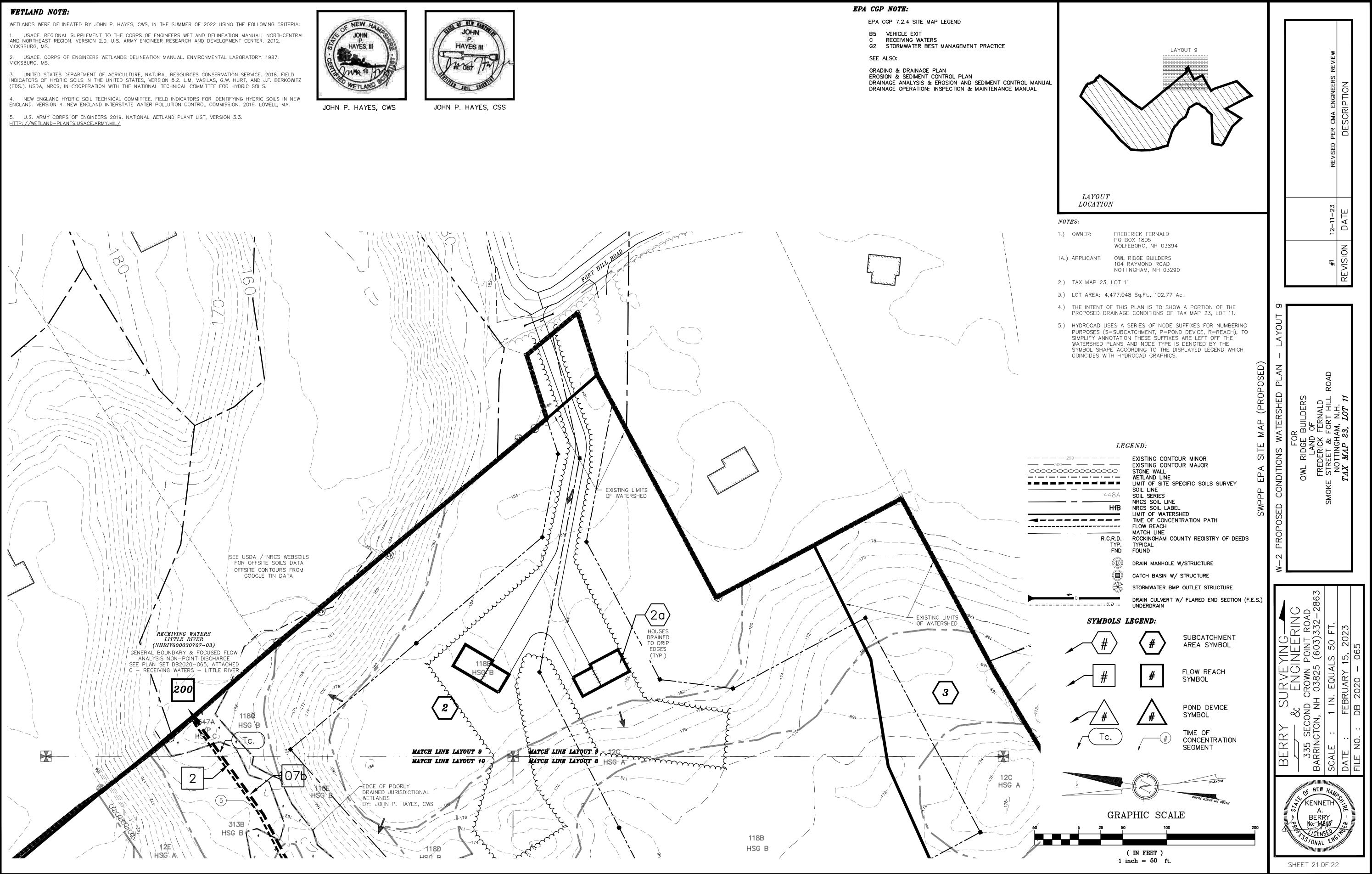


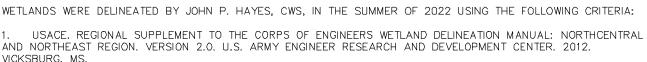


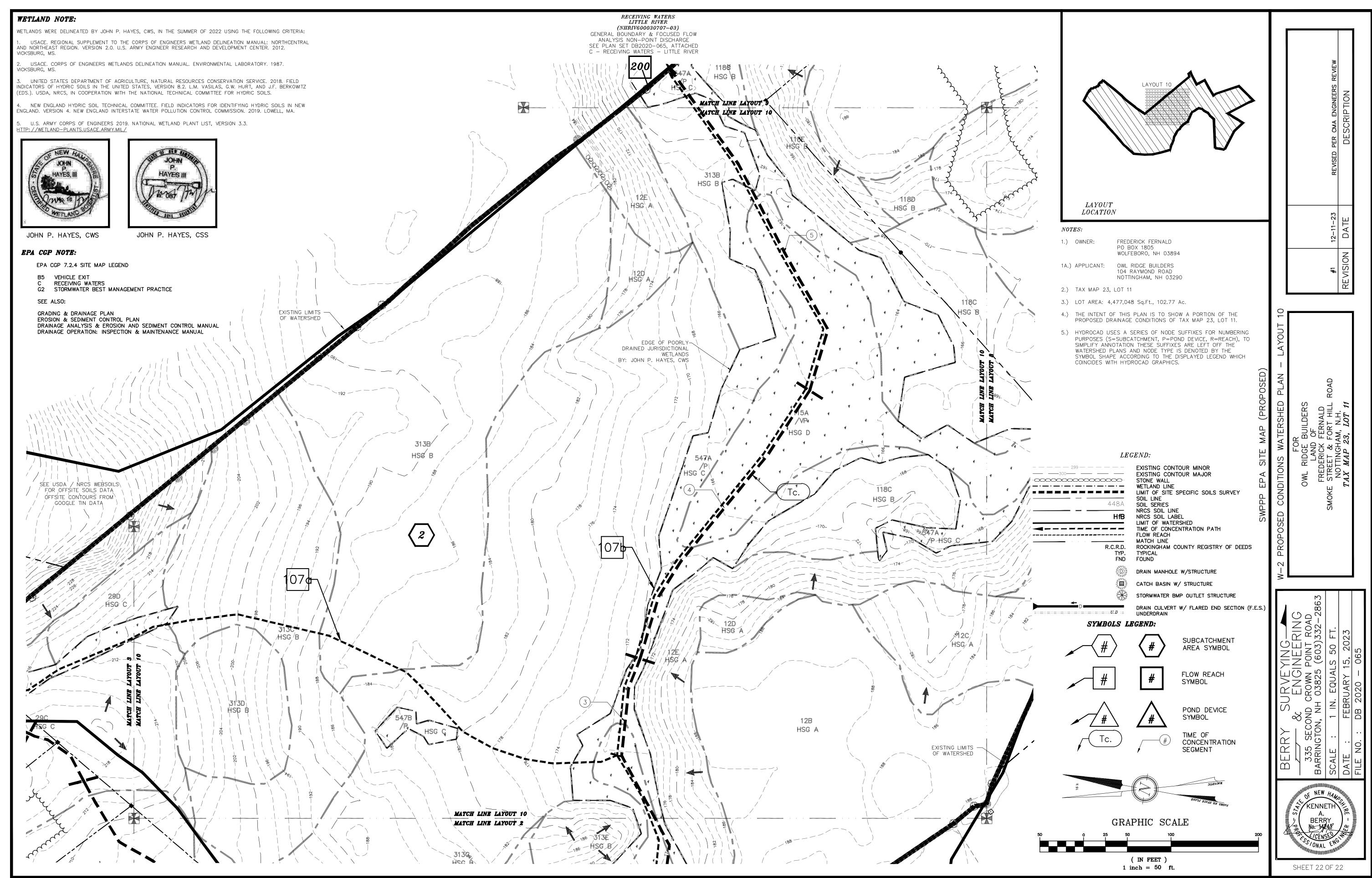


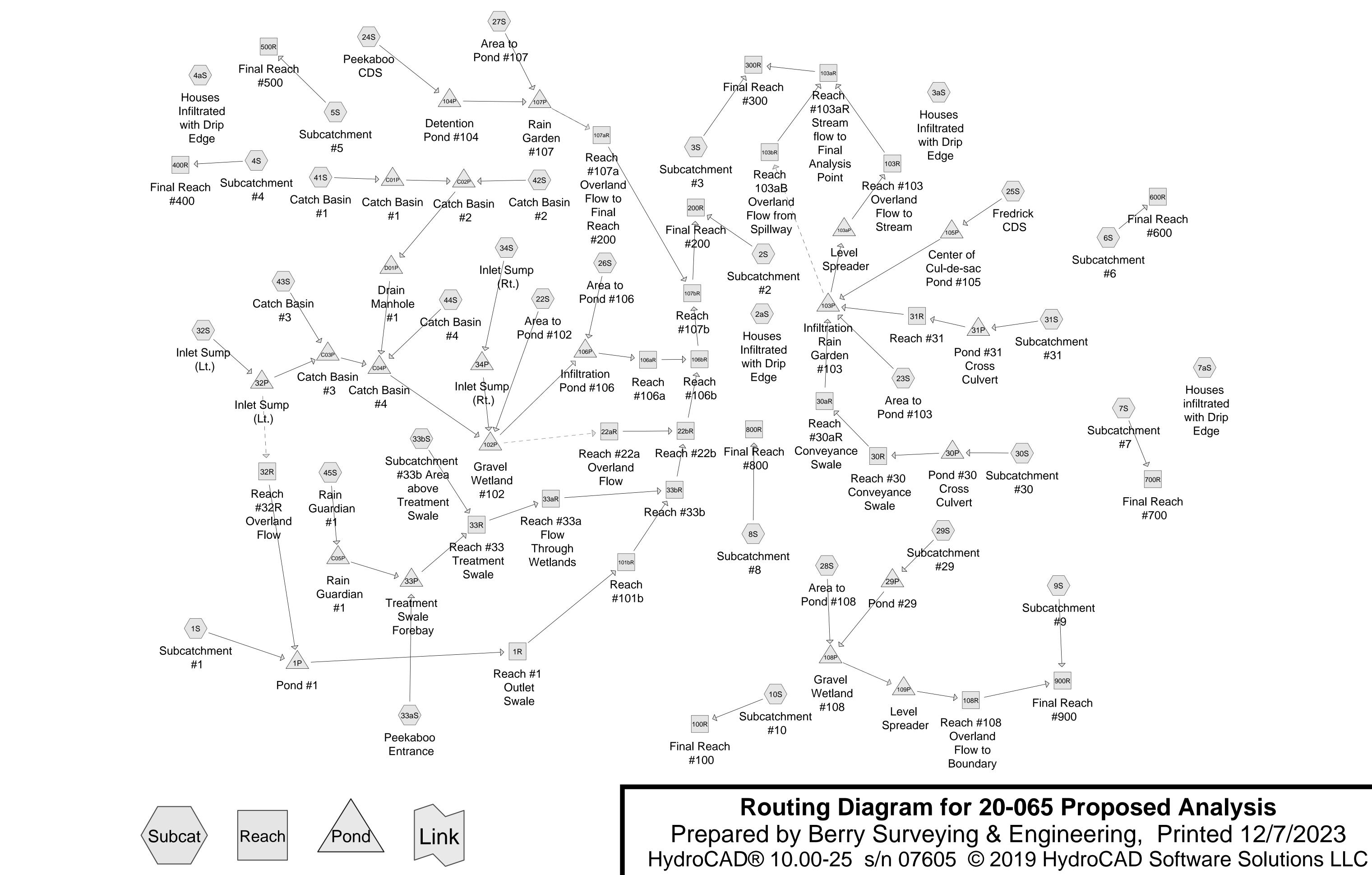












20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solution	Type III 24-hr 2Yr-24Hr Rainfall=3.06" Printed 12/8/2023 ons LLC Page 1
Time span=0.00-24.00 hrs, dt=0.05 hr Runoff by SCS TR-20 method, UH=SC Reach routing by Dyn-Stor-Ind method , Pond rou	CS, Weighted-CN
	91 sf 2.68% Impervious Runoff Depth>0.32" =24.8 min CN=59 Runoff=0.85 cfs 0.172 af
Subcatchment2aS: Houses Infiltrated with Runoff Area=3,168	sf 100.00% Impervious Runoff Depth>2.83" c=0.0 min CN=98 Runoff=0.25 cfs 0.017 af
	83 sf 1.43% Impervious Runoff Depth>0.13" JI Adjusted CN=52 Runoff=0.83 cfs 0.469 af
Subcatchment3aS: Houses Infiltrated with Runoff Area=3,168 T	sf 100.00% Impervious Runoff Depth>2.83" c=0.0 min CN=98 Runoff=0.25 cfs 0.017 af
	54 sf 0.89% Impervious Runoff Depth>0.02" JI Adjusted CN=44 Runoff=0.02 cfs 0.015 af
Subcatchment 4aS: Houses Infiltrated with Runoff Area=3,168	sf 100.00% Impervious Runoff Depth>2.83" c=0.0 min CN=98 Runoff=0.25 cfs 0.017 af
	69 sf 0.94% Impervious Runoff Depth>0.65" JI Adjusted CN=68 Runoff=3.28 cfs 0.526 af
	48 sf 0.00% Impervious Runoff Depth>0.21" =26.5 min CN=55 Runoff=0.68 cfs 0.200 af
	61 sf 0.18% Impervious Runoff Depth>0.01" =44.0 min CN=42 Runoff=0.01 cfs 0.003 af
Subcatchment7aS: Houses infiltrated with Runoff Area=1,584	sf 100.00% Impervious Runoff Depth>2.83" c=0.0 min CN=98 Runoff=0.12 cfs 0.009 af
	00 sf 0.00% Impervious Runoff Depth=0.00" =25.7 min CN=37 Runoff=0.00 cfs 0.000 af
	83 sf 0.00% Impervious Runoff Depth>0.46" =19.2 min CN=63 Runoff=0.22 cfs 0.032 af
	5 sf 16.48% Impervious Runoff Depth>0.46" JI Adjusted CN=63 Runoff=0.10 cfs 0.013 af
	0 sf 10.22% Impervious Runoff Depth>0.35" =16.6 min CN=60 Runoff=0.06 cfs 0.010 af
	0 sf 12.44% Impervious Runoff Depth>0.35" =12.9 min CN=60 Runoff=0.27 cfs 0.044 af
	18 sf 8.75% Impervious Runoff Depth>0.53" =17.5 min CN=65 Runoff=1.14 cfs 0.152 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engineer HydroCAD® 10.00-25 s/n 07605 © 2019 Hydro	
Subcatchment 24S: Peekaboo CDS	Runoff Area=12,590 sf 58.28% Impervious Runoff Depth>1.95" Tc=6.0 min CN=89 Runoff=0.65 cfs 0.047 af
Subcatchment 25S: Fredrick CDS	Runoff Area=12,484 sf 57.92% Impervious Runoff Depth>1.56" Tc=6.0 min CN=84 Runoff=0.52 cfs 0.037 af
Subcatchment 26S: Area to Pond #106	Runoff Area=164,053 sf 3.12% Impervious Runoff Depth>0.26"

Flow Length=679' Tc=20.6 min CN=57 Runoff=0.37 cfs 0.082 af

Subcatchment 27S: Area to Pond #107 Runoff Area=43,831 sf 7.06% Impervious Runoff Depth>0.94" Flow Length=309' Tc=11.6 min UI Adjusted CN=74 Runoff=0.85 cfs 0.079 af

Runoff Area=58,076 sf 12.93% Impervious Runoff Depth>0.65" Subcatchment 28S: Area to Pond #108 Flow Length=247' Tc=24.0 min CN=68 Runoff=0.54 cfs 0.073 af

Subcatchment 29S: Subcatchment #29 Runoff Area=6,005 sf 26.21% Impervious Runoff Depth>0.84" Tc=6.0 min CN=72 Runoff=0.12 cfs 0.010 af

Runoff Area=40,007 sf 7.55% Impervious Runoff Depth>0.49" Subcatchment 30S: Subcatchment #30 Flow Length=159' Tc=13.1 min CN=64 Runoff=0.30 cfs 0.038 af

Subcatchment 31S: Subcatchment #31 Runoff Area=8,090 sf 30.07% Impervious Runoff Depth>0.49" Tc=6.0 min CN=64 Runoff=0.08 cfs 0.008 af

Runoff Area=122,911 sf 18.55% Impervious Runoff Depth>1.05" Subcatchment 32S: Inlet Sump (Lt.) Flow Length=809' Tc=11.6 min CN=76 Runoff=2.75 cfs 0.248 af

Subcatchment 33aS: Peekaboo Entrance Runoff Area=7,232 sf 54.76% Impervious Runoff Depth>1.00" Tc=6.0 min CN=75 Runoff=0.18 cfs 0.014 af

Subcatchment33bS: Subcatchment#33b Runoff Area=7,285 sf 0.00% Impervious Runoff Depth>0.08"

Subcatchment 34S: Inlet Sump (Rt.)

Subcatchment 41S: Catch Basin #1

Subcatchment 42S: Catch Basin #2

Subcatchment 43S: Catch Basin #3

Subcatchment 44S: Catch Basin #4

Subcatchment 45S: Rain Guardian #1

Runoff Area=2,431 sf 100.00% Impervious Runoff Depth>2.83" Tc=6.0 min CN=98 Runoff=0.16 cfs 0.013 af

Runoff Area=40,148 sf 21.43% Impervious Runoff Depth>1.23"

Runoff Area=3,378 sf 100.00% Impervious Runoff Depth>2.83"

Runoff Area=3,365 sf 100.00% Impervious Runoff Depth>2.83"

Runoff Area=3,418 sf 100.00% Impervious Runoff Depth>2.83"

Runoff Area=3,568 sf 100.00% Impervious Runoff Depth>2.83"

Flow Length=594' Tc=8.6 min CN=79 Runoff=1.17 cfs 0.095 af

Tc=6.0 min CN=49 Runoff=0.00 cfs 0.001 af

Tc=6.0 min CN=98 Runoff=0.22 cfs 0.018 af

Tc=6.0 min CN=98 Runoff=0.22 cfs 0.018 af

Tc=6.0 min CN=98 Runoff=0.23 cfs 0.018 af

Tc=6.0 min CN=98 Runoff=0.24 cfs 0.019 af

Avg. Flow Depth=0.20' Max Vel=0.49 fps Inflow=0.16 cfs 0.087 af Reach 1R: Reach #1 Outlet Swale n=0.045 L=60.0' S=0.0033 '/' Capacity=22.47 cfs Outflow=0.16 cfs 0.087 af

20-065 Proposed Analysis	Type III 24-hr 2Yr-24Hr Rainfall=3.06"
Prepared by Berry Surveying & Engineering	Printed 12/8/2023
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solu	utions LLC Page 3

Reach 22aR: Reach #22a Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.080 L=125.0' S=0.0732 '/' Capacity=16.09 cfs Outflow=0.00 cfs 0.000 af
Reach 22bR: Reach #22b Avg. Flow Depth=0.15' Max Vel=0.31 fps Inflow=0.17 cfs 0.098 af n=0.080 L=392.0' S=0.0060 '/' Capacity=45.67 cfs Outflow=0.17 cfs 0.096 af
Reach 30aR: Reach #30aR Conveyance Avg. Flow Depth=0.06' Max Vel=0.67 fps Inflow=0.20 cfs 0.036 af n=0.045 L=201.0' S=0.0199 '/' Capacity=29.56 cfs Outflow=0.19 cfs 0.036 af
Reach 30R: Reach #30 Conveyance Avg. Flow Depth=0.05' Max Vel=0.46 fps Inflow=0.21 cfs 0.037 af n=0.045 L=205.0' S=0.0098 '/' Capacity=30.09 cfs Outflow=0.20 cfs 0.036 af
Reach 31R: Reach #31 Avg. Flow Depth=0.05' Max Vel=0.62 fps Inflow=0.07 cfs 0.008 af n=0.045 L=158.0' S=0.0222 '/' Capacity=19.07 cfs Outflow=0.06 cfs 0.008 af
Reach 32R: Reach #32R Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.080 L=90.0' S=0.0222 '/' Capacity=8.86 cfs Outflow=0.00 cfs 0.000 af
Reach 33aR: Reach #33a Flow Through Avg. Flow Depth=0.06' Max Vel=0.34 fps Inflow=0.06 cfs 0.015 af n=0.080 L=130.0' S=0.0231 '/' Capacity=21.37 cfs Outflow=0.05 cfs 0.015 af
Reach 33bR: Reach #33b Avg. Flow Depth=0.15' Max Vel=0.31 fps Inflow=0.17 cfs 0.099 af n=0.080 L=108.0' S=0.0060 '/' Capacity=45.76 cfs Outflow=0.17 cfs 0.098 af
Reach 33R: Reach #33 Treatment Swale Avg. Flow Depth=0.05' Max Vel=0.13 fps Inflow=0.10 cfs 0.015 af n=0.140 L=135.0' S=0.0074 '/' Capacity=10.03 cfs Outflow=0.06 cfs 0.015 af
Reach 100R: Final Reach #100 Inflow=0.06 cfs 0.010 af Outflow=0.06 cfs 0.010 af
Reach 101bR: Reach #101b Avg. Flow Depth=0.17' Max Vel=0.24 fps Inflow=0.16 cfs 0.087 af n=0.080 L=332.0' S=0.0030 '/' Capacity=32.37 cfs Outflow=0.16 cfs 0.084 af
Reach 103aR: Reach #103aR Stream Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.022 L=427.0' S=0.0076 '/' Capacity=22.54 cfs Outflow=0.00 cfs 0.000 af
Reach 103bR: Reach 103aB Overland Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.080 L=393.0' S=0.0254 '/' Capacity=4.73 cfs Outflow=0.00 cfs 0.000 af
Reach 103R: Reach #103 Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.080 L=166.0' S=0.0301 '/' Capacity=18.07 cfs Outflow=0.00 cfs 0.000 af
Reach 106aR: Reach #106a Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.080 L=251.0' S=0.0159 '/' Capacity=11.27 cfs Outflow=0.00 cfs 0.000 af
Reach 106bR: Reach #106b Avg. Flow Depth=0.14' Max Vel=0.45 fps Inflow=0.17 cfs 0.096 af n=0.080 L=365.0' S=0.0137 '/' Capacity=51.13 cfs Outflow=0.17 cfs 0.094 af
Reach 107aR: Reach #107a Overland Avg. Flow Depth=0.08' Max Vel=0.65 fps Inflow=0.15 cfs 0.103 af n=0.080 L=1,054.0' S=0.0598 '/' Capacity=34.39 cfs Outflow=0.15 cfs 0.100 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Soluti	Type III 24-hr 2Yr-24Hr Rainfall=3.06" Printed 12/8/2023 ons LLC Page 4
···· · · · · · · · · · · · · · · · · ·	6' Max Vel=0.58 fps Inflow=0.28 cfs 0.193 af Capacity=59.95 cfs Outflow=0.28 cfs 0.187 af
Reach 108R: Reach #108 Overland Flow Avg. Flow Depth=0.00 n=0.080 L=26.0' S=0.0192 '/' 0	" Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af Capacity=20.64 cfs Outflow=0.00 cfs 0.000 af
Reach 200R: Final Reach #200	Inflow=1.01 cfs 0.656 af Outflow=1.01 cfs 0.656 af
Reach 300R: Final Reach #300	Inflow=0.02 cfs 0.015 af Outflow=0.02 cfs 0.015 af
Reach 400R: Final Reach #400	Inflow=3.28 cfs 0.526 af Outflow=3.28 cfs 0.526 af
Reach 500R: Final Reach #500	Inflow=0.68 cfs 0.200 af Outflow=0.68 cfs 0.200 af
Reach 600R: Final Reach #600	Inflow=0.01 cfs 0.003 af Outflow=0.01 cfs 0.003 af
Reach 700R: Final Reach #700	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach 800R: Final Reach #800	Inflow=0.22 cfs 0.032 af Outflow=0.22 cfs 0.032 af
Reach 900R: Final Reach #900	Inflow=0.10 cfs 0.013 af Outflow=0.10 cfs 0.013 af
	8' Storage=3,769 cf Inflow=0.85 cfs 0.172 af =0.16 cfs 0.087 af Outflow=0.17 cfs 0.096 af
	88.91' Storage=5 cf Inflow=0.12 cfs 0.010 af =55.0' S=0.0091 '/' Outflow=0.12 cfs 0.010 af
	.48' Storage=213 cf Inflow=0.30 cfs 0.038 af -40.0' S=0.0063 '/' Outflow=0.21 cfs 0.037 af
	89.14' Storage=9 cf Inflow=0.08 cfs 0.008 af -43.0' S=0.0058 '/' Outflow=0.07 cfs 0.008 af
	.77' Storage=248 cf Inflow=2.75 cfs 0.248 af =0.00 cfs 0.000 af Outflow=2.71 cfs 0.247 af
Pond 33P: Treatment Swale Forebay Peak Elev=185	.54' Storage=585 cf Inflow=0.34 cfs 0.027 af Outflow=0.10 cfs 0.014 af
	90.48' Storage=6 cf Inflow=1.17 cfs 0.095 af =29.7' S=0.1010 '/' Outflow=1.17 cfs 0.094 af
Pond 102P: Gravel Wetland #102Peak Elev=186.81Primary=0.10 cfs0.090 afSecondary=0.16 cfs0.099 afTertiary=0.10 cfs0.090 af	' Storage=12,754 cf Inflow=4.61 cfs 0.459 af =0.00 cfs 0.000 af Outflow=0.24 cfs 0.189 af

Prepared by Berry Surveying & Engi lydroCAD® 10.00-25 s/n 07605 © 2019 l		age 5
Pond 103aP: Level Spreader	Peak Elev=169.00' Storage=0 cf Inflow=0.00 cfs 0.	000 af
	Outflow=0.00 cfs 0.	
Pond 103P: Infiltration Rain Garden # scarded=0.19 cfs 0.186 af Primary=0.00	103 Peak Elev=179.79' Storage=4,458 cf Inflow=1.44 cfs 0. o cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.19 cfs 0.	
Pond 104P: Detention Pond #104	Peak Elev=246.47' Storage=539 cf Inflow=0.65 cfs 0. Outflow=0.18 cfs 0.	
Pond 105P: Center of Cul-de-sac Pon 15.0" F	d #105 Peak Elev=184.33' Storage=15 cf Inflow=0.52 cfs 0. Round Culvert n=0.012 L=60.0' S=0.0333 '/' Outflow=0.52 cfs 0.	
	Peak Elev=185.84' Storage=5,661 cf Inflow=0.46 cfs 0. 0.13 cfs 0.141 af Primary=0.00 cfs 0.000 af Outflow=0.13 cfs 0.	
	Peak Elev=239.65' Storage=2,685 cf Inflow=1.02 cfs 0. 0.10 cfs 0.095 af Tertiary=0.00 cfs 0.000 af Outflow=0.15 cfs 0.	
Pond 108P: Gravel Wetland #108 Primary=0.02	Peak Elev=184.57' Storage=2,889 cf Inflow=0.59 cfs 0. 2 cfs 0.004 af Secondary=0.06 cfs 0.012 af Outflow=0.07 cfs 0.	
Pond 109P: Level Spreader	Peak Elev=184.57' Storage=703 cf Inflow=0.07 cfs 0. Outflow=0.00 cfs 0.	
Pond C01P: Catch Basin #1 12.0" F	Peak Elev=214.56' Storage=0.000 af Inflow=0.22 cfs 0. Round Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=0.23 cfs 0.	
Pond C02P: Catch Basin #2 12.0" Ro	Peak Elev=214.38' Storage=0.000 af Inflow=0.45 cfs 0. ound Culvert n=0.012 L=231.0' S=0.0965 '/' Outflow=0.45 cfs 0.	
Pond C03P: Catch Basin #3 24.0" F	Peak Elev=186.81' Storage=0.000 af Inflow=2.85 cfs 0. Round Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=2.85 cfs 0.	
Pond C04P: Catch Basin #4 24.0" F	Peak Elev=186.81' Storage=0.000 af Inflow=3.31 cfs 0. Round Culvert n=0.012 L=20.0' S=0.0125 '/' Outflow=3.31 cfs 0.	
Pond C05P: Rain Guardian #1	Peak Elev=185.54' Storage=0.000 af Inflow=0.16 cfs 0. Outflow=0.16 cfs 0.	
Pond D01P: Drain Manhole #1 12.0" F	Peak Elev=192.00' Storage=0.000 af Inflow=0.45 cfs 0. Round Culvert n=0.012 L=66.2' S=0.0819 '/' Outflow=0.45 cfs 0.	

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solu	Type III 24-hr 10Yr-24Hr Rainfall=4.63" Printed 12/8/2023 utions LLC Page 6
Time span=0.00-24.00 hrs, dt=0.05 Runoff by SCS TR-20 method, UH=S Reach routing by Dyn-Stor-Ind method - Pond r	SCS, Weighted-CN
	,391 sf 2.68% Impervious Runoff Depth>1.02" Tc=24.8 min CN=59 Runoff=4.05 cfs 0.549 af
Subcatchment2aS: Houses Infiltrated with Runoff Area=3,16	88 sf 100.00% Impervious Runoff Depth>4.39" Tc=0.0 min CN=98 Runoff=0.38 cfs 0.027 af
	,283 sf 1.43% Impervious Runoff Depth>0.62" UI Adjusted CN=52 Runoff=6.85 cfs 2.196 af
Subcatchment3aS: Houses Infiltrated with Runoff Area=3,16	88 sf 100.00% Impervious Runoff Depth>4.39" Tc=0.0 min CN=98 Runoff=0.38 cfs 0.027 af
	,754 sf 0.89% Impervious Runoff Depth>0.29" UI Adjusted CN=44 Runoff=0.60 cfs 0.235 af
Subcatchment4aS: Houses Infiltrated with Runoff Area=3,16	68 sf 100.00% Impervious Runoff Depth>4.39" Tc=0.0 min CN=98 Runoff=0.38 cfs 0.027 af
	,569 sf 0.94% Impervious Runoff Depth>1.61" UI Adjusted CN=68 Runoff=9.18 cfs 1.298 af
	,048 sf 0.00% Impervious Runoff Depth>0.79" Tc=26.5 min CN=55 Runoff=4.93 cfs 0.763 af
	,461 sf 0.18% Impervious Runoff Depth>0.22" Tc=44.0 min CN=42 Runoff=0.24 cfs 0.120 af
Subcatchment7aS: Houses infiltrated with Runoff Area=1,58	34 sf 100.00% Impervious Runoff Depth>4.39" Tc=0.0 min CN=98 Runoff=0.19 cfs 0.013 af
	,800 sf 0.00% Impervious Runoff Depth>0.08" Tc=25.7 min CN=37 Runoff=0.01 cfs 0.007 af
	,283 sf 0.00% Impervious Runoff Depth>1.27" Tc=19.2 min CN=63 Runoff=0.79 cfs 0.091 af
	875 sf 16.48% Impervious Runoff Depth>1.28" UI Adjusted CN=63 Runoff=0.38 cfs 0.038 af
	130 sf 10.22% Impervious Runoff Depth>1.09" Tc=16.6 min CN=60 Runoff=0.26 cfs 0.029 af
	00 sf 12.44% Impervious Runoff Depth>1.09" Tc=12.9 min CN=60 Runoff=1.30 cfs 0.135 af
	,518 sf 8.75% Impervious Runoff Depth>1.41" Tc=17.5 min CN=65 Runoff=3.75 cfs 0.402 af

20-065 Proposed Analysis	Type III 24-hr	10Yr-24Hr Rainfall=4.63"
Prepared by Berry Surveying & Engineering		Printed 12/8/2023
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Sol	lutions LLC	Page 7

Subcatchment 24S: Peekaboo CDS	Runoff Area=12,590 sf 58.28% Impervious Runoff Depth>3.42" Tc=6.0 min CN=89 Runoff=1.11 cfs 0.082 af
Subcatchment 25S: Fredrick CDS	Runoff Area=12,484 sf 57.92% Impervious Runoff Depth>2.93" Tc=6.0 min CN=84 Runoff=0.96 cfs 0.070 af
Subcatchment 26S: Area to Pond #106	Runoff Area=164,053 sf 3.12% Impervious Runoff Depth>0.91" Flow Length=679' Tc=20.6 min CN=57 Runoff=2.15 cfs 0.285 af
Subcatchment 27S: Area to Pond #107 Flow Leng	Runoff Area=43,831 sf 7.06% Impervious Runoff Depth>2.07" th=309' Tc=11.6 min UI Adjusted CN=74 Runoff=2.00 cfs 0.173 af
Subcatchment 28S: Area to Pond #108	Runoff Area=58,076 sf 12.93% Impervious Runoff Depth>1.61" Flow Length=247' Tc=24.0 min CN=68 Runoff=1.51 cfs 0.179 af
Subcatchment 29S: Subcatchment #29	Runoff Area=6,005 sf 26.21% Impervious Runoff Depth>1.91" Tc=6.0 min CN=72 Runoff=0.30 cfs 0.022 af
Subcatchment30S: Subcatchment#30	Runoff Area=40,007 sf 7.55% Impervious Runoff Depth>1.34" Flow Length=159' Tc=13.1 min CN=64 Runoff=1.05 cfs 0.103 af
Subcatchment31S: Subcatchment#31	Runoff Area=8,090 sf 30.07% Impervious Runoff Depth>1.34" Tc=6.0 min CN=64 Runoff=0.27 cfs 0.021 af
Subcatchment 32S: Inlet Sump (Lt.)	Runoff Area=122,911 sf 18.55% Impervious Runoff Depth>2.23" Flow Length=809' Tc=11.6 min CN=76 Runoff=6.08 cfs 0.524 af
Subcatchment 33aS: Peekaboo Entranc	Runoff Area=7,232 sf 54.76% Impervious Runoff Depth>2.15" Tc=6.0 min CN=75 Runoff=0.41 cfs 0.030 af
Subcatchment 33bS: Subcatchment #33	Bb Runoff Area=7,285 sf 0.00% Impervious Runoff Depth>0.50" Tc=6.0 min CN=49 Runoff=0.05 cfs 0.007 af
Subcatchment 34S: Inlet Sump (Rt.)	Runoff Area=40,148 sf 21.43% Impervious Runoff Depth>2.48" Flow Length=594' Tc=8.6 min CN=79 Runoff=2.42 cfs 0.191 af
Subcatchment 41S: Catch Basin #1	Runoff Area=3,378 sf 100.00% Impervious Runoff Depth>4.39" Tc=6.0 min CN=98 Runoff=0.34 cfs 0.028 af
Subcatchment 42S: Catch Basin #2	Runoff Area=3,365 sf 100.00% Impervious Runoff Depth>4.39" Tc=6.0 min CN=98 Runoff=0.34 cfs 0.028 af
Subcatchment 43S: Catch Basin #3	Runoff Area=3,418 sf 100.00% Impervious Runoff Depth>4.39" Tc=6.0 min CN=98 Runoff=0.35 cfs 0.029 af
Subcatchment 44S: Catch Basin #4	Runoff Area=3,568 sf 100.00% Impervious Runoff Depth>4.39" Tc=6.0 min CN=98 Runoff=0.36 cfs 0.030 af
Subcatchment 45S: Rain Guardian #1	Runoff Area=2,431 sf 100.00% Impervious Runoff Depth>4.39" Tc=6.0 min CN=98 Runoff=0.25 cfs 0.020 af
Reach 1R: Reach #1 Outlet Swale n=0.045	Avg. Flow Depth=0.53' Max Vel=0.93 fps Inflow=1.36 cfs 0.453 af L=60.0' S=0.0033 '/' Capacity=22.47 cfs Outflow=1.36 cfs 0.452 af

20-065 Proposed Analysis	Type III 24-hr	10Yr-24Hr Rair	nfall=4.63"
Prepared by Berry Surveying & Engineering		Printed	12/8/2023
HvdroCAD® 10.00-25 s/n 07605 © 2019 HvdroCAD Software So	olutions LLC		Page 8

Reach 22aR: Reach #22a Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.080 L=125.0' S=0.0732 '/' Capacity=16.09 cfs Outflow=0.00 cfs 0.000 af
Reach 22bR: Reach #22b Avg. Flow Depth=0.39' Max Vel=0.59 fps Inflow=1.40 cfs 0.490 af n=0.080 L=392.0' S=0.0060 '/' Capacity=45.67 cfs Outflow=1.37 cfs 0.485 af
Reach 30aR: Reach #30aR Conveyance Avg. Flow Depth=0.13' Max Vel=1.12 fps Inflow=0.77 cfs 0.101 af n=0.045 L=201.0' S=0.0199 '/' Capacity=29.56 cfs Outflow=0.77 cfs 0.100 af
Reach 30R: Reach #30 Conveyance Avg. Flow Depth=0.12' Max Vel=0.77 fps Inflow=0.79 cfs 0.101 af n=0.045 L=205.0' S=0.0098 '/' Capacity=30.09 cfs Outflow=0.77 cfs 0.101 af
Reach 31R: Reach #31 Avg. Flow Depth=0.11' Max Vel=0.99 fps Inflow=0.26 cfs 0.021 af n=0.045 L=158.0' S=0.0222 '/' Capacity=19.07 cfs Outflow=0.25 cfs 0.021 af
Reach 32R: Reach #32R Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.080 L=90.0' S=0.0222 '/' Capacity=8.86 cfs Outflow=0.00 cfs 0.000 af
Reach 33aR: Reach #33a Flow Through Avg. Flow Depth=0.16' Max Vel=0.64 fps Inflow=0.44 cfs 0.044 af n=0.080 L=130.0' S=0.0231 '/' Capacity=21.37 cfs Outflow=0.43 cfs 0.044 af
Reach 33bR: Reach #33b Avg. Flow Depth=0.40' Max Vel=0.59 fps Inflow=1.40 cfs 0.491 af n=0.080 L=108.0' S=0.0060 '/' Capacity=45.76 cfs Outflow=1.40 cfs 0.490 af
Reach 33R: Reach #33 Treatment Swale Avg. Flow Depth=0.18' Max Vel=0.27 fps Inflow=0.63 cfs 0.044 af n=0.140 L=135.0' S=0.0074 '/' Capacity=10.03 cfs Outflow=0.44 cfs 0.044 af
Reach 100R: Final Reach #100 Inflow=0.26 cfs 0.029 af Outflow=0.26 cfs 0.029 af
Reach 101bR: Reach #101b Avg. Flow Depth=0.45' Max Vel=0.46 fps Inflow=1.36 cfs 0.452 af n=0.080 L=332.0' S=0.0030 '/' Capacity=32.37 cfs Outflow=1.32 cfs 0.447 af
Reach 103aR: Reach #103aR Stream Avg. Flow Depth=0.03' Max Vel=0.56 fps Inflow=0.05 cfs 0.015 af n=0.022 L=427.0' S=0.0076 '/' Capacity=22.54 cfs Outflow=0.05 cfs 0.015 af
Reach 103bR: Reach 103aB Overland Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.080 L=393.0' S=0.0254 '/' Capacity=4.73 cfs Outflow=0.00 cfs 0.000 af
Reach 103R: Reach #103 Overland Flow Avg. Flow Depth=0.03' Max Vel=0.26 fps Inflow=0.05 cfs 0.016 af n=0.080 L=166.0' S=0.0301 '/' Capacity=18.07 cfs Outflow=0.05 cfs 0.015 af
Reach 106aR: Reach #106a Avg. Flow Depth=0.14' Max Vel=0.49 fps Inflow=0.78 cfs 0.449 af n=0.080 L=251.0' S=0.0159 '/' Capacity=11.27 cfs Outflow=0.76 cfs 0.444 af
Reach 106bR: Reach #106b Avg. Flow Depth=0.42' Max Vel=0.92 fps Inflow=1.79 cfs 0.928 af n=0.080 L=365.0' S=0.0137 '/' Capacity=51.13 cfs Outflow=1.77 cfs 0.921 af
Reach 107aR: Reach #107a Overland Avg. Flow Depth=0.13' Max Vel=0.90 fps Inflow=0.43 cfs 0.217 af n=0.080 L=1,054.0' S=0.0598 '/' Capacity=34.39 cfs Outflow=0.43 cfs 0.213 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solu	Type III 24-hr 10Yr-24Hr Rainfall=4.63" Printed 12/8/2023 utions LLC Page 9
•	42' Max Vel=1.09 fps Inflow=2.19 cfs 1.135 af Capacity=59.95 cfs Outflow=2.14 cfs 1.117 af
Reach 108R: Reach #108 Overland Flow Avg. Flow Depth=0. n=0.080 L=26.0' S=0.0192 '/'	06' Max Vel=0.30 fps Inflow=0.20 cfs 0.075 af Capacity=20.64 cfs Outflow=0.20 cfs 0.075 af
Reach 200R: Final Reach #200	Inflow=8.43 cfs 3.313 af Outflow=8.43 cfs 3.313 af
Reach 300R: Final Reach #300	Inflow=0.60 cfs 0.250 af Outflow=0.60 cfs 0.250 af
Reach 400R: Final Reach #400	Inflow=9.18 cfs 1.298 af Outflow=9.18 cfs 1.298 af
Reach 500R: Final Reach #500	Inflow=4.93 cfs 0.763 af Outflow=4.93 cfs 0.763 af
Reach 600R: Final Reach #600	Inflow=0.24 cfs 0.120 af Outflow=0.24 cfs 0.120 af
Reach 700R: Final Reach #700	Inflow=0.01 cfs 0.007 af Outflow=0.01 cfs 0.007 af
Reach 800R: Final Reach #800	Inflow=0.79 cfs 0.091 af Outflow=0.79 cfs 0.091 af
Reach 900R: Final Reach #900	Inflow=0.38 cfs 0.113 af Outflow=0.38 cfs 0.113 af
	8.33' Storage=7,474 cf Inflow=4.05 cfs 0.549 af ry=1.36 cfs 0.453 af Outflow=1.37 cfs 0.463 af
	189.00' Storage=10 cf Inflow=0.30 cfs 0.022 af L=55.0' S=0.0091 '/' Outflow=0.30 cfs 0.022 af
	91.71' Storage=564 cf Inflow=1.05 cfs 0.103 af L=40.0' S=0.0063 '/' Outflow=0.79 cfs 0.101 af
	189.26' Storage=20 cf Inflow=0.27 cfs 0.021 af L=43.0' S=0.0058 '/' Outflow=0.26 cfs 0.021 af
	88.24' Storage=474 cf Inflow=6.08 cfs 0.524 af ry=0.00 cfs 0.000 af Outflow=5.95 cfs 0.520 af
Pond 33P: Treatment Swale Forebay Peak Elev=18	85.62' Storage=664 cf Inflow=0.65 cfs 0.050 af Outflow=0.58 cfs 0.037 af
	190.72' Storage=12 cf Inflow=2.42 cfs 0.191 af L=29.7' S=0.1010 '/' Outflow=2.40 cfs 0.191 af
Pond 102P: Gravel Wetland #102 Peak Elev=188.15	5' Storage=25,125 cf Inflow=10.36 cfs 0.960 af

 Pond 102P: Gravel Wetland #102
 Peak Elev=188.15'
 Storage=25,125 cf
 Inflow=10.36 cfs
 0.960 af

 Primary=0.10 cfs
 0.089 af
 Secondary=0.49 cfs
 0.435 af
 Tertiary=0.00 cfs
 0.000 af
 Outflow=0.56 cfs
 0.524 af

20-065 Proposed Analysis	Type III 24-hr 10Yr-24Hr Rainfall=4.63
Prepared by Berry Surveying & Engine	Printed 12/8/2023
HydroCAD® 10.00-25 s/n 07605 © 2019 Hydro	droCAD Software Solutions LLC Page 10
Pond 103aP: Level Spreader	Peak Elev=170.03' Storage=389 cf Inflow=0.06 cfs 0.024 a Outflow=0.05 cfs 0.016 a
Pond 103P: Infiltration Rain Garden #10	3 Peak Elev=181.93' Storage=17,176 cf Inflow=4.87 cfs 0.593 a
Discarded=0.19 cfs 0.195 af Primary=0.06 cf	s 0.024 af Secondary=0.00 cfs 0.000 af Outflow=0.24 cfs 0.219 af
Pond 104P: Detention Pond #104	Peak Elev=246.96' Storage=1,100 cf Inflow=1.11 cfs 0.082 a Outflow=0.25 cfs 0.082 a
Pond 105P: Center of Cul-de-sac Pond #	#105 Peak Elev=184.46' Storage=25 cf Inflow=0.96 cfs 0.070 a
15.0" Rou	and Culvert n=0.012 L=60.0' S=0.0333 '/' Outflow=0.96 cfs 0.070 a
Pond 106P: Infiltration Pond #106	Peak Elev=186.80' Storage=9,194 cf Inflow=2.56 cfs 0.809 at
Discarded=0.13	3 cfs 0.150 af Primary=0.78 cfs 0.449 af Outflow=0.90 cfs 0.600 at
Pond 107P: Rain Garden #107	Peak Elev=240.25' Storage=4,380 cf Inflow=2.22 cfs 0.256 a
Primary=0.32 cfs 0.106 af Secondary=0.17	I cfs 0.111 af Tertiary=0.00 cfs 0.000 af Outflow=0.43 cfs 0.217 af
Pond 108P: Gravel Wetland #108	Peak Elev=185.01' Storage=4,805 cf Inflow=1.64 cfs 0.201 a
Primary=0.02 cf	s 0.004 af Secondary=0.38 cfs 0.092 af Outflow=0.40 cfs 0.092 at
Pond 109P: Level Spreader	Peak Elev=185.01' Storage=1,109 cf Inflow=0.40 cfs 0.095 a Outflow=0.20 cfs 0.070 a
Pond C01P: Catch Basin #1	Peak Elev=214.64' Storage=0.000 af Inflow=0.34 cfs 0.028 a
12.0" Rou	and Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=0.34 cfs 0.028 a
Pond C02P: Catch Basin #2	Peak Elev=214.47' Storage=0.000 af Inflow=0.68 cfs 0.057 a
12.0" Rour	nd Culvert n=0.012 L=231.0' S=0.0965 '/' Outflow=0.69 cfs 0.057 a
Pond C03P: Catch Basin #3 24.0" Rou	Peak Elev=188.15' Storage=0.001 af Inflow=6.16 cfs 0.549 a Ind Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=6.15 cfs 0.549 a
Pond C04P: Catch Basin #4	Peak Elev=188.15' Storage=0.001 af Inflow=6.86 cfs 0.635 a
24.0" Rou	ind Culvert n=0.012 L=20.0' S=0.0125 '/' Outflow=6.85 cfs 0.634 a
Pond C05P: Rain Guardian #1	Peak Elev=185.62' Storage=0.000 af Inflow=0.25 cfs 0.020 a Outflow=0.24 cfs 0.020 a
Pond D01P: Drain Manhole #1	Peak Elev=192.09' Storage=0.000 af Inflow=0.69 cfs 0.057 a
12.0" Rou	ind Culvert n=0.012 L=66.2' S=0.0819 '/' Outflow=0.69 cfs 0.057 a
Total Runoff Area = 106.690	6 ac Runoff Volume = 7.779 af Average Runoff Depth = 0.8

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solution	Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 ions LLC Page 11
Time span=0.00-24.00 hrs, dt=0.05 h Runoff by SCS TR-20 method, UH=S Reach routing by Dyn-Stor-Ind method - Pond ro	CS, Weighted-CN
	891 sf 2.68% Impervious Runoff Depth>1.74" c=24.8 min CN=59 Runoff=7.50 cfs 0.932 af
Subcatchment2aS: Houses Infiltrated with Runoff Area=3,168	3 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af
	283 sf 1.43% Impervious Runoff Depth>1.18" JI Adjusted CN=52 Runoff=15.29 cfs 4.166 af
Subcatchment3aS: Houses Infiltrated with Runoff Area=3,168	3 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af
	754 sf 0.89% Impervious Runoff Depth>0.67" UI Adjusted CN=44 Runoff=2.24 cfs 0.552 af
Subcatchment 4aS: Houses Infiltrated with Runoff Area=3,168	3 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af
	569 sf 0.94% Impervious Runoff Depth>2.49" JI Adjusted CN=68 Runoff=14.62 cfs 2.015 af
	048 sf 0.00% Impervious Runoff Depth>1.43" =26.5 min CN=55 Runoff=10.18 cfs 1.370 af
	161 sf 0.18% Impervious Runoff Depth>0.56" c=44.0 min CN=42 Runoff=1.13 cfs 0.308 af
Subcatchment7aS: Houses infiltrated with Runoff Area=1,584	sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.24 cfs 0.017 af
	300 sf 0.00% Impervious Runoff Depth>0.30" c=25.7 min CN=37 Runoff=0.07 cfs 0.026 af
	283 sf 0.00% Impervious Runoff Depth>2.07" c=19.2 min CN=63 Runoff=1.36 cfs 0.148 af
	75 sf 16.48% Impervious Runoff Depth>2.07" UI Adjusted CN=63 Runoff=0.65 cfs 0.061 af
	30 sf 10.22% Impervious Runoff Depth>1.82" c=16.6 min CN=60 Runoff=0.47 cfs 0.049 af
	00 sf 12.44% Impervious Runoff Depth>1.82" c=12.9 min CN=60 Runoff=2.38 cfs 0.227 af
	518 sf 8.75% Impervious Runoff Depth>2.24" c=17.5 min CN=65 Runoff=6.23 cfs 0.641 af

20-065 Proposed Analysis Prepared by Berry Surveying & Enginee HydroCAD® 10.00-25 s/n 07605 © 2019 Hydr	
	· · · ·
Subcatchment 24S: Peekaboo CDS	Runoff Area=12,590 sf 58.28% Impervious Runoff Depth>4.60" Tc=6.0 min CN=89 Runoff=1.46 cfs 0.111 af
Subcatchment 25S: Fredrick CDS	Runoff Area=12,484 sf 57.92% Impervious Runoff Depth>4.06" Tc=6.0 min CN=84 Runoff=1.32 cfs 0.097 af
Subcatchment 26S: Area to Pond #106	Runoff Area=164,053 sf 3.12% Impervious Runoff Depth>1.58" Flow Length=679' Tc=20.6 min CN=57 Runoff=4.21 cfs 0.497 af
Subcatchment 27S: Area to Pond #107 Flow Length	Runoff Area=43,831 sf 7.06% Impervious Runoff Depth>3.06" =309' Tc=11.6 min UI Adjusted CN=74 Runoff=2.99 cfs 0.257 af
Subcatchment 28S: Area to Pond #108	Runoff Area=58,076 sf 12.93% Impervious Runoff Depth>2.50" Flow Length=247' Tc=24.0 min CN=68 Runoff=2.41 cfs 0.278 af
Subcatchment 29S: Subcatchment #29	Runoff Area=6,005 sf 26.21% Impervious Runoff Depth>2.88" Tc=6.0 min CN=72 Runoff=0.46 cfs 0.033 af
Subcatchment30S: Subcatchment#30	Runoff Area=40,007 sf 7.55% Impervious Runoff Depth>2.16" Flow Length=159' Tc=13.1 min CN=64 Runoff=1.77 cfs 0.165 af
Subcatchment31S: Subcatchment#31	Runoff Area=8,090 sf 30.07% Impervious Runoff Depth>2.16" Tc=6.0 min CN=64 Runoff=0.45 cfs 0.033 af
Subcatchment 32S: Inlet Sump (Lt.)	Runoff Area=122,911 sf 18.55% Impervious Runoff Depth>3.25" Flow Length=809' Tc=11.6 min CN=76 Runoff=8.91 cfs 0.765 af
Subcatchment 33aS: Peekaboo Entrance	Runoff Area=7,232 sf 54.76% Impervious Runoff Depth>3.16" Tc=6.0 min CN=75 Runoff=0.60 cfs 0.044 af
Subcatchment33bS: Subcatchment#33b	Runoff Area=7,285 sf 0.00% Impervious Runoff Depth>1.00" Tc=6.0 min CN=49 Runoff=0.14 cfs 0.014 af
Subcatchment 34S: Inlet Sump (Rt.)	Runoff Area=40,148 sf 21.43% Impervious Runoff Depth>3.55" Flow Length=594' Tc=8.6 min CN=79 Runoff=3.46 cfs 0.273 af
Subcatchment 41S: Catch Basin #1	Runoff Area=3,378 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.43 cfs 0.036 af
Subcatchment 42S: Catch Basin #2	Runoff Area=3,365 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.43 cfs 0.036 af
Subcatchment 43S: Catch Basin #3	Runoff Area=3,418 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.44 cfs 0.037 af
Subcatchment 44S: Catch Basin #4	Runoff Area=3,568 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.46 cfs 0.038 af
Subcatchment 45S: Rain Guardian #1	Runoff Area=2,431 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.31 cfs 0.026 af
	Avg. Flow Depth=0.80' Max Vel=1.20 fps Inflow=3.25 cfs 1.036 af =60.0' S=0.0033 '/' Capacity=22.47 cfs Outflow=3.25 cfs 1.035 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solut	Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 ions LLC Page 13
Reach 22aR: Reach #22a Overland Flow Avg. Flow Depth=0.00 n=0.080 L=125.0' S=0.0732 '/'	0' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af Capacity=16.09 cfs Outflow=0.00 cfs 0.000 af
	9' Max Vel=0.77 fps Inflow=3.33 cfs 1.097 af Capacity=45.67 cfs Outflow=3.28 cfs 1.090 af
Reach 30aR: Reach #30aR Conveyance Avg. Flow Depth=0.1 n=0.045 L=201.0' S=0.0199 '/'	7' Max Vel=1.36 fps Inflow=1.32 cfs 0.163 af Capacity=29.56 cfs Outflow=1.31 cfs 0.162 af
	6' Max Vel=0.94 fps Inflow=1.33 cfs 0.163 af Capacity=30.09 cfs Outflow=1.32 cfs 0.163 af
	4' Max Vel=1.18 fps Inflow=0.44 cfs 0.033 af Capacity=19.07 cfs Outflow=0.42 cfs 0.033 af
Reach 32R: Reach #32R Overland Flow Avg. Flow Depth=0.18 n=0.080 L=90.0' S=0.0222 '/'	8' Max Vel=0.66 fps Inflow=0.92 cfs 0.207 af Capacity=8.86 cfs Outflow=0.91 cfs 0.207 af
Reach 33aR: Reach #33a Flow Through Avg. Flow Depth=0.22 n=0.080 L=130.0' S=0.0231 '/'	2' Max Vel=0.78 fps Inflow=0.82 cfs 0.070 af Capacity=21.37 cfs Outflow=0.79 cfs 0.070 af
···· · · · · · · · · · · · · · · · · ·	9' Max Vel=0.77 fps Inflow=3.33 cfs 1.099 af Capacity=45.76 cfs Outflow=3.33 cfs 1.097 af
Reach 33R: Reach #33 Treatment Swale Avg. Flow Depth=0.20 n=0.140 L=135.0' S=0.0074 '/'	6' Max Vel=0.33 fps Inflow=0.99 cfs 0.071 af Capacity=10.03 cfs Outflow=0.82 cfs 0.070 af
Reach 100R: Final Reach #100	Inflow=0.47 cfs 0.049 af Outflow=0.47 cfs 0.049 af
	8' Max Vel=0.60 fps Inflow=3.25 cfs 1.035 af Capacity=32.37 cfs Outflow=3.18 cfs 1.029 af
	8' Max Vel=1.04 fps Inflow=0.26 cfs 0.207 af Capacity=22.54 cfs Outflow=0.26 cfs 0.205 af
	0' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af Capacity=4.73 cfs Outflow=0.00 cfs 0.000 af
Reach 103R: Reach #103 Overland Flow Avg. Flow Depth=0.0 n=0.080 L=166.0' S=0.0301 '/'	7' Max Vel=0.42 fps Inflow=0.26 cfs 0.209 af Capacity=18.07 cfs Outflow=0.26 cfs 0.207 af
	2' Max Vel=0.64 fps Inflow=2.24 cfs 0.801 af Capacity=11.27 cfs Outflow=1.83 cfs 0.793 af
	7' Max Vel=1.26 fps Inflow=4.98 cfs 1.883 af Capacity=51.13 cfs Outflow=4.94 cfs 1.874 af
	5' Max Vel=0.98 fps Inflow=0.58 cfs 0.319 af Capacity=34.39 cfs Outflow=0.57 cfs 0.315 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solu	Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 utions LLC Page 14
	65' Max Vel=1.44 fps Inflow=5.50 cfs 2.189 af Capacity=59.95 cfs Outflow=5.31 cfs 2.166 af
Reach 108R: Reach #108 Overland Flow Avg. Flow Depth=0. n=0.080 L=26.0' S=0.0192 '/'	12' Max Vel=0.48 fps Inflow=0.95 cfs 0.182 af Capacity=20.64 cfs Outflow=0.98 cfs 0.182 af
Reach 200R: Final Reach #200	Inflow=20.59 cfs 6.332 af Outflow=20.59 cfs 6.332 af
Reach 300R: Final Reach #300	Inflow=2.24 cfs 0.757 af Outflow=2.24 cfs 0.757 af
Reach 400R: Final Reach #400	Inflow=14.62 cfs 2.015 af Outflow=14.62 cfs 2.015 af
Reach 500R: Final Reach #500	Inflow=10.18 cfs 1.370 af Outflow=10.18 cfs 1.370 af
Reach 600R: Final Reach #600	Inflow=1.13 cfs 0.308 af Outflow=1.13 cfs 0.308 af
Reach 700R: Final Reach #700	Inflow=0.07 cfs 0.026 af Outflow=0.07 cfs 0.026 af
Reach 800R: Final Reach #800	Inflow=1.36 cfs 0.148 af Outflow=1.36 cfs 0.148 af
Reach 900R: Final Reach #900	Inflow=1.11 cfs 0.243 af Outflow=1.11 cfs 0.243 af
	60' Storage=12,109 cf Inflow=7.53 cfs 1.140 af ry=3.25 cfs 1.036 af Outflow=3.27 cfs 1.046 af
	189.06' Storage=14 cf Inflow=0.46 cfs 0.033 af L=55.0' S=0.0091 '/' Outflow=0.46 cfs 0.033 af
	91.87' Storage=901 cf Inflow=1.77 cfs 0.165 af L=40.0' S=0.0063 '/' Outflow=1.33 cfs 0.163 af
	189.34' Storage=30 cf Inflow=0.45 cfs 0.033 af L=43.0' S=0.0058 '/' Outflow=0.44 cfs 0.033 af
	38.88' Storage=882 cf Inflow=8.91 cfs 0.765 af ry=0.92 cfs 0.207 af Outflow=8.24 cfs 0.754 af
Pond 33P: Treatment Swale Forebay Peak Elev=18	35.65' Storage=700 cf Inflow=0.91 cfs 0.070 af Outflow=0.85 cfs 0.057 af
	190.88' Storage=18 cf Inflow=3.46 cfs 0.273 af L=29.7' S=0.1010 '/' Outflow=3.45 cfs 0.273 af
Pond 102P: Gravel Wetland #102 Peak Elev=188.92	2' Storage=33,726 cf Inflow=14.94 cfs 1.259 af

 Pond 102P: Gravel Wetland #102
 Peak Elev=188.92' Storage=33,726 cf
 Inflow=14.94 cfs
 1.259 af

 Primary=0.10 cfs
 0.110 af
 Secondary=0.61 cfs
 0.561 af
 Tertiary=0.00 cfs
 0.000 af
 Outflow=0.70 cfs
 0.671 af

Prepared by Berry Surveying & Engin HydroCAD® 10.00-25 s/n 07605 © 2019 Hy		Printed 12/8/20 Page
Pond 103aP: Level Spreader	Peak Elev=170.07' Storage=409 c	f Inflow=0.26 cfs 0.218 Outflow=0.26 cfs 0.209
Pond 103P: Infiltration Rain Garden #10 scarded=0.19 cfs 0.206 af Primary=0.26 c	03 Peak Elev=183.08' Storage=25,931 c fs 0.218 af Secondary=0.00 cfs 0.000 af	
Pond 104P: Detention Pond #104	Peak Elev=247.31' Storage=1,589 c	f Inflow=1.46 cfs 0.111 Outflow=0.28 cfs 0.111
Pond 105P: Center of Cul-de-sac Pond 15.0" Ro	#105 Peak Elev=184.55' Storage=34 c ound Culvert n=0.012 L=60.0' S=0.0333 '/'	
Pond 106P: Infiltration Pond #106 Discarded=0.1	Peak Elev=186.85' Storage=9,398 c 3 cfs 0.157 af Primary=2.24 cfs 0.801 af	
Pond 107P: Rain Garden #107 Primary=0.45 cfs 0.198 af Secondary=0.1	Peak Elev=240.83' Storage=6,394 c 2 cfs 0.121 af Tertiary=0.00 cfs 0.000 af	
Pond 108P: Gravel Wetland #108 Primary=0.02 c	Peak Elev=185.10' Storage=5,154 c ofs 0.005 af Secondary=1.47 cfs 0.202 af	
Pond 109P: Level Spreader	Peak Elev=185.03' Storage=1,130 c	f Inflow=1.48 cfs 0.207 Outflow=0.95 cfs 0.181
Pond C01P: Catch Basin #1 12.0" Ro	Peak Elev=214.70' Storage=0.000 a ound Culvert n=0.012 L=16.0' S=0.0094 '/'	
Pond C02P: Catch Basin #2 12.0" Rou	Peak Elev=214.53' Storage=0.000 a and Culvert n=0.012 L=231.0' S=0.0965 '/'	
Pond C03P: Catch Basin #3 24.0" Ro	Peak Elev=188.93' Storage=0.001 a ound Culvert n=0.012 L=16.0' S=0.0094 '/'	
Pond C04P: Catch Basin #4 24.0" Ro	Peak Elev=188.92' Storage=0.001 a ound Culvert n=0.012 L=20.0' S=0.0125 '/'	
Pond C05P: Rain Guardian #1	Peak Elev=185.65' Storage=0.000 a	f Inflow=0.31 cfs 0.026 Outflow=0.31 cfs 0.026
Pond D01P: Drain Manhole #1 12.0" Ro	Peak Elev=192.15' Storage=0.000 a ound Culvert n=0.012 L=66.2' S=0.0819 '/'	

20-065 Proposed Analysis <i>Typ</i> Prepared by Berry Surveying & EngineeringHydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions	be III 24-hr 50Yr-24Hr Rainfall=7.01" Printed 12/8/2023 S LLC Page 16
Time span=0.00-24.00 hrs, dt=0.05 hrs, Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routir	, Weighted-CN
	sf 2.68% Impervious Runoff Depth>2.50" .8 min CN=59 Runoff=11.19 cfs 1.340 af
Subcatchment2aS: Houses Infiltrated with Runoff Area=3,168 sf Tc=	100.00% Impervious Runoff Depth>6.77" 0.0 min CN=98 Runoff=0.57 cfs 0.041 af
	sf 1.43% Impervious Runoff Depth>1.80" djusted CN=52 Runoff=25.15 cfs 6.365 af
Subcatchment3aS: Houses Infiltrated with Runoff Area=3,168 sf Tc=	100.00% Impervious Runoff Depth>6.77" 0.0 min CN=98 Runoff=0.57 cfs 0.041 af
	sf 0.89% Impervious Runoff Depth>1.14" Adjusted CN=44 Runoff=4.60 cfs 0.937 af
Subcatchment4aS: Houses Infiltrated with Runoff Area=3,168 sf Tc=	100.00% Impervious Runoff Depth>6.77" 0.0 min CN=98 Runoff=0.57 cfs 0.041 af
	sf 0.94% Impervious Runoff Depth>3.39" djusted CN=68 Runoff=20.09 cfs 2.742 af
	sf 0.00% Impervious Runoff Depth>2.12" .5 min CN=55 Runoff=15.98 cfs 2.032 af
	sf 0.18% Impervious Runoff Depth>0.98" 4.0 min CN=42 Runoff=2.54 cfs 0.544 af
Subcatchment7aS: Houses infiltrated with Runoff Area=1,584 sf Tc=	100.00% Impervious Runoff Depth>6.77" 0.0 min CN=98 Runoff=0.29 cfs 0.021 af
	sf 0.00% Impervious Runoff Depth>0.62" 5.7 min CN=37 Runoff=0.23 cfs 0.053 af
	sf 0.00% Impervious Runoff Depth>2.90" 9.2 min CN=63 Runoff=1.95 cfs 0.207 af
	f 16.48% Impervious Runoff Depth>2.90" Adjusted CN=63 Runoff=0.92 cfs 0.085 af
	f 10.22% Impervious Runoff Depth>2.60" 6.6 min CN=60 Runoff=0.69 cfs 0.070 af
	f 12.44% Impervious Runoff Depth>2.60" 2.9 min CN=60 Runoff=3.50 cfs 0.324 af
	sf 8.75% Impervious Runoff Depth>3.10" 7.5 min CN=65 Runoff=8.77 cfs 0.886 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engine HydroCAD® 10.00-25 s/n 07605 © 2019 Hydro	
Subcatchment 24S: Peekaboo CDS	Runoff Area=12,590 sf 58.28% Impervious Runoff Depth>5.71" Tc=6.0 min CN=89 Runoff=1.80 cfs 0.138 af
Subcatchment 25S: Fredrick CDS	Runoff Area=12,484 sf 57.92% Impervious Runoff Depth>5.15" Tc=6.0 min CN=84 Runoff=1.65 cfs 0.123 af
Subcatchment 26S: Area to Pond #106	Runoff Area=164,053 sf 3.12% Impervious Runoff Depth>2.31" Flow Length=679' Tc=20.6 min CN=57 Runoff=6.43 cfs 0.724 af
Subcatchment 27S: Area to Pond #107 Flow Lengt	Runoff Area=43,831 sf 7.06% Impervious Runoff Depth>4.04" h=309' Tc=11.6 min UI Adjusted CN=74 Runoff=3.95 cfs 0.339 af
Subcatchment 28S: Area to Pond #108	Runoff Area=58,076 sf 12.93% Impervious Runoff Depth>3.40" Flow Length=247' Tc=24.0 min CN=68 Runoff=3.31 cfs 0.378 af
Subcatchment 29S: Subcatchment #29	Runoff Area=6,005 sf 26.21% Impervious Runoff Depth>3.83" Tc=6.0 min CN=72 Runoff=0.61 cfs 0.044 af
Subcatchment 30S: Subcatchment #30	Runoff Area=40,007 sf 7.55% Impervious Runoff Depth>3.00" Flow Length=159' Tc=13.1 min CN=64 Runoff=2.52 cfs 0.230 af
Subcatchment31S: Subcatchment#31	Runoff Area=8,090 sf 30.07% Impervious Runoff Depth>3.01" Tc=6.0 min CN=64 Runoff=0.64 cfs 0.047 af
Subcatchment 32S: Inlet Sump (Lt.)	Runoff Area=122,911 sf 18.55% Impervious Runoff Depth>4.26" Flow Length=809' Tc=11.6 min CN=76 Runoff=11.65 cfs 1.001 af
Subcatchment 33aS: Peekaboo Entranco	Runoff Area=7,232 sf 54.76% Impervious Runoff Depth>4.15 Tc=6.0 min CN=75 Runoff=0.79 cfs 0.057 af
Subcatchment33bS: Subcatchment#33	b Runoff Area=7,285 sf 0.00% Impervious Runoff Depth>1.58" Tc=6.0 min CN=49 Runoff=0.26 cfs 0.022 af
Subcatchment 34S: Inlet Sump (Rt.)	Runoff Area=40,148 sf 21.43% Impervious Runoff Depth>4.59" Flow Length=594' Tc=8.6 min CN=79 Runoff=4.45 cfs 0.352 af
Subcatchment 41S: Catch Basin #1	Runoff Area=3,378 sf 100.00% Impervious Runoff Depth>6.77" Tc=6.0 min CN=98 Runoff=0.52 cfs 0.044 af
Subcatchment 42S: Catch Basin #2	Runoff Area=3,365 sf 100.00% Impervious Runoff Depth>6.77" Tc=6.0 min CN=98 Runoff=0.52 cfs 0.044 af
Subcatchment 43S: Catch Basin #3	Runoff Area=3,418 sf 100.00% Impervious Runoff Depth>6.77" Tc=6.0 min CN=98 Runoff=0.53 cfs 0.044 af
Subcatchment 44S: Catch Basin #4	Runoff Area=3,568 sf 100.00% Impervious Runoff Depth>6.77" Tc=6.0 min CN=98 Runoff=0.55 cfs 0.046 af
Subcatchment 45S: Rain Guardian #1	Runoff Area=2,431 sf 100.00% Impervious Runoff Depth>6.77" Tc=6.0 min CN=98 Runoff=0.37 cfs 0.031 af
Reach 1R: Reach #1 Outlet Swale n=0.045 L	Avg. Flow Depth=1.16' Max Vel=1.52 fps Inflow=7.18 cfs 1.712 af .=60.0' S=0.0033 '/' Capacity=22.47 cfs Outflow=7.18 cfs 1.711 af

Prepared by Berry Surveying	
HydroCAD® 10.00-25 s/n 07605	© 2019 HydroCAD Software Solutions LLC Page 18
	rland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 a n=0.080 L=125.0' S=0.0732 '/' Capacity=16.09 cfs Outflow=0.00 cfs 0.000 a
Reach 22bR: Reach #22b	Avg. Flow Depth=0.85' Max Vel=0.98 fps Inflow=7.28 cfs 1.798 a n=0.080 L=392.0' S=0.0060 '/' Capacity=45.67 cfs Outflow=7.18 cfs 1.790 a
Reach 30aR: Reach #30aR Co	nveyance Avg. Flow Depth=0.21' Max Vel=1.54 fps Inflow=1.86 cfs 0.227 a n=0.045 L=201.0' S=0.0199 '/' Capacity=29.56 cfs Outflow=1.85 cfs 0.226 a
Reach 30R: Reach #30 Conve	yance Avg. Flow Depth=0.20' Max Vel=1.07 fps Inflow=1.87 cfs 0.228 a n=0.045 L=205.0' S=0.0098 '/' Capacity=30.09 cfs Outflow=1.86 cfs 0.227 a
Reach 31R: Reach #31	Avg. Flow Depth=0.17' Max Vel=1.32 fps Inflow=0.63 cfs 0.046 a n=0.045 L=158.0' S=0.0222 '/' Capacity=19.07 cfs Outflow=0.60 cfs 0.046 a
Reach 32R: Reach #32R Over	Iand Flow Avg. Flow Depth=0.35' Max Vel=1.04 fps Inflow=4.20 cfs 0.483 a n=0.080 L=90.0' S=0.0222 '/' Capacity=8.86 cfs Outflow=4.13 cfs 0.483 a
	v Through Avg. Flow Depth=0.26' Max Vel=0.86 fps Inflow=1.15 cfs 0.097 a n=0.080 L=130.0' S=0.0231 '/' Capacity=21.37 cfs Outflow=1.12 cfs 0.097 a
Reach 33bR: Reach #33b	Avg. Flow Depth=0.85' Max Vel=0.98 fps Inflow=7.28 cfs 1.800 a n=0.080 L=108.0' S=0.0060 '/' Capacity=45.76 cfs Outflow=7.28 cfs 1.798 a
	nent Swale Avg. Flow Depth=0.31' Max Vel=0.37 fps Inflow=1.35 cfs 0.098 a n=0.140 L=135.0' S=0.0074 '/' Capacity=10.03 cfs Outflow=1.15 cfs 0.097 a
Reach 100R: Final Reach #10	0 Inflow=0.69 cfs 0.070 a Outflow=0.69 cfs 0.070 a
Reach 101bR: Reach #101b	Avg. Flow Depth=0.99' Max Vel=0.76 fps Inflow=7.18 cfs 1.711 a n=0.080 L=332.0' S=0.0030 '/' Capacity=32.37 cfs Outflow=7.06 cfs 1.703 a
	Stream Avg. Flow Depth=0.10' Max Vel=1.18 fps Inflow=0.37 cfs 0.317 a n=0.022 L=427.0' S=0.0076 '/' Capacity=22.54 cfs Outflow=0.37 cfs 0.314 a
Reach 103bR: Reach 103aB C	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 a n=0.080 L=393.0' S=0.0254 '/' Capacity=4.73 cfs Outflow=0.00 cfs 0.000 a
	rland Flow Avg. Flow Depth=0.08' Max Vel=0.47 fps Inflow=0.37 cfs 0.320 a n=0.080 L=166.0' S=0.0301 '/' Capacity=18.07 cfs Outflow=0.37 cfs 0.317 a
Reach 106aR: Reach #106a	Avg. Flow Depth=0.34' Max Vel=0.86 fps Inflow=5.87 cfs 1.070 a n=0.080 L=251.0' S=0.0159 '/' Capacity=11.27 cfs Outflow=4.79 cfs 1.062 a
Reach 106bR: Reach #106b	Avg. Flow Depth=0.94' Max Vel=1.57 fps Inflow=10.08 cfs 2.852 a =0.080 L=365.0' S=0.0137 '/' Capacity=51.13 cfs Outflow=10.05 cfs 2.841 a

20-065 Proposed Analysis

Type III 24-hr 50Yr-24Hr Rainfall=7.01"

Reach 107aR: Reach #107a Overland Avg. Flow Depth=0.16' Max Vel=1.03 fps Inflow=0.67 cfs 0.423 af n=0.080 L=1,054.0' S=0.0598 '/' Capacity=34.39 cfs Outflow=0.67 cfs 0.419 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Sol	Type III 24-hr 50Yr-24Hr Rainfall=7.01"Printed 12/8/2023lutions LLCPage 19			
	38' Max Vel=1.77 fps Inflow=10.68 cfs 3.259 af Capacity=59.95 cfs Outflow=10.39 cfs 3.234 af			
Reach 108R: Reach #108 Overland Flow Avg. Flow Depth=0.17' Max Vel=0.61 fps Inflow=2.25 cfs 0.296 af n=0.080 L=26.0' S=0.0192 '/' Capacity=20.64 cfs Outflow=2.09 cfs 0.296 af				
Reach 200R: Final Reach #200	Inflow=35.04 cfs 9.599 af Outflow=35.04 cfs 9.599 af			
Reach 300R: Final Reach #300	Inflow=4.60 cfs 1.252 af Outflow=4.60 cfs 1.252 af			
Reach 400R: Final Reach #400	Inflow=20.09 cfs 2.742 af Outflow=20.09 cfs 2.742 af			
Reach 500R: Final Reach #500	Inflow=15.98 cfs 2.032 af Outflow=15.98 cfs 2.032 af			
Reach 600R: Final Reach #600	Inflow=2.54 cfs 0.544 af Outflow=2.54 cfs 0.544 af			
Reach 700R: Final Reach #700	Inflow=0.23 cfs 0.053 af Outflow=0.23 cfs 0.053 af			
Reach 800R: Final Reach #800	Inflow=1.95 cfs 0.207 af Outflow=1.95 cfs 0.207 af			
Reach 900R: Final Reach #900	Inflow=2.39 cfs 0.381 af Outflow=2.39 cfs 0.381 af			
	2' Storage=20,797 cf Inflow=13.67 cfs 1.823 af ary=7.18 cfs 1.712 af Outflow=7.20 cfs 1.723 af			
	189.12' Storage=18 cf Inflow=0.61 cfs 0.044 af L=55.0' S=0.0091 '/' Outflow=0.61 cfs 0.044 af			
	2.01' Storage=1,260 cf Inflow=2.52 cfs 0.230 af L=40.0' S=0.0063 '/' Outflow=1.87 cfs 0.228 af			
	189.41' Storage=39 cf Inflow=0.64 cfs 0.047 af L=43.0' S=0.0058 '/' Outflow=0.63 cfs 0.046 af			
	08' Storage=1,036 cf Inflow=11.65 cfs 1.001 af y=4.20 cfs 0.483 af Outflow=11.95 cfs 0.988 af			
Pond 33P: Treatment Swale Forebay Peak Elev=1	85.68' Storage=729 cf Inflow=1.17 cfs 0.089 af Outflow=1.09 cfs 0.076 af			
	191.03' Storage=24 cf Inflow=4.45 cfs 0.352 af L=29.7' S=0.1010 '/' Outflow=4.44 cfs 0.352 af			
Pond 102P: Gravel Wetland #102 Peak Elev=189.2	7' Storage=38,118 cf Inflow=17.19 cfs 1.358 af			

 Pond 102P: Gravel Wetland #102
 Peak Elev=189.27'
 Storage=38,118 cf
 Inflow=17.19 cfs
 1.358 af

 Primary=0.10 cfs
 0.120 af
 Secondary=0.66 cfs
 0.600 af
 Tertiary=0.00 cfs
 0.000 af
 Outflow=0.75 cfs
 0.720 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engin HydroCAD® 10.00-25 s/n 07605 © 2019 F			
Pond 103aP: Level Spreader	Peak Elev=170.08' Storage=415 cf Inflow=0.37 cfs 0.330 af Outflow=0.37 cfs 0.320 af		
	103 Peak Elev=184.26' Storage=36,708 cf Inflow=11.45 cfs 1.282 af cfs 0.330 af Secondary=0.00 cfs 0.000 af Outflow=0.55 cfs 0.545 af		
Pond 104P: Detention Pond #104	Peak Elev=247.61' Storage=2,074 cf Inflow=1.80 cfs 0.138 af Outflow=0.31 cfs 0.137 af		
Pond 105P: Center of Cul-de-sac Pond 15.0" R	d #105 Peak Elev=184.63' Storage=43 cf Inflow=1.65 cfs 0.123 af ound Culvert n=0.012 L=60.0' S=0.0333 '/' Outflow=1.65 cfs 0.123 af		
Pond 106P: Infiltration Pond #106 Discarded=0.	Peak Elev=186.93' Storage=9,770 cf Inflow=7.11 cfs 1.444 af 13 cfs 0.164 af Primary=5.87 cfs 1.070 af Outflow=6.00 cfs 1.234 af		
Pond 107P: Rain Garden #107 Primary=0.55 cfs 0.292 af Secondary=0.	Peak Elev=241.35' Storage=8,548 cf Inflow=4.23 cfs 0.476 af .13 cfs 0.131 af Tertiary=0.00 cfs 0.000 af Outflow=0.67 cfs 0.423 af		
Pond 108P: Gravel Wetland #108 Primary=0.02	Peak Elev=185.31' Storage=6,117 cf Inflow=3.56 cfs 0.422 af cfs 0.006 af Secondary=2.39 cfs 0.316 af Outflow=2.11 cfs 0.312 af		
Pond 109P: Level Spreader	Peak Elev=185.06' Storage=1,157 cf Inflow=2.40 cfs 0.322 af Outflow=2.25 cfs 0.296 af		
Pond C01P: Catch Basin #1 12.0" R	Peak Elev=214.75' Storage=0.000 af Inflow=0.52 cfs 0.044 af ound Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=0.52 cfs 0.044 af		
Pond C02P: Catch Basin #2 12.0" Ro	Peak Elev=214.58' Storage=0.000 af Inflow=1.04 cfs 0.087 af und Culvert n=0.012 L=231.0' S=0.0965 '/' Outflow=1.04 cfs 0.087 af		
Pond C03P: Catch Basin #3 24.0" R	Peak Elev=189.27' Storage=0.001 af Inflow=8.28 cfs 0.549 af ound Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=8.26 cfs 0.548 af		
Pond C04P: Catch Basin #4 24.0" R	Peak Elev=189.27' Storage=0.001 af Inflow=9.65 cfs 0.682 af ound Culvert n=0.012 L=20.0' S=0.0125 '/' Outflow=9.63 cfs 0.681 af		
Pond C05P: Rain Guardian #1	Peak Elev=185.68' Storage=0.000 af Inflow=0.37 cfs 0.031 af Outflow=0.38 cfs 0.031 af		
Pond D01P: Drain Manhole #1 12.0" R	Peak Elev=192.20' Storage=0.000 af Inflow=1.04 cfs 0.087 af ound Culvert n=0.012 L=66.2' S=0.0819 '/' Outflow=1.04 cfs 0.087 af		
Total Runoff Area = 106.696 ac Runoff Volume = 19.393 af Average Runoff Depth = 2.18			

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solution	ype III 24-hr 100Yr-24Hr Rainfall=8.39" Printed 12/8/2023 ons LLC Page 21		
Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method			
	91 sf 2.68% Impervious Runoff Depth>3.49" =24.8 min CN=59 Runoff=15.98 cfs 1.874 af		
Subcatchment2aS: Houses Infiltrated with Runoff Area=3,168	sf 100.00% Impervious Runoff Depth>8.15" Tc=0.0 min CN=98 Runoff=0.69 cfs 0.049 af		
	83 sf 1.43% Impervious Runoff Depth>2.65" II Adjusted CN=52 Runoff=38.80 cfs 9.350 af		
Subcatchment3aS: Houses Infiltrated with Runoff Area=3,168	sf 100.00% Impervious Runoff Depth>8.15" Fc=0.0 min CN=98 Runoff=0.69 cfs 0.049 af		
	54 sf 0.89% Impervious Runoff Depth>1.81" UI Adjusted CN=44 Runoff=8.23 cfs 1.490 af		
Subcatchment 4aS: Houses Infiltrated with Runoff Area=3,168	sf 100.00% Impervious Runoff Depth>8.15" Fc=0.0 min CN=98 Runoff=0.69 cfs 0.049 af		
	69 sf 0.94% Impervious Runoff Depth>4.53" Il Adjusted CN=68 Runoff=26.95 cfs 3.663 af		
	48 sf 0.00% Impervious Runoff Depth>3.03" =26.5 min CN=55 Runoff=23.71 cfs 2.914 af		
	61 sf 0.18% Impervious Runoff Depth>1.61" c=44.0 min CN=42 Runoff=4.80 cfs 0.889 af		
Subcatchment7aS: Houses infiltrated with Runoff Area=1,584	sf 100.00% Impervious Runoff Depth>8.15" Fc=0.0 min CN=98 Runoff=0.34 cfs 0.025 af		
	00 sf 0.00% Impervious Runoff Depth>1.12" c=25.7 min CN=37 Runoff=0.55 cfs 0.096 af		
	83 sf 0.00% Impervious Runoff Depth>3.96" c=19.2 min CN=63 Runoff=2.71 cfs 0.283 af		
	5 sf 16.48% Impervious Runoff Depth>3.97" UI Adjusted CN=63 Runoff=1.28 cfs 0.117 af		
	0 sf 10.22% Impervious Runoff Depth>3.62" =16.6 min CN=60 Runoff=0.98 cfs 0.098 af		
	0 sf 12.44% Impervious Runoff Depth>3.62" c=12.9 min CN=60 Runoff=4.96 cfs 0.451 af		
	18 sf 8.75% Impervious Runoff Depth>4.20" =17.5 min CN=65 Runoff=11.98 cfs 1.201 af		

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software S	Type III 24-hr 100Yr-24Hr Rainfall=8.39"Printed 12/8/2023Solutions LLCPage 22
Subcatchment 24S: Peekaboo CDS Runoff Area=	12,590 sf 58.28% Impervious Runoff Depth>7.06" Tc=6.0 min CN=89 Runoff=2.20 cfs 0.170 af
Subcatchment 25S: Fredrick CDS Runoff Area=	12,484 sf 57.92% Impervious Runoff Depth>6.47" Tc=6.0 min CN=84 Runoff=2.05 cfs 0.154 af
	164,053 sf 3.12% Impervious Runoff Depth>3.27" 9' Tc=20.6 min CN=57 Runoff=9.36 cfs 1.025 af
	=43,831 sf 7.06% Impervious Runoff Depth>5.27" min UI Adjusted CN=74 Runoff=5.13 cfs 0.442 af
	58,076 sf 12.93% Impervious Runoff Depth>4.54" 7' Tc=24.0 min CN=68 Runoff=4.44 cfs 0.505 af
Subcatchment 29S: Subcatchment #29 Runoff Area	=6,005 sf 26.21% Impervious Runoff Depth>5.03" Tc=6.0 min CN=72 Runoff=0.80 cfs 0.058 af
	=40,007 sf 7.55% Impervious Runoff Depth>4.08" 9' Tc=13.1 min CN=64 Runoff=3.46 cfs 0.313 af
Subcatchment 31S: Subcatchment #31 Runoff Area	=8,090 sf 30.07% Impervious Runoff Depth>4.09" Tc=6.0 min CN=64 Runoff=0.87 cfs 0.063 af
	22,911 sf 18.55% Impervious Runoff Depth>5.50" ' Tc=11.6 min CN=76 Runoff=14.98 cfs 1.294 af
Subcatchment 33aS: Peekaboo Entrance Runoff Area	=7,232 sf 54.76% Impervious Runoff Depth>5.39" Tc=6.0 min CN=75 Runoff=1.02 cfs 0.075 af
Subcatchment 33bS: Subcatchment #33b Runoff Area	a=7,285 sf 0.00% Impervious Runoff Depth>2.38" Tc=6.0 min CN=49 Runoff=0.42 cfs 0.033 af
	40,148 sf 21.43% Impervious Runoff Depth>5.86" 94' Tc=8.6 min CN=79 Runoff=5.64 cfs 0.450 af
Subcatchment 41S: Catch Basin #1 Runoff Area=3	3,378 sf 100.00% Impervious Runoff Depth>8.15" Tc=6.0 min CN=98 Runoff=0.62 cfs 0.053 af
Subcatchment 42S: Catch Basin #2 Runoff Area=3	3,365 sf 100.00% Impervious Runoff Depth>8.15" Tc=6.0 min CN=98 Runoff=0.62 cfs 0.052 af
Subcatchment 43S: Catch Basin #3 Runoff Area=3	3,418 sf 100.00% Impervious Runoff Depth>8.15" Tc=6.0 min CN=98 Runoff=0.63 cfs 0.053 af
Subcatchment 44S: Catch Basin #4 Runoff Area=	3,568 sf 100.00% Impervious Runoff Depth>8.15" Tc=6.0 min CN=98 Runoff=0.66 cfs 0.056 af
Subcatchment 45S: Rain Guardian #1 Runoff Area=2	2,431 sf 100.00% Impervious Runoff Depth>8.15" Tc=6.0 min CN=98 Runoff=0.45 cfs 0.038 af
	=1.50' Max Vel=1.77 fps Inflow=12.31 cfs 2.589 af '/' Capacity=22.47 cfs Outflow=12.31 cfs 2.588 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solut	ype III 24-hr 100Yr-24Hr Rainfall=8.39" Printed 12/8/2023 ions LLC Page 23
Reach 22aR: Reach #22a Overland Flow Avg. Flow Depth=0.0 n=0.080 L=125.0' S=0.0732 '/'	0' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af Capacity=16.09 cfs Outflow=0.00 cfs 0.000 af
···· · · · · · · · · · · · · · · · · ·	Max Vel=1.15 fps Inflow=12.46 cfs 2.703 af apacity=45.67 cfs Outflow=12.31 cfs 2.691 af
Reach 30aR: Reach #30aR Conveyance Avg. Flow Depth=0.2 n=0.045 L=201.0' S=0.0199 '/'	5' Max Vel=1.71 fps Inflow=2.52 cfs 0.309 af Capacity=29.56 cfs Outflow=2.51 cfs 0.309 af
	4' Max Vel=1.19 fps Inflow=2.54 cfs 0.310 af Capacity=30.09 cfs Outflow=2.52 cfs 0.309 af
	1' Max Vel=1.45 fps Inflow=0.86 cfs 0.063 af Capacity=19.07 cfs Outflow=0.83 cfs 0.063 af
Reach 32R: Reach #32R Overland Flow Avg. Flow Depth=0.4 n=0.080 L=90.0' S=0.0222 '/'	9' Max Vel=1.31 fps Inflow=8.50 cfs 0.846 af Capacity=8.86 cfs Outflow=8.37 cfs 0.846 af
Reach 33aR: Reach #33a Flow Through Avg. Flow Depth=0.3 n=0.080 L=130.0' S=0.0231 '/'	0' Max Vel=0.95 fps Inflow=1.56 cfs 0.132 af Capacity=21.37 cfs Outflow=1.53 cfs 0.131 af
	Max Vel=1.16 fps Inflow=12.47 cfs 2.707 af apacity=45.76 cfs Outflow=12.46 cfs 2.703 af
Reach 33R: Reach #33 Treatment Swale Avg. Flow Depth=0.3 n=0.140 L=135.0' S=0.0074 '/'	7' Max Vel=0.41 fps Inflow=1.80 cfs 0.133 af Capacity=10.03 cfs Outflow=1.56 cfs 0.132 af
Reach 100R: Final Reach #100	Inflow=0.98 cfs 0.098 af Outflow=0.98 cfs 0.098 af
	Max Vel=0.90 fps Inflow=12.31 cfs 2.588 af apacity=32.37 cfs Outflow=12.12 cfs 2.575 af
	0' Max Vel=2.34 fps Inflow=2.56 cfs 0.681 af Capacity=22.54 cfs Outflow=2.54 cfs 0.678 af
	9' Max Vel=0.46 fps Inflow=0.19 cfs 0.006 af Capacity=4.73 cfs Outflow=0.12 cfs 0.006 af
Reach 103R: Reach #103 Overland Flow Avg. Flow Depth=0.2 n=0.080 L=166.0' S=0.0301 '/'	0' Max Vel=0.84 fps Inflow=2.51 cfs 0.678 af Capacity=18.07 cfs Outflow=2.46 cfs 0.675 af
	Max Vel=1.04 fps Inflow=10.17 cfs 1.458 af Capacity=11.27 cfs Outflow=8.79 cfs 1.449 af
	Max Vel=1.84 fps Inflow=17.31 cfs 4.140 af apacity=51.13 cfs Outflow=17.24 cfs 4.126 af
	7' Max Vel=1.07 fps Inflow=0.77 cfs 0.553 af Capacity=34.39 cfs Outflow=0.77 cfs 0.548 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering <u>HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software So</u>	Type III 24-hr 100Yr-24Hr Rainfall=8.39" Printed 12/8/2023 Jutions LLC Page 24
	13' Max Vel=2.07 fps Inflow=17.95 cfs 4.675 af Capacity=59.95 cfs Outflow=17.54 cfs 4.642 af
Reach 108R: Reach #108 Overland Flow Avg. Flow Depth=0 n=0.080 L=26.0' S=0.0192 '/	0.20' Max Vel=0.67 fps Inflow=2.77 cfs 0.428 af ' Capacity=20.64 cfs Outflow=2.76 cfs 0.427 af
Reach 200R: Final Reach #200	Inflow=54.13 cfs 13.992 af Outflow=54.13 cfs 13.992 af
Reach 300R: Final Reach #300	Inflow=8.26 cfs 2.168 af Outflow=8.26 cfs 2.168 af
Reach 400R: Final Reach #400	Inflow=26.95 cfs 3.663 af Outflow=26.95 cfs 3.663 af
Reach 500R: Final Reach #500	Inflow=23.71 cfs 2.914 af Outflow=23.71 cfs 2.914 af
Reach 600R: Final Reach #600	Inflow=4.80 cfs 0.889 af Outflow=4.80 cfs 0.889 af
Reach 700R: Final Reach #700	Inflow=0.55 cfs 0.096 af Outflow=0.55 cfs 0.096 af
Reach 800R: Final Reach #800	Inflow=2.71 cfs 0.283 af Outflow=2.71 cfs 0.283 af
Reach 900R: Final Reach #900	Inflow=3.21 cfs 0.544 af Outflow=3.21 cfs 0.544 af
	48' Storage=31,050 cf Inflow=23.07 cfs 2.720 af /=12.31 cfs 2.589 af Outflow=12.32 cfs 2.601 af
	=189.17' Storage=23 cf Inflow=0.80 cfs 0.058 af L=55.0' S=0.0091 '/' Outflow=0.80 cfs 0.058 af
	2.16' Storage=1,738 cf Inflow=3.46 cfs 0.313 af L=40.0' S=0.0063 '/' Outflow=2.54 cfs 0.310 af
	=189.49' Storage=51 cf Inflow=0.87 cfs 0.063 af L=43.0' S=0.0058 '/' Outflow=0.86 cfs 0.063 af
	.29' Storage=1,214 cf Inflow=14.98 cfs 1.294 af ry=8.50 cfs 0.846 af Outflow=14.71 cfs 1.276 af
Pond 33P: Treatment Swale Forebay Peak Elev=1	185.71' Storage=764 cf Inflow=1.48 cfs 0.112 af Outflow=1.38 cfs 0.099 af
	=191.20' Storage=32 cf Inflow=5.64 cfs 0.450 af L=29.7' S=0.1010 '/' Outflow=5.63 cfs 0.450 af
Pond 102P: Gravel Wetland #102 Peak Elev=189.8	35' Storage=45,832 cf Inflow=18.99 cfs 1.543 af

 Pond 102P: Gravel Wetland #102
 Peak Elev=189.85'
 Storage=45,832 cf
 Inflow=18.99 cfs
 1.543 af

 Primary=0.10 cfs
 0.135 af
 Secondary=0.73 cfs
 0.680 af
 Tertiary=0.00 cfs
 0.000 af
 Outflow=0.83 cfs
 0.815 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engin HydroCAD® 10.00-25 s/n 07605 © 2019 Hy	
Pond 103aP: Level Spreader	Peak Elev=170.21' Storage=482 cf Inflow=2.51 cfs 0.687 af Outflow=2.51 cfs 0.678 af
	D3 Peak Elev=184.54' Storage=39,497 cf Inflow=15.59 cfs 1.727 af fs 0.687 af Secondary=0.19 cfs 0.006 af Outflow=2.88 cfs 0.920 af
Pond 104P: Detention Pond #104	Peak Elev=247.94' Storage=2,682 cf Inflow=2.20 cfs 0.170 af Outflow=0.34 cfs 0.170 af
Pond 105P: Center of Cul-de-sac Pond 15.0" Ro	#105 Peak Elev=184.71' Storage=53 cf Inflow=2.05 cfs 0.154 af und Culvert n=0.012 L=60.0' S=0.0333 '/' Outflow=2.05 cfs 0.154 af
Pond 106P: Infiltration Pond #106	Peak Elev=187.01' Storage=10,117 cf Inflow=10.08 cfs 1.840 af
Discarded=0.13	cfs 0.172 af Primary=10.17 cfs 1.458 af Outflow=10.30 cfs 1.629 af
Pond 107P: Rain Garden #107	Peak Elev=241.92' Storage=11,342 cf Inflow=5.44 cfs 0.612 af
Primary=0.63 cfs 0.410 af Secondary=0.1	4 cfs 0.144 af Tertiary=0.00 cfs 0.000 af Outflow=0.77 cfs 0.553 af
Pond 108P: Gravel Wetland #108	Peak Elev=185.59' Storage=7,504 cf Inflow=4.77 cfs 0.563 af
Primary=0.02 c	fs 0.007 af Secondary=2.74 cfs 0.445 af Outflow=2.76 cfs 0.453 af
Pond 109P: Level Spreader	Peak Elev=185.07' Storage=1,165 cf Inflow=2.76 cfs 0.453 af Outflow=2.77 cfs 0.428 af
Pond C01P: Catch Basin #1	Peak Elev=214.80' Storage=0.000 af Inflow=0.62 cfs 0.053 af
12.0" Ro	und Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=0.62 cfs 0.053 af
Pond C02P: Catch Basin #2	Peak Elev=214.64' Storage=0.000 af Inflow=1.25 cfs 0.105 af
12.0" Rou	nd Culvert n=0.012 L=231.0' S=0.0965 '/' Outflow=1.25 cfs 0.105 af
Pond C03P: Catch Basin #3	Peak Elev=189.84' Storage=0.001 af Inflow=7.33 cfs 0.484 af
24.0" Ro	und Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=7.31 cfs 0.483 af
Pond C04P: Catch Basin #4	Peak Elev=189.85' Storage=0.001 af Inflow=9.21 cfs 0.643 af
24.0" Ro	und Culvert n=0.012 L=20.0' S=0.0125 '/' Outflow=9.18 cfs 0.642 af
Pond C05P: Rain Guardian #1	Peak Elev=185.71' Storage=0.000 af Inflow=0.45 cfs 0.038 af Outflow=0.45 cfs 0.038 af
Pond D01P: Drain Manhole #1	Peak Elev=192.26' Storage=0.000 af Inflow=1.25 cfs 0.105 af
12.0" Ro	und Culvert n=0.012 L=66.2' S=0.0819 '/' Outflow=1.25 cfs 0.105 af
Total Runoff Area = 106.696	ac Runoff Volume = 27.431 af Average Runoff Depth = 3.0

96.40% Pervious = 102.853 ac 3.60% Impervious = 3.843 ac

Area Listing (all nodes)

	Area	CN	Description
(a	acres)		(subcatchment-numbers)
:	3.468	39	>75% Grass cover, Good, HSG A (1S, 2S, 3S, 6S, 7S, 22S, 23S, 26S, 30S, 31S, 32S, 33aS, 33bS, 34S)
:	5.338	61	>75% Grass cover, Good, HSG B (1S, 2S, 3S, 4S, 6S, 8S, 9S, 10S, 22S, 23S, 25S, 26S, 28S, 29S, 30S, 31S, 32S, 33aS, 33bS)
4	5.356	74	>75% Grass cover, Good, HSG C (1S, 2S, 4S, 10S, 22S, 23S, 24S, 26S, 27S, 28S, 30S, 32S, 34S)
	0.040	80	>75% Grass cover, Good, HSG D (1S)
	0.031	96	Gravel surface, HSG A (1S, 31S, 32S, 33aS, 33bS)
	0.081	96	Gravel surface, HSG B (1S, 9S, 23S, 25S, 28S, 29S, 30S, 31S, 33aS)
	0.053	96	Gravel surface, HSG C (4S, 9S, 23S, 24S, 27S, 28S, 30S, 32S, 34S)
	0.230	30	Meadow, non-grazed, HSG A (7S, 26S)
	0.436	58	Meadow, non-grazed, HSG B (1S, 7S, 9S, 26S)
:	2.625	71	Meadow, non-grazed, HSG C (1S, 4S, 7S, 9S, 26S, 32S)
	0.228	98	Paved parking, HSG A (1S, 6S, 22S, 23S, 30S, 31S, 32S, 33aS, 43S, 44S, 45S)
	0.734	98	Paved parking, HSG B (1S, 10S, 23S, 25S, 28S, 29S, 30S, 31S, 32S, 33aS)
	1.158	98	Paved parking, HSG C (10S, 22S, 23S, 24S, 27S, 28S, 30S, 32S, 34S, 41S, 42S, 43S, 44S)
(0.072	98	Paved parking, HSG D (1S)
(0.054	98	Roofs, HSG A (3aS, 22S)
	0.090	98	Roofs, HSG B (3aS, 28S, 32S)
	0.224	98	Roofs, HSG C (22S, 32S, 34S)
	0.367	98	Unconnected pavement, HSG A (2S, 3S)
	0.296	98	Unconnected pavement, HSG B (2S, 3S, 9S)
(0.151	98	Unconnected pavement, HSG C (4S, 9S, 26S)
	0.089	98	Unconnected roofs, HSG A (2S, 7aS, 26S)
(0.179	98	Unconnected roofs, HSG B (1S, 2aS, 2S, 23S)
(0.200	98	Unconnected roofs, HSG C (1S, 2S, 4aS, 26S, 27S)
2	2.346	30	Woods, Good, HSG A (1S, 2S, 3S, 5S, 6S, 7S, 22S, 23S, 26S, 33bS)
4	0.330	55	Woods, Good, HSG B (1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 22S, 23S, 26S, 28S, 29S, 30S, 32S, 33bS)
1	9.388	70	Woods, Good, HSG C (1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 22S, 23S, 26S, 27S, 28S, 30S, 32S, 34S)
	3.130 6.696	77 56	Woods, Good, HSG D (2S, 3S, 5S, 6S) TOTAL AREA
10	0.000	50	

Soil Listing (all nodes)

Ar	ea Soil	Subcatchment
(acre	es) Group	Numbers
26.8	14 HSG A	1S, 2S, 3aS, 3S, 5S, 6S, 7aS, 7S, 22S, 23S, 26S, 30S, 31S, 32S, 33aS, 33bS,
		34S, 43S, 44S, 45S
47.4	83 HSG B	1S, 2aS, 2S, 3aS, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 22S, 23S, 25S, 26S, 28S,
		29S, 30S, 31S, 32S, 33aS, 33bS
29.1	56 HSG C	1S, 2S, 3S, 4aS, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 22S, 23S, 24S, 26S, 27S, 28S,
		30S, 32S, 34S, 41S, 42S, 43S, 44S
3.2	43 HSG D	1S, 2S, 3S, 5S, 6S
0.0	00 Other	
106.6	96	TOTAL AREA

Ground Covers (all nodes)								
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment	
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers	
 3.468	5.338	5.356	0.040	0.000	14.203	>75% Grass cover, Good		
0.031	0.081	0.053	0.000	0.000	0.165	Gravel surface	29S, 30S, 31S, 32S, 33aS, 33bS, 34S 1S, 4S,	
							9S, 23S, 24S, 25S, 27S, 28S, 29S, 30S, 31S, 32S, 33aS, 33bS, 34S	
0.230	0.436	2.625	0.000	0.000	3.291	Meadow, non-grazed	1S, 4S, 7S, 9S, 26S, 32S	
0.228	0.734	1.158	0.072	0.000	2.193	Paved parking	1S, 6S, 10S, 22S, 23S, 24S, 25S, 27S, 28S	

Ground Covers (all nodes)

28S, 29S,

30S, 31S,

				-			
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.054	0.090	0.224	0.000	0.000	0.367	Roofs	3aS,
							22S,
							28S,
							32S, 34S
0.367	0.296	0.151	0.000	0.000	0.814	Unconnected pavement	2S, 3S,
							4S, 9S,
							26S
0.089	0.179	0.200	0.000	0.000	0.468	Unconnected roofs	1S, 2aS,
							2S, 4aS,
							7aS,
							23S,
							26S, 27S
22.346	40.330	19.388	3.130	0.000	85.195	Woods, Good	1S, 2S,
							3S, 4S,
							5S, 6S,
							7S, 8S,
							9S, 10S,
							22S,
							23S,
							26S,
							27S,
							28S,
							29S,
							30S,
							32S,
							33bS,
							34S
26.814	47.483	29.156	3.243	0.000	106.696	TOTAL AREA	

Ground Covers (all nodes) (continued)

20-065 Proposed Analysis

Prepared by Berry Surveying & Engineering	I
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC	

						0				
	Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
_		Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
	1	1P	182.50	182.00	50.0	0.0100	0.024	24.0	0.0	6.0
	2	29P	188.75	188.25	55.0	0.0091	0.012	15.0	0.0	0.0
	3	30P	191.25	191.00	40.0	0.0063	0.012	15.0	0.0	0.0
	4	31P	189.00	188.75	43.0	0.0058	0.012	15.0	0.0	0.0
	5	32P	187.00	186.00	17.0	0.0588	0.012	18.0	0.0	0.0
	6	34P	190.00	187.00	29.7	0.1010	0.012	18.0	0.0	0.0
	7	102P	183.67	183.50	101.2	0.0017	0.012	6.0	0.0	0.0
	8	102P	185.50	185.00	90.0	0.0056	0.012	24.0	0.0	0.0
	9	103P	175.00	171.50	109.0	0.0321	0.012	15.0	0.0	0.0
	10	104P	245.75	244.00	60.0	0.0292	0.012	15.0	0.0	0.0
	11	105P	184.00	182.00	60.0	0.0333	0.012	15.0	0.0	0.0
	12	107P	236.50	236.25	28.0	0.0089	0.012	15.0	0.0	0.0
	13	107P	236.50	236.50	1.0	0.0000	0.012	6.0	0.0	0.0
	14	108P	183.17	183.00	35.0	0.0049	0.012	12.0	0.0	0.0
	15	108P	183.25	183.00	47.0	0.0053	0.012	12.0	0.0	0.0
	16	C01P	214.30	214.15	16.0	0.0094	0.012	12.0	0.0	0.0
	17	C02P	214.05	191.77	231.0	0.0965	0.012	12.0	0.0	0.0
	18	C03P	185.50	185.35	16.0	0.0094	0.012	24.0	0.0	0.0
	19	C04P	185.25	185.00	20.0	0.0125	0.012	24.0	0.0	0.0
	20	D01P	191.67	186.25	66.2	0.0819	0.012	12.0	0.0	0.0

Pipe Listing (all nodes)

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method. UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method Subcatchment 1S: Subcatchment #1 Runoff Area=280.391 sf 2.68% Impervious Runoff Depth>1.74° Flow Length=663 Tc=24.8 min CN=59 Runoff=7.50 cfs 0.932 af Subcatchment 2aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>56.2° Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af Subcatchment 3aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>5.62° Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af Subcatchment 3aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>6.26° Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af Subcatchment 3aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>6.26° Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af Subcatchment 3s: Subcatchment #3 Runoff Area=429,754 sf 0.89% Impervious Runoff Depth>6.62° Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af Subcatchment 4aS: Houses Infiltrated with Runoff Area=429,754 sf 0.89% Impervious Runoff Depth>6.62° Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af Subcatchment 4aS: Houses Infiltrated with Runoff Area=420,86 sf 0.00.00% Impervious Runoff Depth>6.42° Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af Subcatchment 4aS: Houses Infiltrated with Runoff Area=422,569 sf 0.94% Impervious Runoff Depth>1.43° Flow Length=1,007 Tc=36.8 min UI Adjusted CN=68 Runoff=14.62 cfs 2.015 af Subcatchment 4S: Subcatchment #4 Runoff Area=20,248 sf 0.000% Impervious Runoff Depth>1.43° Flow Length=424 Tc=26.5 min CN=98 Runoff=0.48 cfs 0.308 af Subcatchment 7aS: Houses infiltrated with Runoff Area=20,441 sf 0.18% Impervious Runoff Depth>6.23° Tc=0.0 min CN=98 Runoff=0.24 cfs 0.017 af Subcatchment 7aS: Houses infiltrated with Runoff Area=218,441 sf 0.18% Impervious Runoff Depth>6.23° Flow Length=424 Tc=25.7 min CN=37 Runoff=0.07 cfs 0.026 af Subcatchment 7aS: Subcatchment #7 Runoff Area=41,800 sf 0.00% Impervious Runoff Depth>2.03° Flow Length=424 Tc=25.7 min CN=37 Runoff=0	20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD	Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 Software Solutions LLC Page 6
Flow Length=663' Tc=24.8 min CN=59 Runoff=7.50 cts 0.932 af Subcatchment2aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>6.62* Tc=0.0 min CN=98 Runoff=0.48 cts 0.034 af Subcatchment2S: Subcatchment#2 Runoff Area=1,847,283 sf 1.43% Impervious Runoff Depth>6.62* Tc=0.0 min CN=98 Runoff=5.29 cts 4.166 af Subcatchment3aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>6.62* Tc=0.0 min CN=98 Runoff=0.29 cts 4.166 af Subcatchment3S: Subcatchment#3 Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>6.62* Tc=0.0 min CN=98 Runoff=0.48 cts 0.034 af Subcatchment4S: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>6.52 af Subcatchment4S: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>6.52 af Subcatchment4S: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>6.52 af Subcatchment4S: Subcatchment#4 Runoff Area=422,569 sf 0.94% Impervious Runoff Depth>2.49* Flow Length=1,007 Tc=35.8 min UI Adjusted CN=68 Runoff=14.62 cts 2.015 af Subcatchment5S: Subcatchment#5 Runoff Area=400 sf 0.00% Impervious Runoff Depth>4.33* Flow Length=1,017 Tc=26.5 min CN=58 Runoff=10.8 cts 1.370 af Subcatchment7S: Houses infiltrated with Runoff Area=289,461 sf 0.18% Impervious Runoff Depth>5.62* Tc=0.0 min CN=98 Runoff=0.24 cts 0.308 af Subcatchment7S: Subcatchment#7 Runoff Area=1,584 sf 100.00% Impervious Runoff Depth>5.62* Tc=0.0 min CN=98 Runoff=0.24 cts 0.308 af Subcatchment7S: Subcatchment#8 Runoff Area=1,584 sf 100.00% Impervious Runoff Depth>5.62* Tc=0.0 min CN=98 Runoff=0.24 cts 0.017 af Subcatchment85: Subcatchment#8 Runoff Area=44,800 sf 0.00% Impervious Runoff Depth>5.20* Flow Length=424' Tc=25.7 min CN=37 Runoff=0.37 cts 0.026 af Subcatchment9S: Subcatchment#8 Runoff Area=15,375 sf 16.48% Impervious Runoff Depth>2.07* Flow Length=426' Tc=16.6 min CN=60 Runoff=0.37 cts 0.049 af Subcatchment2S: Area to Pond #102 Runoff Area=40,103 sf 10.22% Impervious Runoff Depth>1.82*	Runoff by SCS TR-20 r	nethod, UH=SCS, Weighted-CN
Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af Subcatchment2S: Subcatchment#2 Runoff Area=1,847,283 sf 1.43% Impervious Runoff Depth>1.18" Flow Length=2,208 Tc=87.6 min UI Adjusted CN=52 Runoff=15.29 cfs 4.166 af Subcatchment3aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af Subcatchment3S: Subcatchment#3 Runoff Area=429,754 sf 0.89% Impervious Runoff Depth>0.67" Flow Length=753' Tc=46.0 min UI Adjusted CN=44 Runoff=2.24 cfs 0.552 af Subcatchment4aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 af Subcatchment4aS: Subcatchment#4 Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=14.62 cfs 2.015 af Subcatchment4S: Subcatchment#4 Runoff Area=422,569 sf 0.94% Impervious Runoff Depth>2.49" Flow Length=1,007' Tc=35.8 min UI Adjusted CN=68 Runoff=14.62 cfs 2.015 af Subcatchment6S: Subcatchment#6 Runoff Area=502,048 sf 0.00% Impervious Runoff Depth>2.49" Flow Length=1,017' Tc=26.5 min CN=55 Runoff=10.18 cfs 1.370 af Subcatchment7aS: Houses infiltrated with Runoff Area=1,584 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.24 cfs 0.017 af Subcatchment7aS: Houses infiltrated with Runoff Area=1,584 sf 100.00% Impervious Runoff Depth>6.24" Runoff Area=37,283 sf 0.00% Impervious Runoff Depth>0.30" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.13 cfs 0.026 af Subcatchment8S: Subcatchment#7 Runoff Area=37,283 sf 0.00% Impervious Runoff Depth>2.07" Flow Length=422' Tc=13.4 min UI Adjusted CN=63 Runoff=1.36 cfs 0.048 af Subcatchment10S: Subcatchment#8 Runoff Area=15,375 sf 16.48% Impervious Runoff Depth>2.07" Flow Length=425' Tc=15.0 min CN=60 Runoff=0.45 cfs 0.061 af Subcatchment10S: Subcatchment#10 Runoff Area=41,130 sf 10.22% Impervious Runoff Depth>1.82" Flow Length=427' Tc=13.4 min UI Adjusted CN=60 Runoff=0.45 cfs 0.061 af Subcatchment22S: Area to Pond #102 Runoff Area=414,518 sf 8.75% Impervious		
Flow Length=2,208' Tc=87.6 min UI Adjusted CN=52 Runoff=15.29 cfs 4.166 af Subcatchment3aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff=0.48 cfs 0.034 af Subcatchment3S: Subcatchment#3 Runoff Area=429,754 sf 0.89% Impervious Runoff=0.48 cfs 0.052 af Subcatchment43S: Houses Infiltrated with Runoff Area=429,754 sf 0.89% Impervious Runoff=0.48 cfs 0.052 af Subcatchment4aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff=0.48 cfs 0.034 af Subcatchment4aS: Subcatchment#4 Runoff Area=422,569 sf 0.94% Impervious Runoff=0.48 cfs 0.034 af Subcatchment5S: Subcatchment#5 Runoff Area=420,764 sf 0.00% Impervious Runoff Depth>2.49" Flow Length=1,007' Tc=35.8 min UI Adjusted CN=68 Runoff=0.48 cfs 0.034 af Subcatchment5S: Subcatchment#6 Runoff Area=289,461 sf 0.18% Impervious Runoff Depth>0.66" Flow Length=424' Tc=25.7 min CN=98 Runoff=0.562" Tc=0.0 min CN=98 Runoff Depth>0.562" Subcatchment73: Subcatchment#7 Runoff Area=488' 1C0.00% Impervious Runoff Depth>0.562" Tc=0.0 min	Subcatchment 2aS: Houses Infiltrated with Ru	
Tc=0.0 minCN=98Runoff=0.48cfs0.034 afSubcatchment3S:Subcatchment#3 Flow Length=753'Runoff Area=429,754 sf0.89% ImperviousRunoffCN=44Runoff=2.24cfs0.552 afSubcatchment4aS:Houses Infiltrated withRunoff Area=3,168 sf100.00% ImperviousRunoff=0.48cfs0.034 afSubcatchment4S:Subcatchment#4 Flow Length=1,007'Runoff Area=422,569 sf0.94% ImperviousRunoff=0.48cfs0.034 afSubcatchment5S:Subcatchment#5Runoff Area=422,569 sf0.94% ImperviousRunoff=14.62cfs2.015 afSubcatchment5S:Subcatchment#5Runoff Area=502,048 sf0.00% ImperviousRunoff=1.4.62cfs2.015 afSubcatchment6S:Subcatchment#6Runoff Area=289,461 sf0.18% ImperviousRunoff=1.1.8cfs1.370 afSubcatchment7aS:Houses infiltrated withRunoff Area=289,461 sf0.18% ImperviousRunoff=1.1.3cfs0.308 afSubcatchment73:Subcatchment#7Runoff Area=1,584 sf100.00% ImperviousRunoff=0.24cfs0.03" Flow Length=424'Tc=25.7 minCN=37Runoff=0.07cfs0.026 afSubcatchment83:Subcatchment#8Runoff Area=37,283 sf0.00% ImperviousRunoff=0.07cfs0.026 afSubcatchment93:Subcatchment#8Runoff Area=15,375 sf16.48% ImperviousRunoff=0.65cfs0.07" Flow Length=172'Tc=13.4 minUI Adjusted CN=63Runoff=0.65cfs0.048 afSubcatchment93: <th></th> <th></th>		
Flow Length=753' Tc=46.0 min UI Adjusted CN=44 Runoff=2.24 cfs 0.552 afSubcatchment 4aS: Houses Infiltrated with Runoff Area=3,168 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 afSubcatchment 44: Subcatchment 44: Subcatchment 44: Subcatchment 44: Subcatchment 44: Runoff Area=422,569 sf 0.94% Impervious Runoff Depth>2.49" Flow Length=1,007' Tc=35.8 min UI Adjusted CN=68 Runoff=14.62 cfs 2.015 afSubcatchment 55: Subcatchment 45Runoff Area=502,048 sf 0.00% Impervious Runoff Depth>1.43" Flow Length=1,017' Tc=26.5 min CN=55 Runoff=10.18 cfs 1.370 afSubcatchment 66: Subcatchment 46Runoff Area=289,461 sf 0.18% Impervious Runoff Depth>0.56" Flow Length=888' Tc=44.0 min CN=42 Runoff=1.13 cfs 0.308 afSubcatchment 7a3: Houses infiltrated with Runoff Area=41,800 sf 0.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.24 cfs 0.017 afSubcatchment 77: Subcatchment 47Runoff Area=41,800 sf 0.00% Impervious Runoff Depth>0.30" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.07 cfs 0.026 afSubcatchment 78: Subcatchment 47Runoff Area=37,283 sf 0.00% Impervious Runoff Depth>2.07" Flow Length=423' Tc=19.2 min CN=63 Runoff=1.36 cfs 0.148 afSubcatchment 78: Subcatchment 48Runoff Area=37,283 sf 0.00% Impervious Runoff Depth>2.07" Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff=0.65 cfs 0.061 afSubcatchment 78: Subcatchment 48Runoff Area=41,30 sf 10.22% Impervious Runoff Depth>2.07" Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff=0.45 cfs 0.061 afSubcatc	Subcatchment 3aS: Houses Infiltrated with Ru	
Tc=0.0 min CN=98 Runoff=0.48 cfs 0.034 afSubcatchment4S: Subcatchment#4 Flow Length=1,007' Tc=35.8 min UI Adjusted CN=68 Runoff=14.62 cfs 2.015 afSubcatchment5S: Subcatchment#5 Subcatchment6S: Subcatchment#6Runoff Area=502,048 sf 0.00% Impervious Runoff Depth>1.43" Flow Length=1,017' Tc=26.5 min CN=55 Runoff=10.18 cfs 1.370 afSubcatchment6S: Subcatchment#6 Subcatchment7aS: Houses infiltrated with Runoff Area=289,461 sf 0.18% Impervious Runoff Depth>0.56" Flow Length=888' Tc=44.0 min CN=42 Runoff=1.13 cfs 0.308 afSubcatchment7aS: Houses infiltrated with Runoff Area=1,584 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.24 cfs 0.017 afSubcatchment7S: Subcatchment#7Runoff Area=44,800 sf 0.00% Impervious Runoff Depth>0.30" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.07 cfs 0.026 afSubcatchment8S: Subcatchment#8Runoff Area=37,283 sf 0.00% Impervious Runoff Depth>2.07" Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff=0.65 cfs 0.061 afSubcatchment10S: Subcatchment#9 Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff=0.65 cfs 0.049 afSubcatchment22S: Area to Pond #102Runoff Area=65,100 sf 12.44% Impervious Runoff Depth>1.82" Flow Length=337' Tc=12.9 min CN=60 Runoff=2.38 cfs 0.227 afSubcatchment23S: Area to Pond #103Runoff Area=149,518 sf 8.75% Impervious Runoff Depth>2.24"		
Flow Length=1,007' Tc=35.8 min UI Adjusted CN=68 Runoff=14.62 cfs 2.015 afSubcatchment 5S: Subcatchment #5Runoff Area=502,048 sf 0.00% Impervious Runoff Depth>1.43" Flow Length=1,017' Tc=26.5 min CN=55 Runoff=10.18 cfs 1.370 afSubcatchment 6S: Subcatchment #6Runoff Area=289,461 sf 0.18% Impervious Runoff Depth>0.56" Flow Length=888' Tc=44.0 min CN=42 Runoff=1.13 cfs 0.308 afSubcatchment 7aS: Houses infiltrated with Runoff Area=1,584 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.24 cfs 0.017 afSubcatchment 7S: Subcatchment #7Runoff Area=44,800 sf 0.00% Impervious Runoff Depth>0.30" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.07 cfs 0.026 afSubcatchment 8S: Subcatchment #8Runoff Area=37,283 sf 0.00% Impervious Runoff Depth>2.07" Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff=0.65 cfs 0.061 afSubcatchment 10S: Subcatchment #10Runoff Area=14,130 sf 10.22% Impervious Runoff Depth>1.82" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.47 cfs 0.049 afSubcatchment 22S: Area to Pond #102Runoff Area=419,518 sf 8.75% Impervious Runoff Depth>2.24"Subcatchment 23S: Area to Pond #103Runoff Area=14,518 sf 8.75% Impervious Runoff Depth>2.24"	Subcatchment 4aS: Houses Infiltrated with Ru	
Flow Length=1,017' Tc=26.5 min CN=55 Runoff=10.18 cfs 1.370 afSubcatchment 6S: Subcatchment #6Runoff Area=289,461 sf 0.18% Impervious Runoff Depth>0.56" Flow Length=888' Tc=44.0 min CN=42 Runoff=1.13 cfs 0.308 afSubcatchment 7aS: Houses infiltrated with Runoff Area=1,584 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.24 cfs 0.017 afSubcatchment 7S: Subcatchment #7Runoff Area=44,800 sf 0.00% Impervious Runoff Depth>0.30" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.07 cfs 0.026 afSubcatchment 8S: Subcatchment #8Runoff Area=37,283 sf 0.00% Impervious Runoff Depth>2.07" Flow Length=423' Tc=19.2 min CN=63 Runoff=1.36 cfs 0.148 afSubcatchment 9S: Subcatchment #9 Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff=0.65 cfs 0.061 afRunoff Area=14,130 sf 10.22% Impervious Runoff Depth>1.82" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.47 cfs 0.049 afSubcatchment 22S: Area to Pond #102Runoff Area=65,100 sf 12.44% Impervious Runoff Depth>1.82" Flow Length=397' Tc=12.9 min CN=60 Runoff=2.38 cfs 0.227 afSubcatchment 23S: Area to Pond #103Runoff Area=149,518 sf 8.75% Impervious Runoff Depth>2.24"		
Flow Length=888' Tc=44.0 min CN=42 Runoff=1.13 cfs 0.308 afSubcatchment7aS: Houses infiltrated with Runoff Area=1,584 sf 100.00% Impervious Runoff Depth>5.62" Tc=0.0 min CN=98 Runoff=0.24 cfs 0.017 afSubcatchment7S: Subcatchment#7Runoff Area=44,800 sf 0.00% Impervious Runoff Depth>0.30" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.07 cfs 0.026 afSubcatchment#8Subcatchment#8Runoff Area=37,283 sf 0.00% Impervious Runoff Depth>2.07" Flow Length=423' Tc=19.2 min CN=63 Runoff=1.36 cfs 0.148 afSubcatchment#9Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff=0.65 cfs 0.061 afSubcatchment#10Runoff Area=14,130 sf 10.22% Impervious Runoff Depth>1.82" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.47 cfs 0.049 afSubcatchment22S: Area to Pond #102Runoff Area=65,100 sf 12.44% Impervious Runoff Depth>1.82" Flow Length=397' Tc=12.9 min CN=60 Runoff=2.38 cfs 0.227 afSubcatchment23S: Area to Pond #103Runoff Area=14,9518 sf 8.75% Impervious Runoff Depth>2.24"		
Tc=0.0 min CN=98 Runoff=0.24 cfs 0.017 afSubcatchment7S: Subcatchment#7Runoff Area=44,800 sf 0.00% Impervious Runoff Depth>0.30" Flow Length=424' Tc=25.7 min CN=37 Runoff=0.07 cfs 0.026 afSubcatchment8S: Subcatchment#8Runoff Area=37,283 sf 0.00% Impervious Runoff Depth>2.07" Flow Length=423' Tc=19.2 min CN=63 Runoff=1.36 cfs 0.148 afSubcatchment9S: Subcatchment#9 Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff=0.65 cfs 0.061 afSubcatchment10S: Subcatchment#10Runoff Area=14,130 sf 10.22% Impervious Runoff Depth>1.82" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.47 cfs 0.049 afSubcatchment22S: Area to Pond #102Runoff Area=65,100 sf 12.44% Impervious Runoff Depth>1.82" Flow Length=397' Tc=12.9 min CN=60 Runoff=2.38 cfs 0.227 afSubcatchment23S: Area to Pond #103Runoff Area=149,518 sf 8.75% Impervious Runoff Depth>2.24"		
Flow Length=424' Tc=25.7 min CN=37 Runoff=0.07 cfs 0.026 afSubcatchment8S: Subcatchment#8Runoff Area=37,283 sf 0.00% Impervious Runoff Depth>2.07" Flow Length=423' Tc=19.2 min CN=63 Runoff=1.36 cfs 0.148 afSubcatchment9S: Subcatchment#9 Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff=0.65 cfs 0.061 afSubcatchment10S: Subcatchment#10Runoff Area=14,130 sf 10.22% Impervious Runoff Depth>1.82" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.47 cfs 0.049 afSubcatchment22S: Area to Pond #102Runoff Area=65,100 sf 12.44% Impervious Runoff Depth>1.82" Flow Length=397' Tc=12.9 min CN=60 Runoff=2.38 cfs 0.227 afSubcatchment23S: Area to Pond #103Runoff Area=149,518 sf 8.75% Impervious Runoff Depth>2.24"	Subcatchment 7aS: Houses infiltrated with Ru	
Flow Length=423' Tc=19.2 min CN=63 Runoff=1.36 cfs 0.148 afSubcatchment9S: Subcatchment#9 Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff Depth>2.07"Subcatchment10S: Subcatchment#10Runoff Area=14,130 sf 10.22% Impervious Runoff Depth>1.82" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.47 cfs 0.049 afSubcatchment22S: Area to Pond #102Runoff Area=65,100 sf 12.44% Impervious Runoff Depth>1.82" Flow Length=397' Tc=12.9 min CN=60 Runoff=2.38 cfs 0.227 afSubcatchment23S: Area to Pond #103Runoff Area=149,518 sf 8.75% Impervious Runoff Depth>2.24"		
Flow Length=172' Tc=13.4 min UI Adjusted CN=63 Runoff=0.65 cfs 0.061 afSubcatchment 10S: Subcatchment#10Runoff Area=14,130 sf 10.22% Impervious Runoff Depth>1.82" Flow Length=226' Tc=16.6 min CN=60 Runoff=0.47 cfs 0.049 afSubcatchment 22S: Area to Pond #102Runoff Area=65,100 sf 12.44% Impervious Runoff Depth>1.82" Flow Length=397' Tc=12.9 min CN=60 Runoff=2.38 cfs 0.227 afSubcatchment 23S: Area to Pond #103Runoff Area=149,518 sf 8.75% Impervious Runoff Depth>2.24"		
Flow Length=226'Tc=16.6 minCN=60Runoff=0.47 cfs0.049 afSubcatchment 22S: Area to Pond #102Runoff Area=65,100 sf12.44% ImperviousRunoff Depth>1.82"Flow Length=397'Tc=12.9 minCN=60Runoff=2.38 cfs0.227 afSubcatchment 23S: Area to Pond #103Runoff Area=149,518 sf8.75% ImperviousRunoff Depth>2.24"		
Flow Length=397'Tc=12.9 minCN=60Runoff=2.38 cfs0.227 afSubcatchment 23S: Area to Pond #103Runoff Area=149,518 sf8.75% ImperviousRunoff Depth>2.24"		
		noff Area=149,518 sf 8.75% Impervious Runoff Depth>2.24" _ength=381' Tc=17.5 min CN=65 Runoff=6.23 cfs 0.641 af

20-065 Proposed Analysis	Type III 24-hr 25Yr-24Hr Rainfall=5.86"
Prepared by Berry Surveying & Engineering	Printed 12/8/2023
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Sc	blutions LLC Page 7

Subcatchment 24S: Peekaboo CDS	Runoff Area=12,590 sf 58.28% Impervious Runoff Depth>4.60" Tc=6.0 min CN=89 Runoff=1.46 cfs 0.111 af
Subcatchment 25S: Fredrick CDS	Runoff Area=12,484 sf 57.92% Impervious Runoff Depth>4.06" Tc=6.0 min CN=84 Runoff=1.32 cfs 0.097 af
Subcatchment 26S: Area to Pond #106	Runoff Area=164,053 sf 3.12% Impervious Runoff Depth>1.58" Flow Length=679' Tc=20.6 min CN=57 Runoff=4.21 cfs 0.497 af
Subcatchment 27S: Area to Pond #107 Flow Length	Runoff Area=43,831 sf 7.06% Impervious Runoff Depth>3.06" h=309' Tc=11.6 min UI Adjusted CN=74 Runoff=2.99 cfs 0.257 af
Subcatchment 28S: Area to Pond #108	Runoff Area=58,076 sf 12.93% Impervious Runoff Depth>2.50" Flow Length=247' Tc=24.0 min CN=68 Runoff=2.41 cfs 0.278 af
Subcatchment 29S: Subcatchment #29	Runoff Area=6,005 sf 26.21% Impervious Runoff Depth>2.88" Tc=6.0 min CN=72 Runoff=0.46 cfs 0.033 af
Subcatchment 30S: Subcatchment #30	Runoff Area=40,007 sf 7.55% Impervious Runoff Depth>2.16" Flow Length=159' Tc=13.1 min CN=64 Runoff=1.77 cfs 0.165 af
Subcatchment31S: Subcatchment#31	Runoff Area=8,090 sf 30.07% Impervious Runoff Depth>2.16" Tc=6.0 min CN=64 Runoff=0.45 cfs 0.033 af
Subcatchment 32S: Inlet Sump (Lt.)	Runoff Area=122,911 sf 18.55% Impervious Runoff Depth>3.25" Flow Length=809' Tc=11.6 min CN=76 Runoff=8.91 cfs 0.765 af
Subcatchment 33aS: Peekaboo Entrance	• •
	Tc=6.0 min CN=75 Runoff=0.60 cfs 0.044 af
Subcatchment 33bS: Subcatchment #33	
Subcatchment 33bS: Subcatchment #33l Subcatchment 34S: Inlet Sump (Rt.)	b Runoff Area=7,285 sf 0.00% Impervious Runoff Depth>1.00"
	 Runoff Area=7,285 sf 0.00% Impervious Runoff Depth>1.00" Tc=6.0 min CN=49 Runoff=0.14 cfs 0.014 af Runoff Area=40,148 sf 21.43% Impervious Runoff Depth>3.55"
Subcatchment34S: Inlet Sump (Rt.)	 k Runoff Area=7,285 sf 0.00% Impervious Runoff Depth>1.00" Tc=6.0 min CN=49 Runoff=0.14 cfs 0.014 af Runoff Area=40,148 sf 21.43% Impervious Runoff Depth>3.55" Flow Length=594' Tc=8.6 min CN=79 Runoff=3.46 cfs 0.273 af Runoff Area=3,378 sf 100.00% Impervious Runoff Depth>5.62"
Subcatchment 34S: Inlet Sump (Rt.) Subcatchment 41S: Catch Basin #1	 Runoff Area=7,285 sf 0.00% Impervious Runoff Depth>1.00" Tc=6.0 min CN=49 Runoff=0.14 cfs 0.014 af Runoff Area=40,148 sf 21.43% Impervious Runoff Depth>3.55" Flow Length=594' Tc=8.6 min CN=79 Runoff=3.46 cfs 0.273 af Runoff Area=3,378 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.43 cfs 0.036 af Runoff Area=3,365 sf 100.00% Impervious Runoff Depth>5.62"
Subcatchment 34S: Inlet Sump (Rt.) Subcatchment 41S: Catch Basin #1 Subcatchment 42S: Catch Basin #2	 k Runoff Area=7,285 sf 0.00% Impervious Runoff Depth>1.00" Tc=6.0 min CN=49 Runoff=0.14 cfs 0.014 af Runoff Area=40,148 sf 21.43% Impervious Runoff Depth>3.55" Flow Length=594' Tc=8.6 min CN=79 Runoff=3.46 cfs 0.273 af Runoff Area=3,378 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.43 cfs 0.036 af Runoff Area=3,365 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.43 cfs 0.036 af Runoff Area=3,418 sf 100.00% Impervious Runoff Depth>5.62"
Subcatchment 34S: Inlet Sump (Rt.) Subcatchment 41S: Catch Basin #1 Subcatchment 42S: Catch Basin #2 Subcatchment 43S: Catch Basin #3	 Runoff Area=7,285 sf 0.00% Impervious Runoff Depth>1.00" Tc=6.0 min CN=49 Runoff=0.14 cfs 0.014 af Runoff Area=40,148 sf 21.43% Impervious Runoff Depth>3.55" Flow Length=594' Tc=8.6 min CN=79 Runoff=3.46 cfs 0.273 af Runoff Area=3,378 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.43 cfs 0.036 af Runoff Area=3,365 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.43 cfs 0.036 af Runoff Area=3,418 sf 100.00% Impervious Runoff Depth>5.62" Tc=6.0 min CN=98 Runoff=0.44 cfs 0.037 af Runoff Area=3,568 sf 100.00% Impervious Runoff Depth>5.62"

20-065 Proposed Analysis	Type III 24-hr 25Yr-24Hr Rainfall=5.86'
Prepared by Berry Surveying & Engineering	Printed 12/8/2023
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software	Solutions LLC Page 8

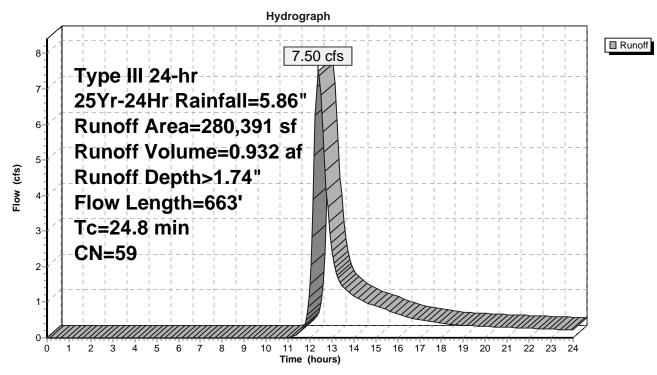
Reach 22aR: Reach #22a Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.080 L=125.0' S=0.0732 '/' Capacity=16.09 cfs Outflow=0.00 cfs 0.000 af
Reach 22bR: Reach #22b Avg. Flow Depth=0.59' Max Vel=0.77 fps Inflow=3.33 cfs 1.097 af n=0.080 L=392.0' S=0.0060 '/' Capacity=45.67 cfs Outflow=3.28 cfs 1.090 af
Reach 30aR: Reach #30aR Conveyance Avg. Flow Depth=0.17' Max Vel=1.36 fps Inflow=1.32 cfs 0.163 af n=0.045 L=201.0' S=0.0199 '/' Capacity=29.56 cfs Outflow=1.31 cfs 0.162 af
Reach 30R: Reach #30 Conveyance Avg. Flow Depth=0.16' Max Vel=0.94 fps Inflow=1.33 cfs 0.163 af n=0.045 L=205.0' S=0.0098 '/' Capacity=30.09 cfs Outflow=1.32 cfs 0.163 af
Reach 31R: Reach #31 Avg. Flow Depth=0.14' Max Vel=1.18 fps Inflow=0.44 cfs 0.033 af n=0.045 L=158.0' S=0.0222 '/' Capacity=19.07 cfs Outflow=0.42 cfs 0.033 af
Reach 32R: Reach #32R Overland Flow Avg. Flow Depth=0.18' Max Vel=0.66 fps Inflow=0.92 cfs 0.207 af n=0.080 L=90.0' S=0.0222 '/' Capacity=8.86 cfs Outflow=0.91 cfs 0.207 af
Reach 33aR: Reach #33a Flow Through Avg. Flow Depth=0.22' Max Vel=0.78 fps Inflow=0.82 cfs 0.070 af n=0.080 L=130.0' S=0.0231 '/' Capacity=21.37 cfs Outflow=0.79 cfs 0.070 af
Reach 33bR: Reach #33b Avg. Flow Depth=0.59' Max Vel=0.77 fps Inflow=3.33 cfs 1.099 af n=0.080 L=108.0' S=0.0060 '/' Capacity=45.76 cfs Outflow=3.33 cfs 1.097 af
Reach 33R: Reach #33 Treatment Swale Avg. Flow Depth=0.26' Max Vel=0.33 fps Inflow=0.99 cfs 0.071 af n=0.140 L=135.0' S=0.0074 '/' Capacity=10.03 cfs Outflow=0.82 cfs 0.070 af
Reach 100R: Final Reach #100 Inflow=0.47 cfs 0.049 af Outflow=0.47 cfs 0.049 af
Reach 101bR: Reach #101b Avg. Flow Depth=0.68' Max Vel=0.60 fps Inflow=3.25 cfs 1.035 af n=0.080 L=332.0' S=0.0030 '/' Capacity=32.37 cfs Outflow=3.18 cfs 1.029 af
Reach 103aR: Reach #103aR Stream Avg. Flow Depth=0.08' Max Vel=1.04 fps Inflow=0.26 cfs 0.207 af n=0.022 L=427.0' S=0.0076 '/' Capacity=22.54 cfs Outflow=0.26 cfs 0.205 af
Reach 103bR: Reach 103aB Overland Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.080 L=393.0' S=0.0254 '/' Capacity=4.73 cfs Outflow=0.00 cfs 0.000 af
Reach 103R: Reach #103 Overland Flow Avg. Flow Depth=0.07' Max Vel=0.42 fps Inflow=0.26 cfs 0.209 af n=0.080 L=166.0' S=0.0301 '/' Capacity=18.07 cfs Outflow=0.26 cfs 0.207 af
Reach 106aR: Reach #106a Avg. Flow Depth=0.22' Max Vel=0.64 fps Inflow=2.24 cfs 0.801 af n=0.080 L=251.0' S=0.0159 '/' Capacity=11.27 cfs Outflow=1.83 cfs 0.793 af
Reach 106bR: Reach #106b Avg. Flow Depth=0.67' Max Vel=1.26 fps Inflow=4.98 cfs 1.883 af n=0.080 L=365.0' S=0.0137 '/' Capacity=51.13 cfs Outflow=4.94 cfs 1.874 af
Reach 107aR: Reach #107a Overland Avg. Flow Depth=0.15' Max Vel=0.98 fps Inflow=0.58 cfs 0.319 af n=0.080 L=1,054.0' S=0.0598 '/' Capacity=34.39 cfs Outflow=0.57 cfs 0.315 af

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solu	Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 utions LLC Page 9
···· · · · · · · · · · · · · · · · · ·	65' Max Vel=1.44 fps Inflow=5.50 cfs 2.189 af Capacity=59.95 cfs Outflow=5.31 cfs 2.166 af
Reach 108R: Reach #108 Overland Flow Avg. Flow Depth=0. n=0.080 L=26.0' S=0.0192 '/'	12' Max Vel=0.48 fps Inflow=0.95 cfs 0.182 af Capacity=20.64 cfs Outflow=0.98 cfs 0.182 af
Reach 200R: Final Reach #200	Inflow=20.59 cfs 6.332 af Outflow=20.59 cfs 6.332 af
Reach 300R: Final Reach #300	Inflow=2.24 cfs 0.757 af Outflow=2.24 cfs 0.757 af
Reach 400R: Final Reach #400	Inflow=14.62 cfs 2.015 af Outflow=14.62 cfs 2.015 af
Reach 500R: Final Reach #500	Inflow=10.18 cfs 1.370 af Outflow=10.18 cfs 1.370 af
Reach 600R: Final Reach #600	Inflow=1.13 cfs 0.308 af Outflow=1.13 cfs 0.308 af
Reach 700R: Final Reach #700	Inflow=0.07 cfs 0.026 af Outflow=0.07 cfs 0.026 af
Reach 800R: Final Reach #800	Inflow=1.36 cfs 0.148 af Outflow=1.36 cfs 0.148 af
Reach 900R: Final Reach #900	Inflow=1.11 cfs 0.243 af Outflow=1.11 cfs 0.243 af
	60' Storage=12,109 cf Inflow=7.53 cfs 1.140 af ry=3.25 cfs 1.036 af Outflow=3.27 cfs 1.046 af
	189.06' Storage=14 cf Inflow=0.46 cfs 0.033 af L=55.0' S=0.0091 '/' Outflow=0.46 cfs 0.033 af
	91.87' Storage=901 cf Inflow=1.77 cfs 0.165 af L=40.0' S=0.0063 '/' Outflow=1.33 cfs 0.163 af
	189.34' Storage=30 cf Inflow=0.45 cfs 0.033 af L=43.0' S=0.0058 '/' Outflow=0.44 cfs 0.033 af
	38.88' Storage=882 cf Inflow=8.91 cfs 0.765 af ry=0.92 cfs 0.207 af Outflow=8.24 cfs 0.754 af
Pond 33P: Treatment Swale Forebay Peak Elev=18	35.65' Storage=700 cf Inflow=0.91 cfs 0.070 af Outflow=0.85 cfs 0.057 af
	190.88' Storage=18 cf Inflow=3.46 cfs 0.273 af L=29.7' S=0.1010 '/' Outflow=3.45 cfs 0.273 af
Pond 102P: Gravel Wetland #102 Peak Elev=188.92	2' Storage=33,726 cf Inflow=14.94 cfs 1.259 af

 Pond 102P: Gravel Wetland #102
 Peak Elev=188.92' Storage=33,726 cf
 Inflow=14.94 cfs
 1.259 af

 Primary=0.10 cfs
 0.110 af
 Secondary=0.61 cfs
 0.561 af
 Tertiary=0.00 cfs
 0.000 af
 Outflow=0.70 cfs
 0.671 af

Prepared by Berry Surveying & Engin HydroCAD® 10.00-25 s/n 07605 © 2019 Hy		Printed 12	/8/2023 Page 10
			<u>ugo 10</u>
Pond 103aP: Level Spreader	Peak Elev=170.07' Storage=409 cf	Inflow=0.26 cfs Outflow=0.26 cfs	
Pond 103P: Infiltration Rain Garden #1 iscarded=0.19 cfs 0.206 af Primary=0.26 d	03 Peak Elev=183.08' Storage=25,931 cf cfs 0.218 af Secondary=0.00 cfs 0.000 af 0		
Pond 104P: Detention Pond #104	Peak Elev=247.31' Storage=1,589 cf	Inflow=1.46 cfs Outflow=0.28 cfs	
Pond 105P: Center of Cul-de-sac Pond 15.0" Ro	#105 Peak Elev=184.55' Storage=34 cf bund Culvert n=0.012 L=60.0' S=0.0333 '/'		
Pond 106P: Infiltration Pond #106 Discarded=0.7	Peak Elev=186.85' Storage=9,398 cf 13 cfs 0.157 af Primary=2.24 cfs 0.801 af		
Pond 107P: Rain Garden #107 Primary=0.45 cfs 0.198 af Secondary=0.4	Peak Elev=240.83' Storage=6,394 cf 12 cfs 0.121 af Tertiary=0.00 cfs 0.000 af 0		
Pond 108P: Gravel Wetland #108 Primary=0.02 of	Peak Elev=185.10' Storage=5,154 cf cfs 0.005 af Secondary=1.47 cfs 0.202 af		
Pond 109P: Level Spreader	Peak Elev=185.03' Storage=1,130 cf	Inflow=1.48 cfs Outflow=0.95 cfs	
Pond C01P: Catch Basin #1 12.0" Rc	Peak Elev=214.70' Storage=0.000 af ound Culvert n=0.012 L=16.0' S=0.0094 '/'		
Pond C02P: Catch Basin #2 12.0" Rou	Peak Elev=214.53' Storage=0.000 af und Culvert n=0.012 L=231.0' S=0.0965 '/'		
Pond C03P: Catch Basin #3 24.0" Ro	Peak Elev=188.93' Storage=0.001 af ound Culvert n=0.012 L=16.0' S=0.0094 '/'		
Pond C04P: Catch Basin #4 24.0" Ro	Peak Elev=188.92' Storage=0.001 af ound Culvert n=0.012 L=20.0' S=0.0125 '/'		
Pond C05P: Rain Guardian #1	Peak Elev=185.65' Storage=0.000 af	Inflow=0.31 cfs Outflow=0.31 cfs	
Pond D01P: Drain Manhole #1 12.0" Ro	Peak Elev=192.15' Storage=0.000 af ound Culvert n=0.012 L=66.2' S=0.0819 '/'		


96.40% Pervious = 102.853 ac 3.60% Impervious = 3.843 ac

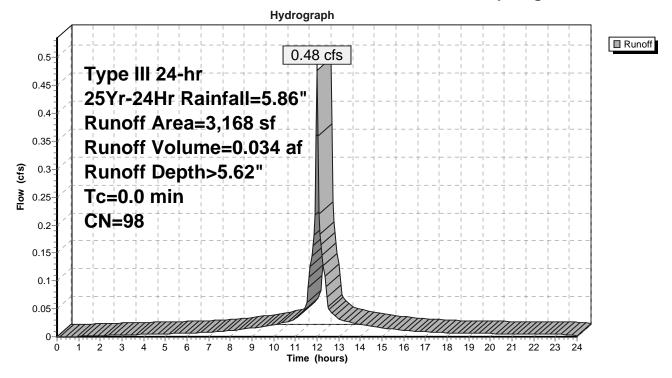
Summary for Subcatchment 1S: Subcatchment #1

Runoff = 7.50 cfs @ 12.38 hrs, Volume= 0.932 af, Depth> 1.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

А	rea (sf)	CN E	Description					
	6,027	39 >75% Grass cover, Good, HSG A						
	1,952			ing, HSG A				
	43,197		Woods, Good, HSG A					
	651		,	ace, HSG A				
	504	98 L	Inconnecte	d roofs, H	SG B			
	7,538	61 >	75% Gras	s cover, Go	bod, HSG B			
	7,538			on-grazed,				
	1,398	98 F	aved park	ing, HSG E	3			
	90,470	55 V	Voods, Go	od, HSG B				
	47	96 G	Gravel surfa	ace, HSG E	3			
	504	98 L	Inconnecte	d roofs, H	SG C			
	16,275	74 >	75% Gras	s cover, Go	bod, HSG C			
	16,275			on-grazed,				
	83,099			od, HSG C				
	1,760				bod, HSG D			
	3,156	98 F	aved park	ing, HSG D)			
	80,391		Veighted A					
2	72,877			vious Area				
	7,514			ervious Are	а			
	1,008	1	3.41% Un	connected				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
18.7	100	0.0300	0.09		Sheet Flow, Segment #1			
					Woods: Light underbrush n= 0.400 P2= 3.06"			
1.1	129	0.1512	1.94		Shallow Concentrated Flow, Segment #2			
					Woodland Kv= 5.0 fps			
2.4	219	0.0913	1.51		Shallow Concentrated Flow, Segment #3			
					Woodland Kv= 5.0 fps			
1.6	112	0.0538	1.16		Shallow Concentrated Flow, Segment #4			
					Woodland Kv= 5.0 fps			
0.3	47	0.3389	2.91		Shallow Concentrated Flow, Segment #5			
					Woodland Kv= 5.0 fps			
0.7	56	0.0710	1.33		Shallow Concentrated Flow, Segment #6			
					Woodland Kv= 5.0 fps			
24.8	663	Total						

Subcatchment 1S: Subcatchment #1

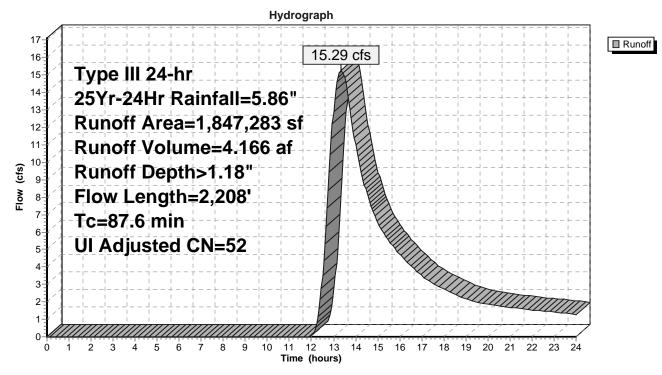

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.48 cfs @ 12.00 hrs, Volume= 0.034 af, Depth> 5.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

Area (s	f) CN	Description
3,16	8 98	Unconnected roofs, HSG B
3,16	8	100.00% Impervious Area
3,16	8	100.00% Unconnected

Subcatchment 2aS: Houses Infiltrated with Drip Edge



Summary for Subcatchment 2S: Subcatchment #2

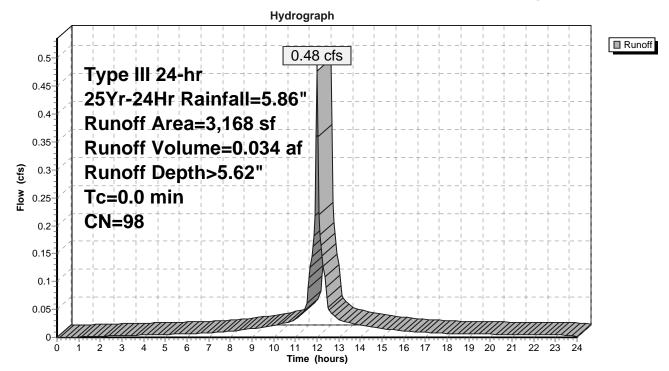
Runoff = 15.29 cfs @ 13.34 hrs, Volume= 4.166 af, Depth> 1.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

A	rea (sf)	CN /	Adj Desc	Description			
	1,982	98	Unco	onnected ro	oofs, HSG A		
	80,837	39			ver, Good, HSG A		
	13,331	98	Unco	onnected pa	avement, HSG A		
4	57,344	30	Woo	ds, Good, I	HSG A		
	952	98	Unco	onnected ro	oofs, HSG B		
	43,989	61			ver, Good, HSG B		
	9,406	98			avement, HSG B		
8	43,366	55		ds, Good, I			
	767	98			oofs, HSG C		
	19,296	74			ver, Good, HSG C		
	62,971	70		ds, Good, I			
	13,042	77		ds, Good, I			
	47,283	53			age, UI Adjusted		
	20,845			7% Perviou			
	26,438			% Impervio			
	26,438		100.0	00% Uncor	nnected		
-				o ''			
Tc	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)			
22.0	100	0.0200	0.08		Sheet Flow, Segment #1		
					Woods: Light underbrush n= 0.400 P2= 3.06"		
19.0	506	0.0079	0.44		Shallow Concentrated Flow, Segment #2		
07.4	0.4.0		0.40		Woodland Kv= 5.0 fps		
27.4	813	0.0098	0.49		Shallow Concentrated Flow, Segment #3		
0.0	207	0 0040	0.74		Woodland Kv= 5.0 fps		
8.3	367	0.0218	0.74		Shallow Concentrated Flow, Segment #4		
10.0	400	0.0166	0.64		Woodland Kv= 5.0 fps		
10.9	422	0.0166	0.64		Shallow Concentrated Flow, Segment #5 Woodland Kv= 5.0 fps		
07.0	0.000	Tatal					
87.6	2,208	Total					

Subcatchment 2S: Subcatchment #2

Summary for Subcatchment 3aS: Houses Infiltrated with Drip Edge

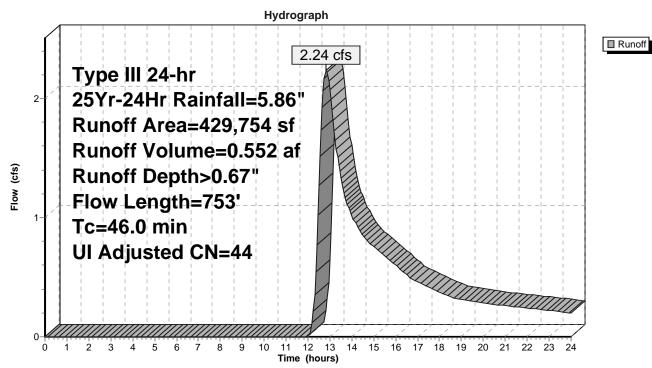

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.48 cfs @ 12.00 hrs, Volume= 0.034 af, Depth> 5.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

Area (sf) CN	Description
1,3	45 98	Roofs, HSG A
1,8	23 98	Roofs, HSG B
3,1	68 98	Weighted Average
3,1	68	100.00% Impervious Area

Subcatchment 3aS: Houses Infiltrated with Drip Edge



Summary for Subcatchment 3S: Subcatchment #3

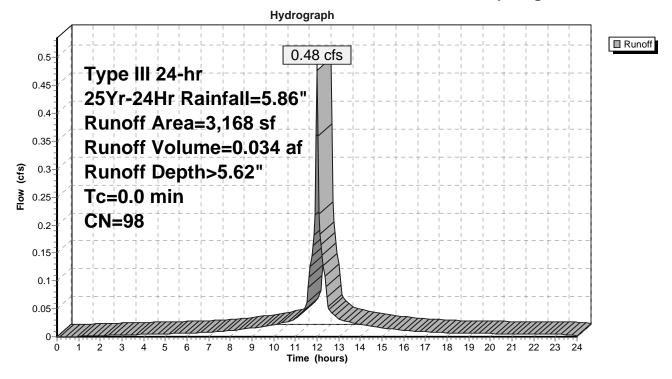
Runoff = 2.24 cfs @ 12.84 hrs, Volume= 0.552 af, Depth> 0.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

A	rea (sf)	CN A	Adj Desc	cription	
	0	98	Unco	onnected ro	oofs, HSG A
	10,468	39	>75%	% Grass co	ver, Good, HSG A
	2,676	98	Unco	onnected pa	avement, HSG A
2	206,440	30	Woo	ds, Good, H	HSG A
	0	98			oofs, HSG B
	19,931	61	>75%	% Grass co	ver, Good, HSG B
	1,155	98			avement, HSG B
	52,096	55		ds, Good, H	
	35,137	70		ds, Good, H	
	1,851	77	Woo	ds, Good, H	HSG D
4	29,754	45	44 Weig	phted Avera	age, UI Adjusted
4	25,923		99.1	1% Perviou	is Area
	3,831		0.89	% Impervio	us Area
	3,831		100.	00% Uncor	inected
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
24.6	100	0.0150	0.07		Sheet Flow, Segment #1
					Woods: Light underbrush n= 0.400 P2= 3.06"
2.3	106	0.0236	0.77		Shallow Concentrated Flow, Segment #2
					Woodland Kv= 5.0 fps
19.1	547	0.0091	0.48		Shallow Concentrated Flow, Segment #3
					Woodland Kv= 5.0 fps
46.0	753	Total			

Subcatchment 3S: Subcatchment #3

Summary for Subcatchment 4aS: Houses Infiltrated with Drip Edge


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

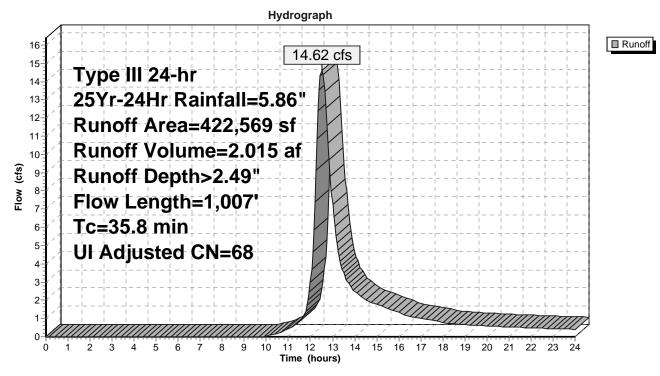
Runoff = 0.48 cfs @ 12.00 hrs, Volume= 0.034 af, Depth> 5.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

Area (sf)	CN	Description
3,168	98	Unconnected roofs, HSG C
3,168		100.00% Impervious Area
3,168		100.00% Unconnected

Subcatchment 4aS: Houses Infiltrated with Drip Edge

Summary for Subcatchment 4S: Subcatchment #4


Runoff = 14.62 cfs @ 12.52 hrs, Volume= 2.015 af, Depth> 2.49"

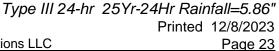
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

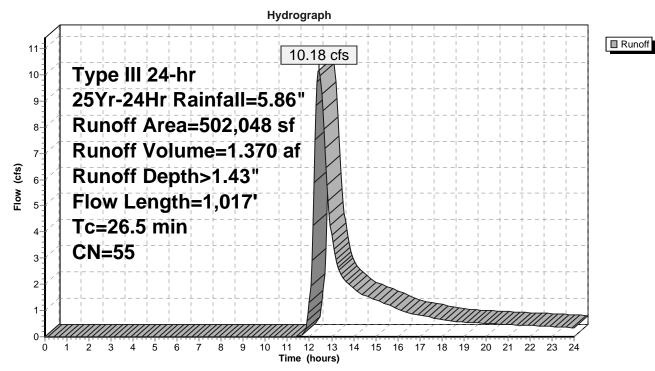
		()	<u></u>			
	A	rea (sf)			cription	
		31	61 55			ver, Good, HSG B
		62,701 0	55 98		ds, Good, I	Dofs, HSG C
		37,028	98 71			razed, HSG C
		37,028	74			ver, Good, HSG C
		3,989	98			avement, HSG C
	2	81,338	70		ds, Good, I	
		454	96		el surface,	
	4	22,569	69	68 Weig	phted Avera	age, UI Adjusted
	4	18,580			6% Perviou	
		3,989			% Impervio	
		3,989		100.	00% Uncor	nnected
	т.	بالدرم م	01	Valast	Constit	Description
1-	Tc	Length	Slope		Capacity	Description
(I	<u>nin)</u> 8.9	(feet) 78	(ft/ft) 0.1150		(cfs)	Shoot Flow Sogmont #1
	0.9	10	0.1150	0.15		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06"
	5.0	23	0.0434	0.08		Sheet Flow, Segment #2
	0.0	20	0.0101	0.00		Woods: Light underbrush $n= 0.400$ P2= 3.06"
	1.0	85	0.0823	1.43		Shallow Concentrated Flow, Segment #3
						Woodland Kv= 5.0 fps
	0.5	67	0.1791	2.12		Shallow Concentrated Flow, Segment #4
						Woodland Kv= 5.0 fps
	0.7	34	0.0294	0.86		Shallow Concentrated Flow, Segment #5
	0.0	22	0 0 4 2 4	1 46		Woodland Kv= 5.0 fps
	0.3	23	0.0434	1.46		Shallow Concentrated Flow, Segment #6 Short Grass Pasture Kv= 7.0 fps
	0.3	35	0.0100	2.03		Shallow Concentrated Flow, Segment #7
	0.0		0.0100	2.00		Paved $Kv = 20.3 \text{ fps}$
	0.2	30	0.1363	2.58		Shallow Concentrated Flow, Segment #8
						Short Grass Pasture Kv= 7.0 fps
	0.4	45	0.1176	1.71		Shallow Concentrated Flow, Segment #9
						Woodland Kv= 5.0 fps
	7.5	159	0.0050	0.35		Shallow Concentrated Flow, Segment #10
	4.0		0.0050	0.00		Woodland Kv= 5.0 fps
	1.6	79	0.0256	0.80		Shallow Concentrated Flow, Segment #11
	7.9	224	0.0089	0.47		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Segment #12
	1.9	224	0.0009	0.47		Woodland Kv= 5.0 fps
	1.5	125	0.0725	1.35		Shallow Concentrated Flow, Segment #13
		120	0.0720	1.00		Woodland Kv= 5.0 fps
	35.8	1.007	Total			

35.8 1,007 Total

Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 ions LLC Page 21

Subcatchment 4S: Subcatchment #4


Summary for Subcatchment 5S: Subcatchment #5

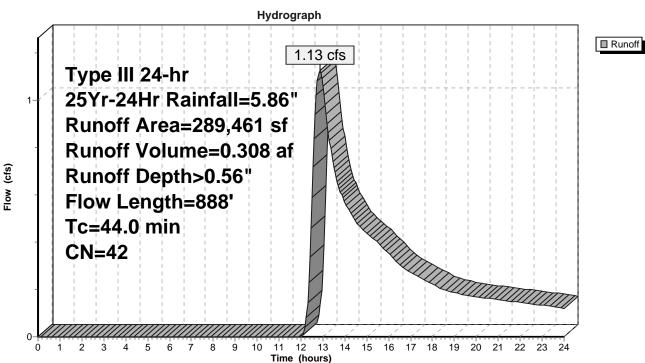

Runoff = 10.18 cfs @ 12.43 hrs, Volume= 1.370 af, Depth> 1.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

	A	rea (sf)	CN E	Description		
		19,851	30 V	Noods, Go	od, HSG A	
		39,083		,	od, HSG B	
		35,954		,	od, HSG C	
		7,160			od, HSG D	
		02,048		Neighted A		
	5	02,048	1	100.00% Pe	ervious Are	а
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.6	100	0.0400	0.10		Sheet Flow, Segment #1
						Woods: Light underbrush n= 0.400 P2= 3.06"
	2.4	239	0.1129	1.68		Shallow Concentrated Flow, Segment #2
	1.0	101	0 0000	0.05		Woodland Kv= 5.0 fps
	1.0	164	0.2808	2.65		Shallow Concentrated Flow, Segment #3 Woodland Kv= 5.0 fps
	3.0	242	0.0743	1.36		Shallow Concentrated Flow, Segment #4
	0.0	212	0.07 10	1.00		Woodland Kv= 5.0 fps
	0.3	48	0.2496	2.50		Shallow Concentrated Flow, Segment #5
						Woodland Kv= 5.0 fps
	3.2	224	0.0535	1.16		Shallow Concentrated Flow, Segment #6
_						Woodland Kv= 5.0 fps
	26 E	1 017	Total			

26.5 1,017 Total

Subcatchment 5S: Subcatchment #5


Summary for Subcatchment 6S: Subcatchment #6

Runoff = 1.13 cfs @ 12.85 hrs, Volume= 0.308 af, Depth> 0.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

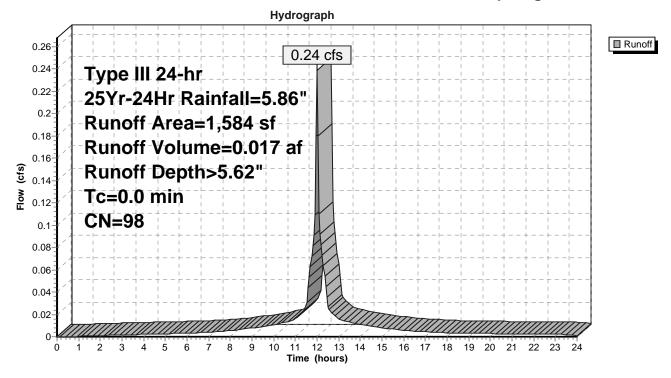
Area (st) CN	D	escription					
4,06	9 39	>	75% Gras	s cover, Go	bod, HSG A			
532	2 98	Ρ	aved park	ing, HSG A	A Contraction of the second seco			
173,56	5 30	Ν	/oods, Go	od, HSG A				
76,991 55		Ν	Woods, Good, HSG B					
1,21	3 61	>	>75% Grass cover, Good, HSG B					
18,78	3 70	Ν	/oods, Go	od, HSG C				
14,303	3 77	N	loods, Go	od, HSG D				
289,46	1 42	Ν	/eighted A	verage				
288,92	9	9	9.82% Per	vious Area	l			
532	2	0	.18% Impe	ervious Are	а			
Tc Leng	th Slo	pe	Velocity	Capacity	Description			
(min) (fee	et) (ft	t/ft)	(ft/sec)	(cfs)				
12.5 10	0.08	325	0.13		Sheet Flow, Segment #1			
					Woods: Light underbrush n= 0.400 P2= 3.06"			
1.8 1 <i>′</i>	9 0.04	182	1.10		Shallow Concentrated Flow, Segment #2			
					Woodland Kv= 5.0 fps			
1.6 14	49 0.10	800	1.59		Shallow Concentrated Flow, Segment #3			
					Woodland Kv= 5.0 fps			
28.1 52	20 0.00)38	0.31		Shallow Concentrated Flow, Segment #4			
					Woodland Kv= 5.0 fps			
44.0 88	88 Tota	al						

Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 ions LLC Page 25

Subcatchment 6S: Subcatchment #6

Printed 12/8/2023

Summary for Subcatchment 7aS: Houses infiltrated with Drip Edge

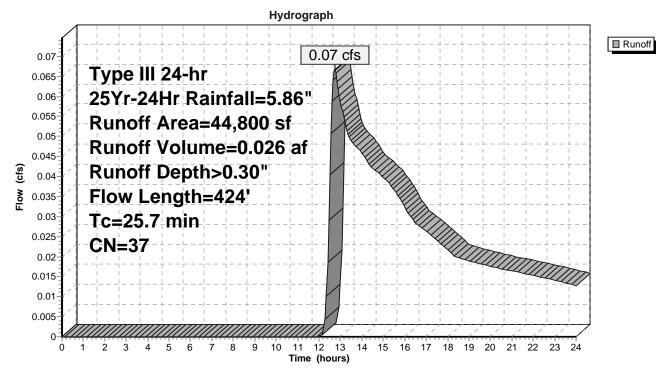

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

0.24 cfs @ 12.00 hrs, Volume= 0.017 af, Depth> 5.62" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

 Area (sf)	CN	Description
1,584	98	Unconnected roofs, HSG A
1,584		100.00% Impervious Area
1,584		100.00% Unconnected

Subcatchment 7aS: Houses infiltrated with Drip Edge



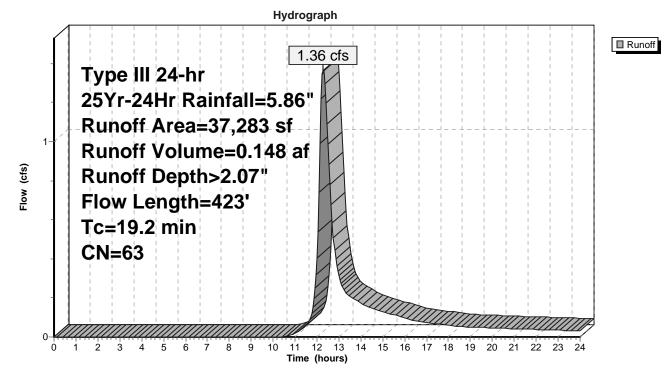
Summary for Subcatchment 7S: Subcatchment #7

Runoff = 0.07 cfs @ 12.73 hrs, Volume= 0.026 af, Depth> 0.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

A	rea (sf)	CN [Description		
	0	98 l	Jnconnecte	ed roofs, HS	SG A
	1,732				bod, HSG A
	3,889			on-grazed,	
	28,484			od, HSG A	
	1,549			on-grazed,	
	6,499		,	od, HSG B	
	1,146			on-grazed,	
	1,501	70 V	Voods, Go	od, HSG C	
	44,800		Veighted A		
	44,800	1	00.00% Pe	ervious Are	а
_					
ŢĊ	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
17.6	100	0.0350	0.09		Sheet Flow, Segment #1
					Woods: Light underbrush n= 0.400 P2= 3.06"
7.3	256	0.0137	0.59		Shallow Concentrated Flow, Segment #2
					Woodland Kv= 5.0 fps
0.8	68	0.0737	1.36		Shallow Concentrated Flow, Segment #3
					Woodland Kv= 5.0 fps
25.7	424	Total			

Subcatchment 7S: Subcatchment #7

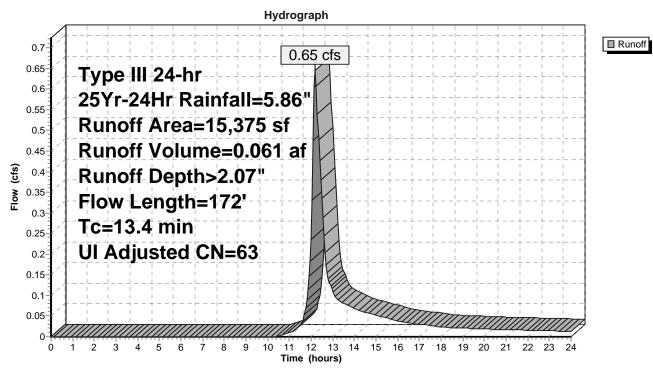

Summary for Subcatchment 8S: Subcatchment #8

Runoff = 1.36 cfs @ 12.28 hrs, Volume= 0.148 af, Depth> 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

_	A	rea (sf)	CN	Description		
		1,354	61 :	>75% Gras	s cover, Go	ood, HSG B
		15,686	55	Woods, Go	od, HSG B	
_		20,243	70	Woods, Go	od, HSG C	
		37,283	63	Weighted A	verage	
		37,283		100.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.2	100	0.0600	0.12		Sheet Flow, Segment #1
						Woods: Light underbrush n= 0.400 P2= 3.06"
	5.0	323	0.0464	1.08		Shallow Concentrated Flow, Segment #2
						Woodland Kv= 5.0 fps
	19.2	423	Total			

Subcatchment 8S: Subcatchment #8


Summary for Subcatchment 9S: Subcatchment #9

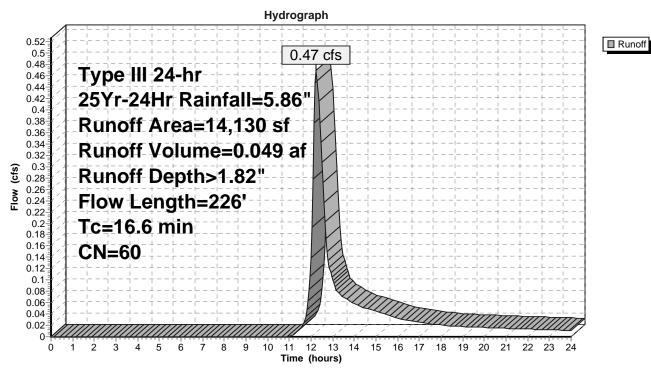
Runoff = 0.65 cfs @ 12.20 hrs, Volume= 0.061 af, Depth> 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

A	rea (sf)	CN /	Adj Desc	cription	
	3,146	61	>75%	% Grass co	ver, Good, HSG B
	4,818	58	Mea	dow, non-g	razed, HSG B
	2,313	98	Unco	onnected p	avement, HSG B
	4,036	55	Woo	ds, Good, I	HSG B
	214	71			razed, HSG C
	221	98			avement, HSG C
	221	70		ds, Good, I	
	391	96		el surface,	
	15	96	Grav	vel surface,	HSG C
	15,375	66	63 Weig	phted Avera	age, UI Adjusted
	12,841		83.5	2% Perviou	us Area
	2,534		16.4	8% Impervi	ious Area
	2,534		100.	00% Uncor	nnected
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.6	100	0.0800	0.13		Sheet Flow, Segment #1
					Woods: Light underbrush n= 0.400 P2= 3.06"
0.8	72	0.0972	1.56		Shallow Concentrated Flow, Segment #2
					Woodland Kv= 5.0 fps
13.4	172	Total			

Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 ions LLC Page 31

Subcatchment 9S: Subcatchment #9

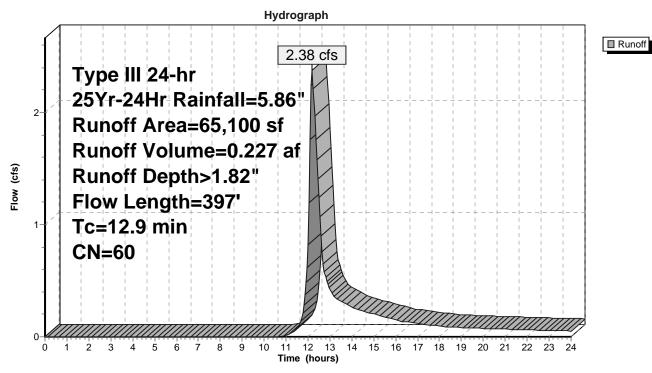

Summary for Subcatchment 10S: Subcatchment #10

Runoff = 0.47 cfs @ 12.25 hrs, Volume= 0.049 af, Depth> 1.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		rea (sf)	CN E	Description		
11,420 55 Woods, Good, HSG B 433 98 Paved parking, HSG C 275 70 Woods, Good, HSG C 297 74 >75% Grass cover, Good, HSG C 14,130 60 Weighted Average 12,686 89.78% Pervious Area 1,444 10.22% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 12.1 80 0.0563 0.11 Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" 2.4 20 0.1990 0.14 Sheet Flow, Segment #2 Woods: Light underbrush n= 0.400 P2= 3.06" 2.1 126 0.0398 1.00 Shallow Concentrated Flow, Segment #3		694	61 >	75% Gras	s cover, Go	od, HSG B
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,011	98 F	aved park	ing, HSG B	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11,420	55 V	Voods, Go	od, HSG B	
297 74 >75% Grass cover, Good, HSG C 14,130 60 Weighted Average 12,686 89.78% Pervious Area 1,444 10.22% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 12.1 80 0.0563 0.11 Sheet Flow, Segment #1 Voods: Light underbrush n= 0.400 P2= 3.06" 2.4 20 0.1990 0.14 Sheet Flow, Segment #2 Woods: Light underbrush n= 0.400 P2= 3.06" 2.1 126 0.0398 1.00 Shallow Concentrated Flow, Segment #3		433				
14,130 60 Weighted Average 12,686 89.78% Pervious Area 1,444 10.22% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 12.1 80 0.0563 0.11 Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" 2.4 20 0.1990 0.14 Sheet Flow, Segment #2 Woods: Light underbrush n= 0.400 P2= 3.06" 2.1 126 0.0398 1.00 Shallow Concentrated Flow, Segment #3		275				
12,686 89.78% Pervious Area 1,444 10.22% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) Capacity Description 12.1 80 0.0563 0.11 Sheet Flow, Segment #1 2.4 20 0.1990 0.14 Sheet Flow, Segment #2 Woods: Light underbrush n= 0.400 P2= 3.06" 2.1 126 0.0398 1.00 Shallow Concentrated Flow, Segment #3		297	74 >	75% Gras	s cover, Go	od, HSG C
1,44410.22% Impervious AreaTcLengthSlopeVelocityCapacity (cfs)Description(min)(feet)(ft/ft)(ft/sec)(cfs)12.1800.05630.11Sheet Flow, Segment #1 Woods: Light underbrush Sheet Flow, Segment #2 Woods: Light underbrushn= 0.4002.4200.19900.14Sheet Flow, Segment #2 Woods: Light underbrush Sheet Flow, Segment #2 Woods: Light underbrushn= 0.4002.11260.03981.00Shallow Concentrated Flow, Segment #3		14,130	60 V	Veighted A	verage	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12,686	8	9.78% Per	vious Area	
(min) (feet) (ft/ft) (ft/sec) (cfs) 12.1 80 0.0563 0.11 Sheet Flow, Segment #1 2.4 20 0.1990 0.14 Woods: Light underbrush n= 0.400 P2= 3.06" 2.1 126 0.0398 1.00 Shallow Concentrated Flow, Segment #3		1,444	1	0.22% Imp	pervious Are	ea
(min) (feet) (ft/ft) (ft/sec) (cfs) 12.1 80 0.0563 0.11 Sheet Flow, Segment #1 2.4 20 0.1990 0.14 Woods: Light underbrush n= 0.400 P2= 3.06" 2.1 126 0.0398 1.00 Shallow Concentrated Flow, Segment #3	_		<u>.</u>		•	-
12.1 80 0.0563 0.11 Sheet Flow, Segment #1 12.1 80 0.0563 0.11 Woods: Light underbrush n= 0.400 P2= 3.06" 2.4 20 0.1990 0.14 Sheet Flow, Segment #2 2.1 126 0.0398 1.00 Shallow Concentrated Flow, Segment #3	Te	Lonath				
2.4 20 0.1990 0.14 Woods: Light underbrush n= 0.400 P2= 3.06" 2.4 20 0.1990 0.14 Sheet Flow, Segment #2 2.1 126 0.0398 1.00 Shallow Concentrated Flow, Segment #3		•				Description
2.4 20 0.1990 0.14 Sheet Flow, Segment #2 2.1 126 0.0398 1.00 Sheet Flow, Segment #2 2.1 126 0.0398 1.00 Shallow Concentrated Flow, Segment #3		•				Description
2.1 126 0.0398 1.00 Woods: Light underbrush n= 0.400 P2= 3.06" Shallow Concentrated Flow, Segment #3	(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Segment #1
2.1 126 0.0398 1.00 Shallow Concentrated Flow, Segment #3	<u>(min)</u> 12.1	(feet)	(ft/ft) 0.0563	(ft/sec)		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06"
	<u>(min)</u> 12.1	(feet) 80	(ft/ft) 0.0563	(ft/sec) 0.11		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" Sheet Flow, Segment #2
Woodland Kv= 5.0 fps	(min) 12.1 2.4	(feet) 80 20	(ft/ft) 0.0563 0.1990	(ft/sec) 0.11 0.14		Sheet Flow, Segment #1Woods: Light underbrushn= 0.400P2= 3.06"Sheet Flow, Segment #2Woods: Light underbrushn= 0.400P2= 3.06"
	(min) 12.1 2.4	(feet) 80 20	(ft/ft) 0.0563 0.1990	(ft/sec) 0.11 0.14		Sheet Flow, Segment #1Woods: Light underbrushn= 0.400P2= 3.06"Sheet Flow, Segment #2Woods: Light underbrushn= 0.400P2= 3.06"Shallow Concentrated Flow, Segment #3
16.6 226 Total	(min) 12.1 2.4	(feet) 80 20	(ft/ft) 0.0563 0.1990	(ft/sec) 0.11 0.14		Sheet Flow, Segment #1Woods: Light underbrushn= 0.400P2= 3.06"Sheet Flow, Segment #2Woods: Light underbrushn= 0.400P2= 3.06"Shallow Concentrated Flow, Segment #3

Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 lutions LLC Page 33



Subcatchment 10S: Subcatchment #10

Summary for Subcatchment 22S: Area to Pond #102

Runoff = 2.38 cfs @ 12.20 hrs, Volume= 0.227 af, Depth> 1.82"

A	rea (sf)	CN [Description					
	1,008	98 F	Roofs, HSG A					
	26,108	39 >	-75% Gras	s cover, Go	ood, HSG A			
	467	98 F	Paved park	ing, HSG A				
	1,757		,	od, HSG A				
	7,771				ood, HSG B			
	913			od, HSG B				
	1,460		Roofs, HSG					
	18,100			,	ood, HSG C			
	5,162			ing, HSG C				
	2,354	70 \	Noods, Go	od, HSG C				
	65,100	60 \	Veighted A	verage				
	57,003	-		rvious Area				
	8,097		2.44% Imp	pervious Are	ea			
-		~		A				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
10.0	100	0.0200	0.17		Sheet Flow, Segment #1			
					Grass: Short n= 0.150 P2= 3.06"			
0.4	77	0.2078	3.19		Shallow Concentrated Flow, Segment #2			
					Short Grass Pasture Kv= 7.0 fps			
2.5	220	0.0455	1.49		Shallow Concentrated Flow, Segment #2			
					Short Grass Pasture Kv= 7.0 fps			
12.9	397	Total						

Subcatchment 22S: Area to Pond #102

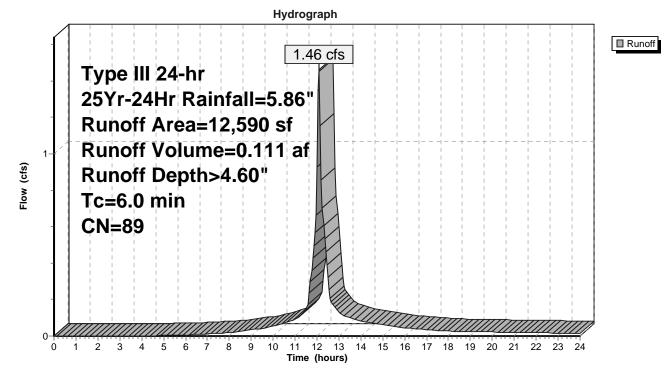
Summary for Subcatchment 23S: Area to Pond #103

Runoff = 6.23 cfs @ 12.26 hrs, Volume= 0.641 af, Depth> 2.24"

A	rea (sf)	CN E	Description					
	722	39 >	>75% Grass cover, Good, HSG A					
	169		Paved parking, HSG A					
	1,821	30 V	Voods, Go	od, HSG A				
	3,168	98 L	Inconnecte	ed roofs, HS	SG B			
	85,729	61 >	75% Gras	s cover, Go	bod, HSG B			
	8,755	98 F	aved park	ing, HSG B				
	21,758	55 V	Voods, Go	od, HSG B				
	1,000	96 C	Gravel surfa	ace, HSG E	3			
	9,640	74 >	75% Gras	s cover, Go	bod, HSG C			
	986	98 F	aved park	ing, HSG C				
	15,605	70 V	Voods, Go	od, HSG C				
	165	96 (Gravel surfa	ace, HSG C				
1	49,518	65 V	Veighted A	verage				
1	36,440	g	1.25% Per	vious Area				
	13,078	8	8.75% Impe	ervious Are	a			
	3,168	2	4.22% Un	connected				
_								
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
12.6	100	0.0800	0.13		Sheet Flow, Segment #1			
					Woods: Light underbrush n= 0.400 P2= 3.06"			
1.8	95	0.0316	0.89		Shallow Concentrated Flow, Segment #2			
					Woodland Kv= 5.0 fps			
2.0	71	0.0071	0.59		Shallow Concentrated Flow, Segment #3			
					Short Grass Pasture Kv= 7.0 fps			
0.1	24	0.0208	2.93		Shallow Concentrated Flow, Segment #4			
					Paved Kv= 20.3 fps			
1.0	91	0.0442	1.47		Shallow Concentrated Flow, Segment #5			
					Short Grass Pasture Kv= 7.0 fps			
17.5	381	Total						

Hydrograph Runoff 6.23 cfs Type III 24-hr 6 25Yr-24Hr Rainfall=5.86" Runoff Area=149,518 sf 5-Runoff Volume=0.641 af 4 Flow (cfs) Runoff Depth>2.24" Flow Length=381' 3-Tc=17.5 min CN=65 2-1. 0-11 12 13 14 15 16 17 18 19 20 2 Ś 4 5 6 7 8 9 10 21 22 23 Ó 1 24 Time (hours)

Subcatchment 23S: Area to Pond #103

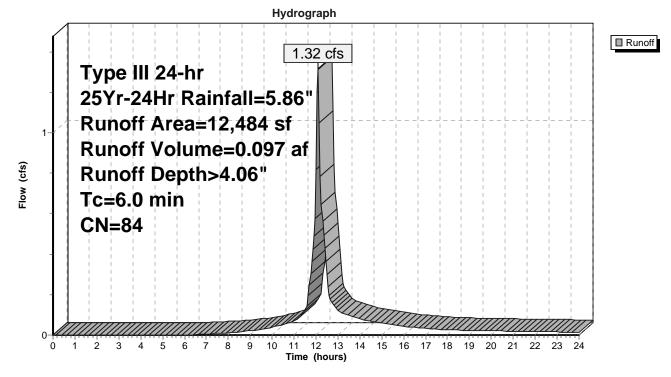

Summary for Subcatchment 24S: Peekaboo CDS

Runoff = 1.46 cfs @ 12.09 hrs, Volume= 0.111 af, Depth> 4.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

Α	vrea (sf)	CN	Description						
	4,731	74	>75% Gras	s cover, Go	bod, HSG C				
	7,337	98	Paved park	ing, HSG C					
	522	96	Gravel surfa	ace, HSG (
	12,590	89	Weighted Average						
	5,253		41.72% Pervious Area						
	7,337	:	58.28% Imp	pervious Ar	ea				
т.	المتعامية الم	01.000	Valasita.	0	Description				
TC	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry, Direct Entry				

Subcatchment 24S: Peekaboo CDS



Summary for Subcatchment 25S: Fredrick CDS

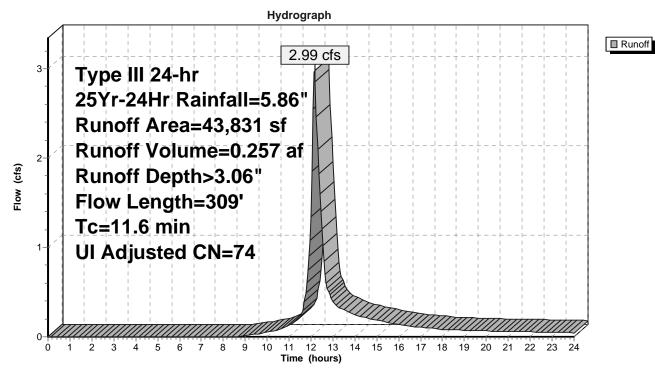
Runoff = 1.32 cfs @ 12.09 hrs, Volume= 0.097 af, Depth> 4.06"

A	rea (sf)	CN	Description						
	4,731	61	>75% Gras	s cover, Go	ood, HSG B				
	7,231		Paved park						
	522	96	Gravel surfa	ace, HSG E	3				
	12,484	84	Weighted Average						
	5,253		42.08% Pervious Area						
	7,231	:	57.92% Imp	ervious Ar	ea				
Tc	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry, Direct Entry				

Summary for Subcatchment 26S: Area to Pond #106

Runoff = 4.21 cfs @ 12.32 hrs, Volume= 0.497 af, Depth> 1.58"

A	rea (sf)	CN D	Description							
	311	98 L	Inconnecte	ed roofs, HS	SG A					
	40,918	30 V	Woods, Good, HSG A							
	7,768	55 V	Voods, Go	od, HSG B						
	2,429	98 L	Inconnecte	ed roofs, HS	SG C					
	2,376	98 L	Inconnecte	ed pavemer	nt, HSG C					
	53,519			od, HSG C						
	6,114				ood, HSG A					
	5,087				ood, HSG B					
	17,165				ood, HSG C					
	6,114			on-grazed,						
	5,087			on-grazed,						
	17,165		Meadow, non-grazed, HSG C							
	64,053		Veighted A							
1	58,937	-		vious Area						
	5,116			ervious Are						
	5,116	1	00.00% Ui	nconnected	1					
т.	المتع منالة	01	\/_l!		Description					
Tc (min)	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
11.8	100	0.0950	0.14		Sheet Flow, Segment #1					
0.0	00	0.0474	0.00		Woods: Light underbrush n= 0.400 P2= 3.06"					
2.2	86	0.0174	0.66		Shallow Concentrated Flow, Segment #2					
4.0	210	0.0000 4.05			Woodland Kv= 5.0 fps					
4.2	319	0.0628	1.25		Shallow Concentrated Flow, Segment #3					
2.4	174	0.0574	1.20		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Segment #4					
2.4	174	0.0374	1.20		Woodland Kv= 5.0 fps					
20.6	679	Total								
20.0	019	iotai								

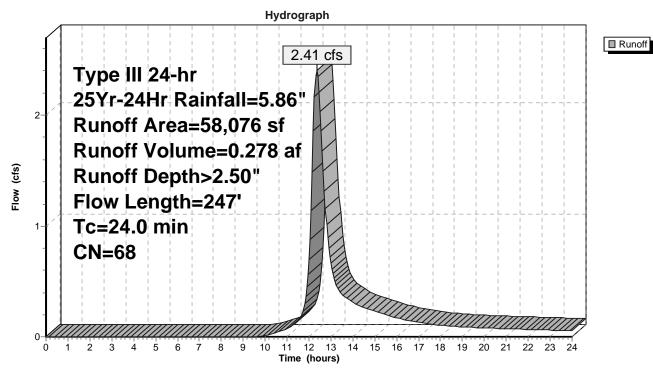

Hydrograph Runoff 4.21 cfs Type III 24-hr 25Yr-24Hr Rainfall=5.86" Runoff Area=164,053 sf Runoff Volume=0.497 af 3-Flow (cfs) Runoff Depth>1.58" Flow Length=679' 2-Tc=20.6 min CN=57 1 0-2 11 12 13 14 15 16 17 18 19 20 21 22 1 Ś 4 5 6 7 8 9 10 23 Ó 24 Time (hours)

Subcatchment 26S: Area to Pond #106

Summary for Subcatchment 27S: Area to Pond #107

Runoff = 2.99 cfs @ 12.16 hrs, Volume= 0.257 af, Depth> 3.06"

A	rea (sf)	CN /	Adj Desc	cription					
	1,854	98	Unco	Unconnected roofs, HSG C					
	28,368	74	>75%	>75% Grass cover, Good, HSG C					
	1,242	98	Pave	ed parking,	HSG C				
	12,152	70	Woo	ds, Good, H	HSG C				
	215	96	Grav	el surface,	HSG C				
	43,831	75	74 Weig	Weighted Average, UI Adjusted					
	40,735		92.94% Pervious Área						
	3,096		7.069	% Impervio	us Area				
	1,854		59.88	8% Unconr	nected				
Тс	Length	Slope	Velocity	Capacity	Description				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	•				Sheet Flow, Segment #1				
<u>(min)</u> 9.1	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06"				
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" Shallow Concentrated Flow, Segment #2				
(min) 9.1 0.6	(feet) 100	(ft/ft) 0.1800 0.0514	(ft/sec) 0.18 1.13		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" Shallow Concentrated Flow, Segment #2 Woodland Kv= 5.0 fps				
<u>(min)</u> 9.1	(feet) 100	(ft/ft) 0.1800	(ft/sec) 0.18		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" Shallow Concentrated Flow, Segment #2 Woodland Kv= 5.0 fps Shallow Concentrated Flow, Segment #3				
(min) 9.1 0.6	(feet) 100 43	(ft/ft) 0.1800 0.0514	(ft/sec) 0.18 1.13		Sheet Flow, Segment #1 Woods: Light underbrush n= 0.400 P2= 3.06" Shallow Concentrated Flow, Segment #2 Woodland Kv= 5.0 fps				



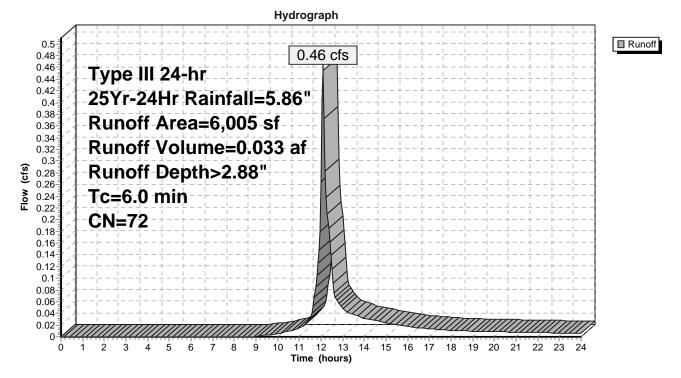
Subcatchment 27S: Area to Pond #107

Summary for Subcatchment 28S: Area to Pond #108

Runoff = 2.41 cfs @ 12.35 hrs, Volume= 0.278 af, Depth> 2.50"

A	rea (sf)	CN	Description						
	1,584	98	Roofs, HSG B						
	26,908	61 :	>75% Gras	s cover, Go	ood, HSG B				
	5,660	98	Paved park	ing, HSG B					
	8,948	55	Noods, Go	od, HSG B					
	641	96	Gravel surfa	ace, HSG E	3				
	4,142				ood, HSG C				
	268			ing, HSG C					
	9,909			od, HSG C					
	16	96	Gravel surfa	ace, HSG C					
	58,076		68 Weighted Average						
	50,564		87.07% Pervious Area						
	7,512		12.93% Impervious Area						
_									
Tc	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
22.0	100	0.0200	0.08		Sheet Flow, Segment #1				
					Woods: Light underbrush n= 0.400 P2= 3.06"				
1.0	69	0.0508	1.13		Shallow Concentrated Flow, Segment #2				
					Woodland Kv= 5.0 fps				
1.0	78	0.0319	1.25		Shallow Concentrated Flow, Segment #3				
					Short Grass Pasture Kv= 7.0 fps				
24.0	247	Total							

Subcatchment 28S: Area to Pond #108


Summary for Subcatchment 29S: Subcatchment #29

Runoff = 0.46 cfs @ 12.09 hrs, Volume= 0.033 af, Depth> 2.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

ΑΑ	rea (sf)	CN	Description							
	3,178	61	>75% Gras	s cover, Go	bod, HSG B					
	1,574	98	Paved park	ing, HSG B	3					
	317	96	Gravel surfa	ace, HSG E	3					
	936	55	Woods, Go	od, HSG B						
	6,005	72	Weighted Average							
	4,431		73.79% Pervious Area							
	1,574		26.21% Imp	pervious Ar	ea					
Та	Longth	Slope	Volocity	Conocity	Description					
Tc (min)	Length	Slope		Capacity	Description					
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)						
6.0					Direct Entry, Direct Entry					

Subcatchment 29S: Subcatchment #29

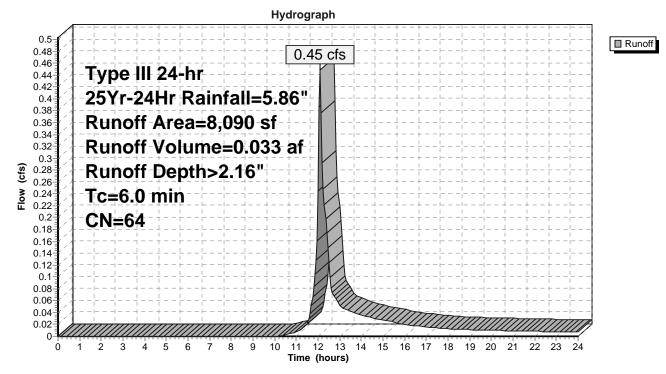
Summary for Subcatchment 30S: Subcatchment #30

Runoff = 1.77 cfs @ 12.20 hrs, Volume= 0.165 af, Depth> 2.16"

A	rea (sf)	CN E	Description						
	3,175	39 >	>75% Grass cover, Good, HSG A						
	126	98 F	aved park	ing, HSG A					
	10,042	61 >	75% Gras	s cover, Go	ood, HSG B				
	1,715	98 F	aved park	ing, HSG B					
	11,216	55 V	Voods, Go	od, HSG B					
	322	96 C	Gravel surfa	ace, HSG B	6				
	4,652				ood, HSG C				
	1,178			ing, HSG C					
	7,329			od, HSG C					
	252	96 (Gravel surfa	ace, HSG C					
	40,007	64 V	Veighted A	verage					
	36,988	g	2.45% Per	vious Area					
	3,019	7	'.55% Impe	ervious Area	a				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
12.0	100	0.0900	0.14		Sheet Flow, Segment #1				
					Woods: Light underbrush n= 0.400 P2= 3.06"				
0.7	36	0.0277	0.83		Shallow Concentrated Flow, Segment #2				
					Woodland Kv= 5.0 fps				
0.4	23	0.0216	1.03		Shallow Concentrated Flow, Segment #3				
					Short Grass Pasture Kv= 7.0 fps				
13.1	159	Total							

Hydrograph Runoff 1.77 cfs Type III 24-hr 25Yr-24Hr Rainfall=5.86" Runoff Area=40,007 sf Runoff Volume=0.165 af Flow (cfs) Runoff Depth>2.16" Flow Length=159' Tc=13.1 min CN=64 TITI 0-11 12 13 14 15 16 17 18 19 20 21 Time (hours) 2 3 1 4 5 6 7 8 ģ 10 22 23 Ó 24

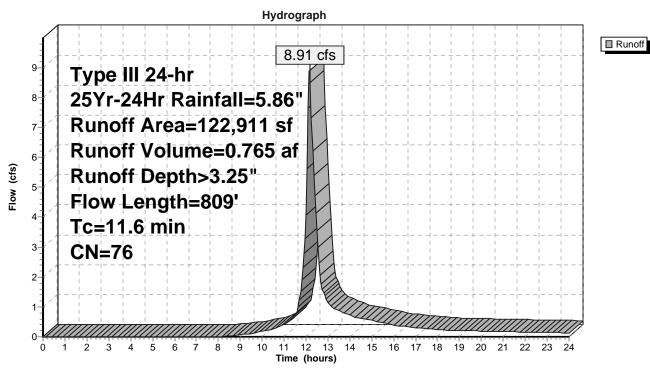
Subcatchment 30S: Subcatchment #30


Summary for Subcatchment 31S: Subcatchment #31

Runoff = 0.45 cfs @ 12.10 hrs, Volume= 0.033 af, Depth> 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

A	rea (sf)	CN	Description						
	3,590	39	>75% Gras	s cover, Go	ood, HSG A				
	838	98	Paved park	ing, HSG A	Α				
	83	96	Gravel surfa	ace, HSG A	A				
	1,763	61	>75% Gras	s cover, Go	ood, HSG B				
	1,595	98	Paved park	ing, HSG B	3				
	221	96	Gravel surfa	ace, HSG E	В				
	8,090	64	Weighted Average						
	5,657		69.93% Per	vious Area	a				
	2,433		30.07% Imp	pervious Ar	rea				
Тс	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft		(cfs)					
6.0					Direct Entry, Direct Entry				

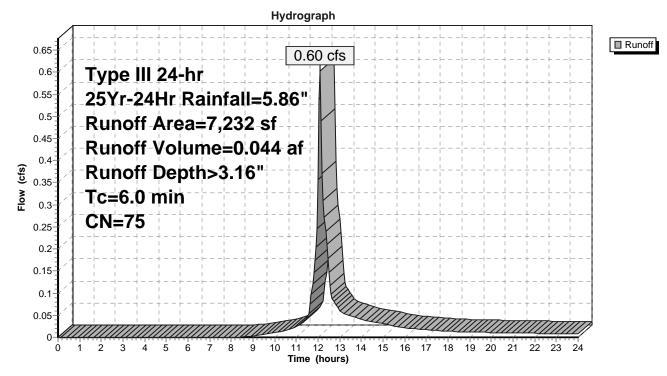

Subcatchment 31S: Subcatchment #31

Summary for Subcatchment 32S: Inlet Sump (Lt.)

Runoff = 8.91 cfs @ 12.16 hrs, Volume= 0.765 af, Depth> 3.25"

ΑΑ	rea (sf)	CN [Description						
	1,449	39 >	>75% Gras	s cover, Go	bod, HSG A				
	174	98 F	Paved parking, HSG A						
	16	96 (Gravel surfa	ace, HSG A	A				
	7,170				bod, HSG B				
	504		Roofs, HSG						
	2,102			ing, HSG B					
	1,984			od, HSG B					
	6,192		Roofs, HSC						
	42,536			on-grazed,					
	42,536				pod, HSG C				
	13,827			ing, HSG C					
	4,116			od, HSG C					
	305			ace, HSG C	<u>,</u>				
	22,911		Neighted A						
	00,112			rvious Area					
	22,799		10.55% imp	pervious Ar	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description				
5.9	100	0.0750	0.28	(00)	Sheet Flow, Segment #1				
0.0	100	0.0700	0.20		Grass: Short $n=0.150$ P2= 3.06"				
0.2	25	0.0800	1.98		Shallow Concentrated Flow, Segment #2				
0.2	20	0.0000	1.00		Short Grass Pasture Kv= 7.0 fps				
0.0	9	0.3300	4.02		Shallow Concentrated Flow, Segment #3				
	-				Short Grass Pasture Kv= 7.0 fps				
5.5	675	0.0844	2.03		Shallow Concentrated Flow, Segment #4				
					Short Grass Pasture Kv= 7.0 fps				
11.6	809	Total							

Subcatchment 32S: Inlet Sump (Lt.)

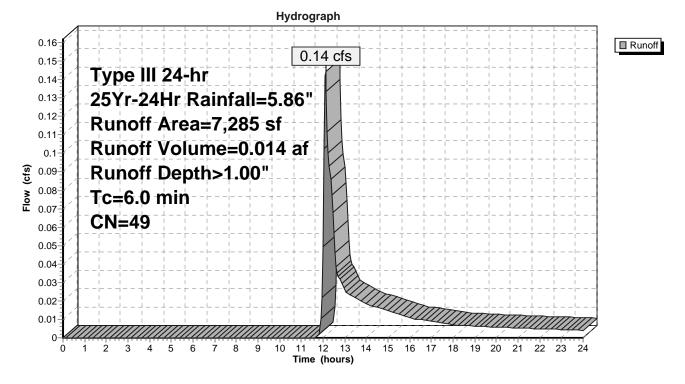

Summary for Subcatchment 33aS: Peekaboo Entrance

Runoff = 0.60 cfs @ 12.09 hrs, Volume= 0.044 af, Depth> 3.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

Α	rea (sf)	CN	Description						
	2,648	39	>75% Gras	s cover, Go	bod, HSG A				
	3,022	98	Paved park	ing, HSG A	N Contraction of the second seco				
	316	96	Gravel surfa	ace, HSG A	A				
	251	61	>75% Gras	s cover, Go	bod, HSG B				
	938	98	Paved park						
	57	96	Gravel surfa	ace, HSG E	3				
	7,232	75	Weighted Average						
	3,272		45.24% Per	vious Area	l				
	3,960		54.76% lmp	pervious Ar	ea				
Та	المربع مرالم	Class	Valasitu	Canadity	Description				
Tc	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
6.0					Direct Entry, Direct Entry				

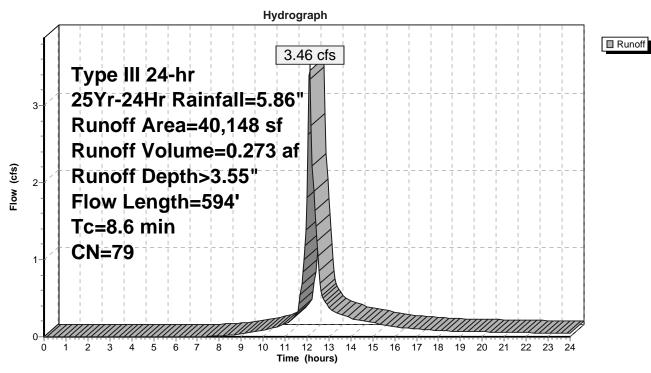
Subcatchment 33aS: Peekaboo Entrance


Summary for Subcatchment 33bS: Subcatchment #33b Area above Treatment Swale

Runoff = 0.14 cfs @ 12.12 hrs, Volume= 0.014 af, Depth> 1.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

rea (sf)	CN	Description				
4,078	39	>75% Grass cover, Good, HSG A				
28	30	Woods, Good, HSG A				
281	96	Gravel surface, HSG A				
1,988	61	>75% Grass cover, Good, HSG B				
910	55	Woods, Good, HSG B				
7,285	49	Weighted Average				
7,285		100.00% Pervious Area				
				Description		
(feet)	(ft/ft)	ft) (ft/sec) (cfs)				
				Direct Entry, Direct Entry		
	4,078 28 281 1,988 910 7,285 7,285 Length	4,078 39 28 30 281 96 1,988 61 910 55 7,285 49 7,285 Length Slope	4,078 39 >75% Grass 28 30 Woods, Go 281 96 Gravel surfa 1,988 61 >75% Grass 910 55 Woods, Go 7,285 49 Weighted A 7,285 100.00% Pe Length Slope Velocity	4,07839>75% Grass cover, G2830Woods, Good, HSG A28196Gravel surface, HSG A1,98861>75% Grass cover, G91055Woods, Good, HSG B7,28549Weighted Average7,285100.00% Pervious AreLengthSlopeVelocityCapacityCapacity		

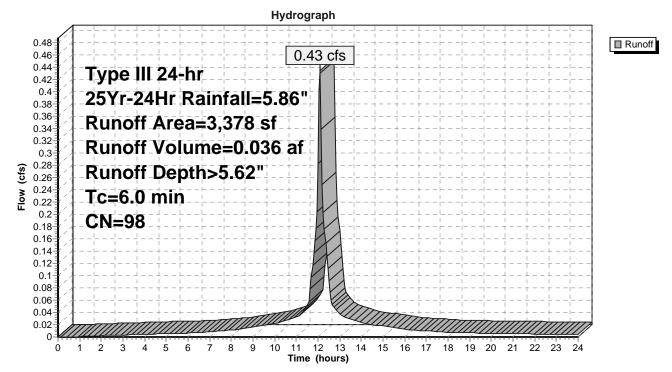

Subcatchment 33bS: Subcatchment #33b Area above Treatment Swale

Summary for Subcatchment 34S: Inlet Sump (Rt.)

Runoff = 3.46 cfs @ 12.12 hrs, Volume= 0.273 af, Depth> 3.55"

A	rea (sf)	CN E	Description				
	63	39 >	>75% Grass cover, Good, HSG A				
	31,078	74 >	>75% Grass cover, Good, HSG C				
	6,517		Paved parking, HSG C				
	2,088		Roofs, HSG C				
	372		Gravel surface, HSG C				
	30	70 V	Woods, Good, HSG C				
	40,148	79 V	Veighted A	verage			
	31,543	7	'8.57% Per	vious Area			
	8,605	2	21.43% Impervious Area				
		<u> </u>		<u> </u>			
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)			
					Sheet Flow, Segment #1		
<u>(min)</u> 4.8	(feet) 92	(ft/ft) 0.1087	(ft/sec) 0.32		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06"		
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06" Shallow Concentrated Flow, Segment #2		
(min) 4.8 0.0	<u>(feet)</u> 92 9	(ft/ft) 0.1087 0.3300	(ft/sec) 0.32 4.02		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06" Shallow Concentrated Flow, Segment #2 Short Grass Pasture Kv= 7.0 fps		
<u>(min)</u> 4.8	(feet) 92	(ft/ft) 0.1087	(ft/sec) 0.32		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06" Shallow Concentrated Flow, Segment #2 Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Segment #3		
(min) 4.8 0.0	<u>(feet)</u> 92 9	(ft/ft) 0.1087 0.3300	(ft/sec) 0.32 4.02		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06" Shallow Concentrated Flow, Segment #2 Short Grass Pasture Kv= 7.0 fps		
(min) 4.8 0.0	<u>(feet)</u> 92 9	(ft/ft) 0.1087 0.3300	(ft/sec) 0.32 4.02		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06" Shallow Concentrated Flow, Segment #2 Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Segment #3		

Subcatchment 34S: Inlet Sump (Rt.)

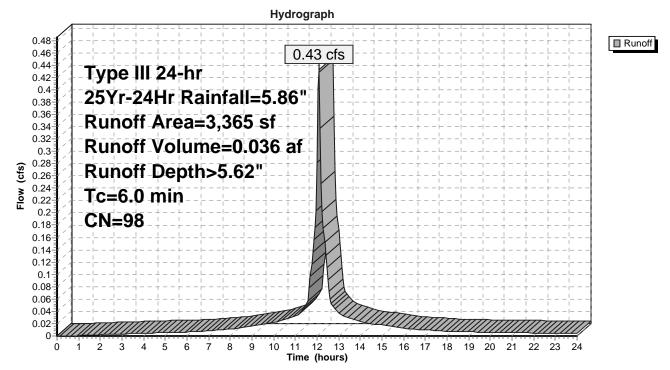

Summary for Subcatchment 41S: Catch Basin #1

Runoff = 0.43 cfs @ 12.09 hrs, Volume= 0.036 af, Depth> 5.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"

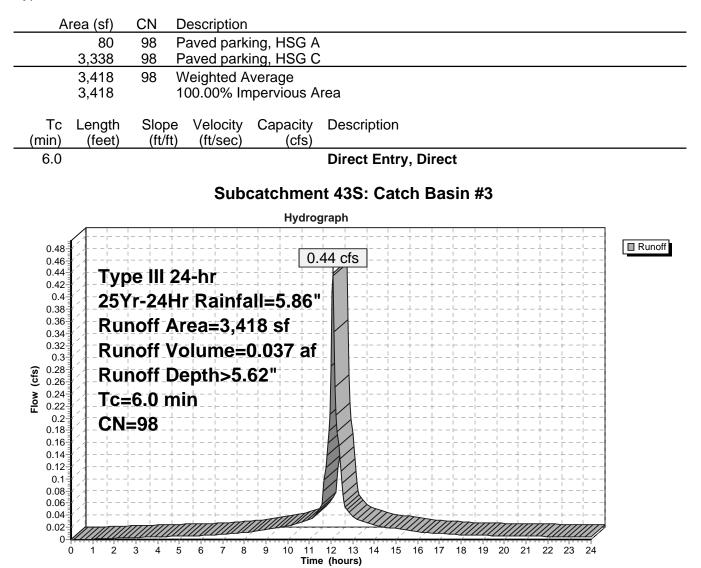
A	rea (sf)	CN	Description				
	3,378	98	98 Paved parking, HSG C				
	3,378		100.00% Impervious Area				
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description		
6.0		•	//	×	Direct Entry, Direct		

Subcatchment 41S: Catch Basin #1

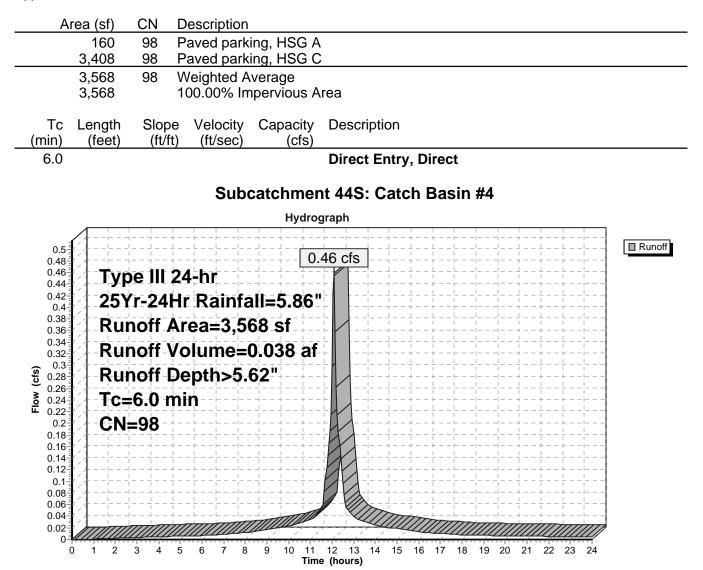

Summary for Subcatchment 42S: Catch Basin #2

Runoff = 0.43 cfs @ 12.09 hrs, Volume= 0.036 af, Depth> 5.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"


Α	rea (sf)	CN	N Description				
	3,365	98	98 Paved parking, HSG C				
	3,365	100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description		
6.0					Direct Entry, Direct		

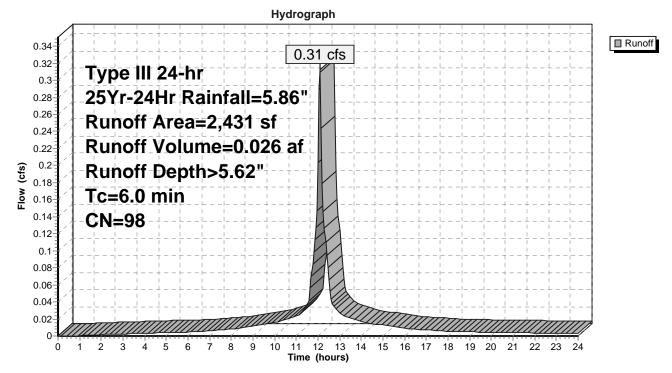
Subcatchment 42S: Catch Basin #2


Summary for Subcatchment 43S: Catch Basin #3

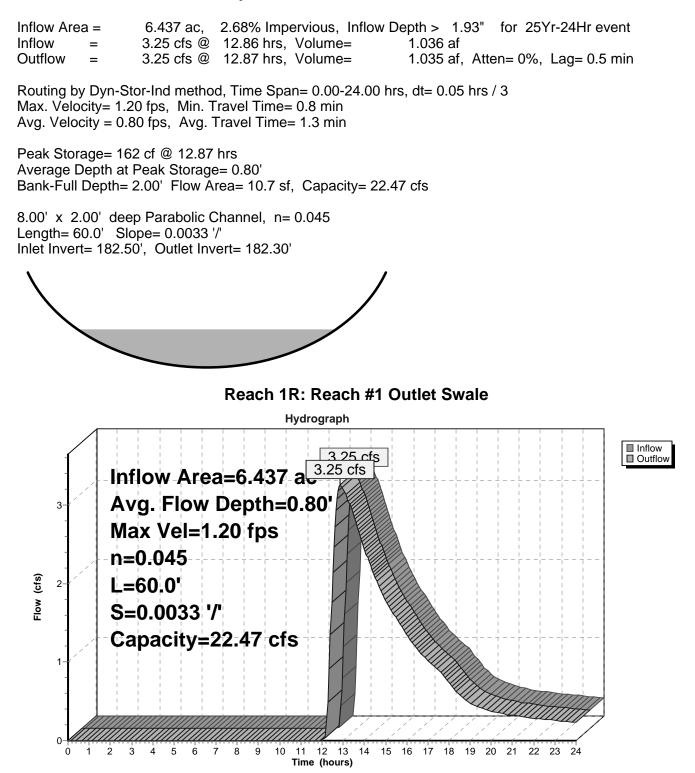
Runoff = 0.44 cfs @ 12.09 hrs, Volume= 0.037 af, Depth> 5.62"

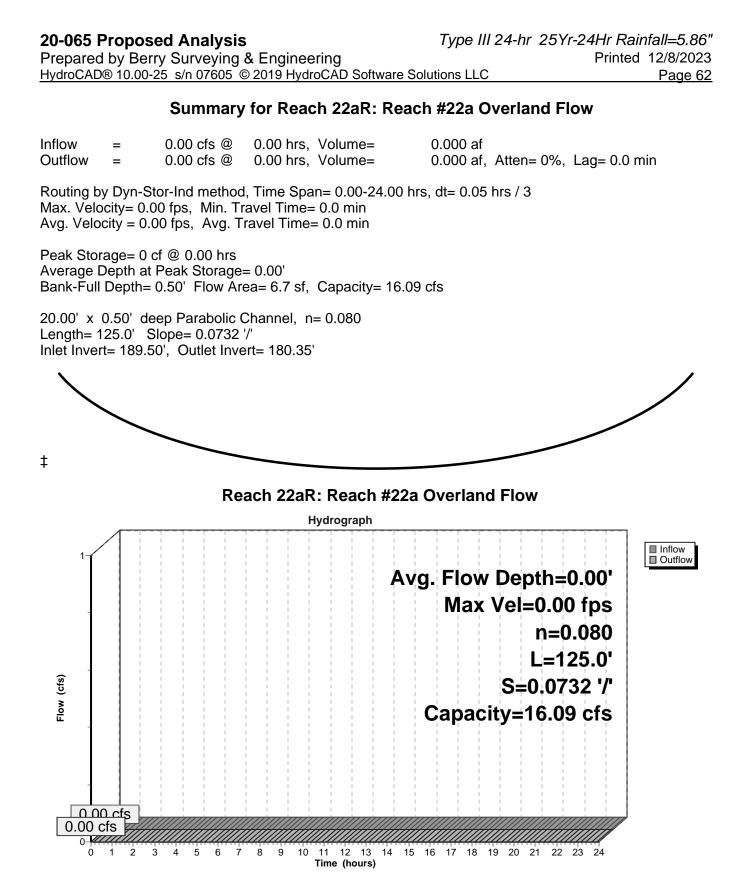
Summary for Subcatchment 44S: Catch Basin #4

0.46 cfs @ 12.09 hrs, Volume= Runoff 0.038 af, Depth> 5.62" _

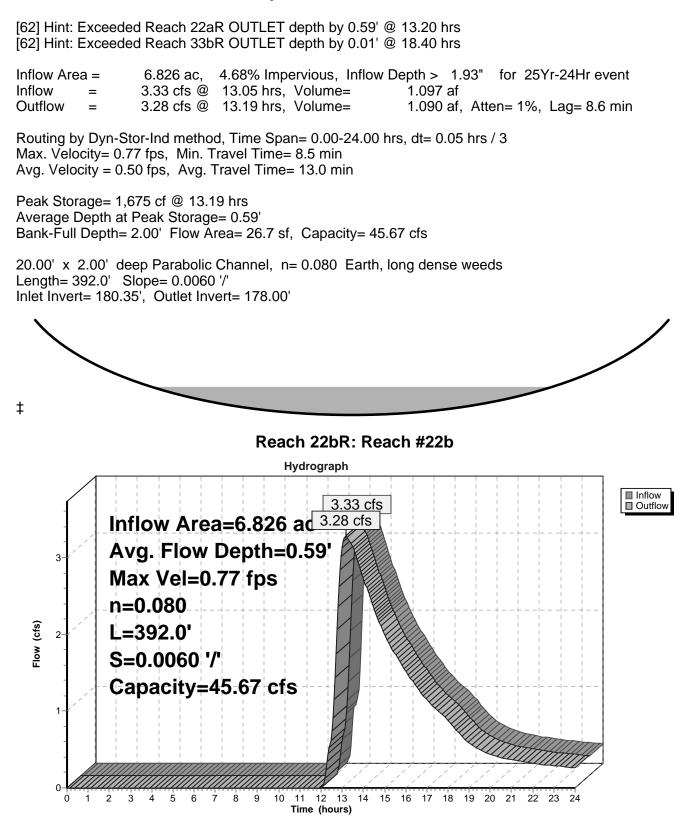

Summary for Subcatchment 45S: Rain Guardian #1

Runoff = 0.31 cfs @ 12.09 hrs, Volume= 0.026 af, Depth> 5.62"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25Yr-24Hr Rainfall=5.86"


A	rea (sf)	CN	CN Description				
	2,431	98	98 Paved parking, HSG A				
	2,431		100.00% Impervious Area				
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description		
6.0					Direct Entry, Direct		
				_			

Subcatchment 45S: Rain Guardian #1



Summary for Reach 1R: Reach #1 Outlet Swale

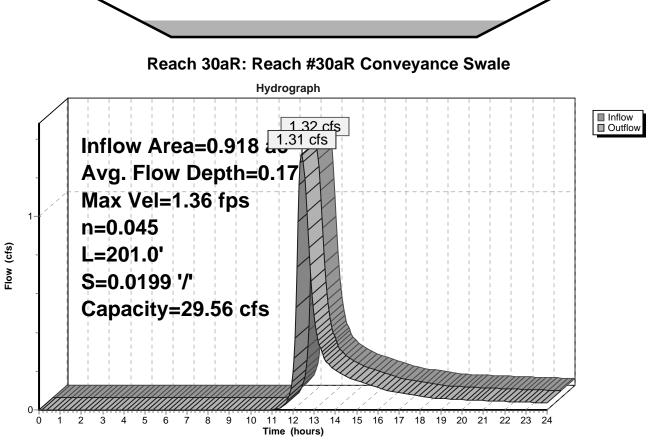
Summary for Reach 22bR: Reach #22b

Summary for Reach 30aR: Reach #30aR Conveyance Swale

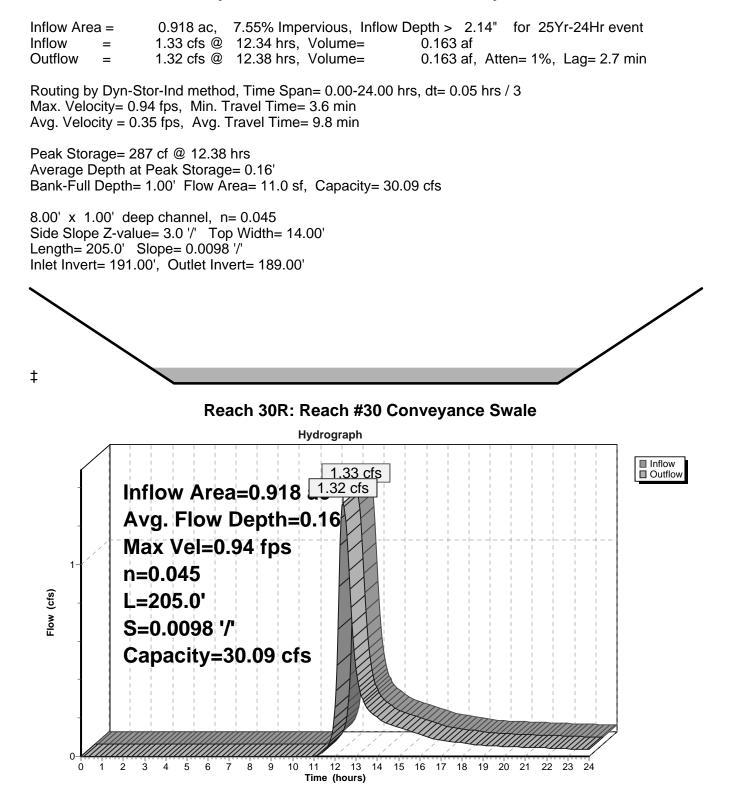
[62] Hint: Exceeded Reach 30R OUTLET depth by 0.01' @ 12.70 hrs

 Inflow Area =
 0.918 ac,
 7.55% Impervious, Inflow Depth > 2.13" for 25Yr-24Hr event

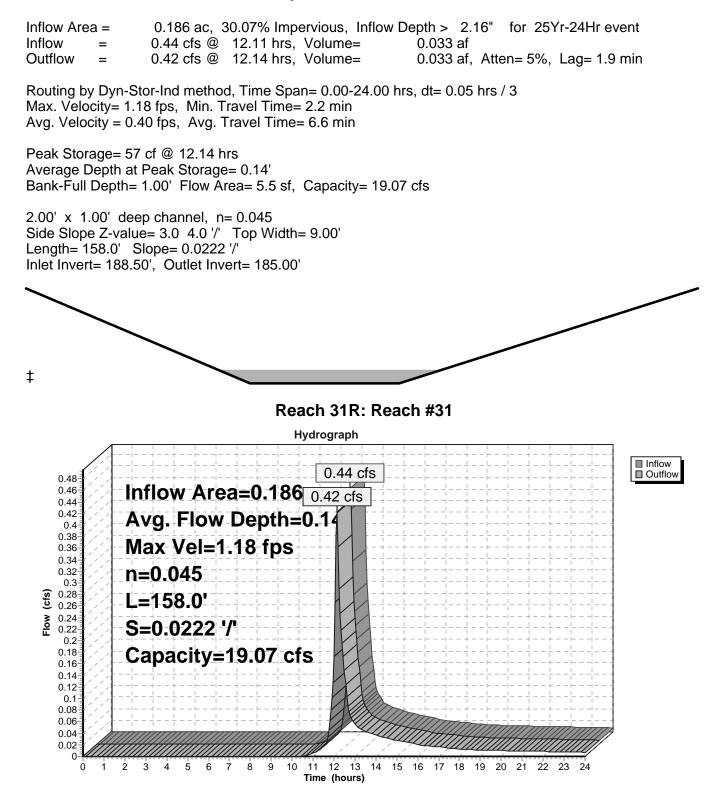
 Inflow =
 1.32 cfs @
 12.38 hrs, Volume=
 0.163 af

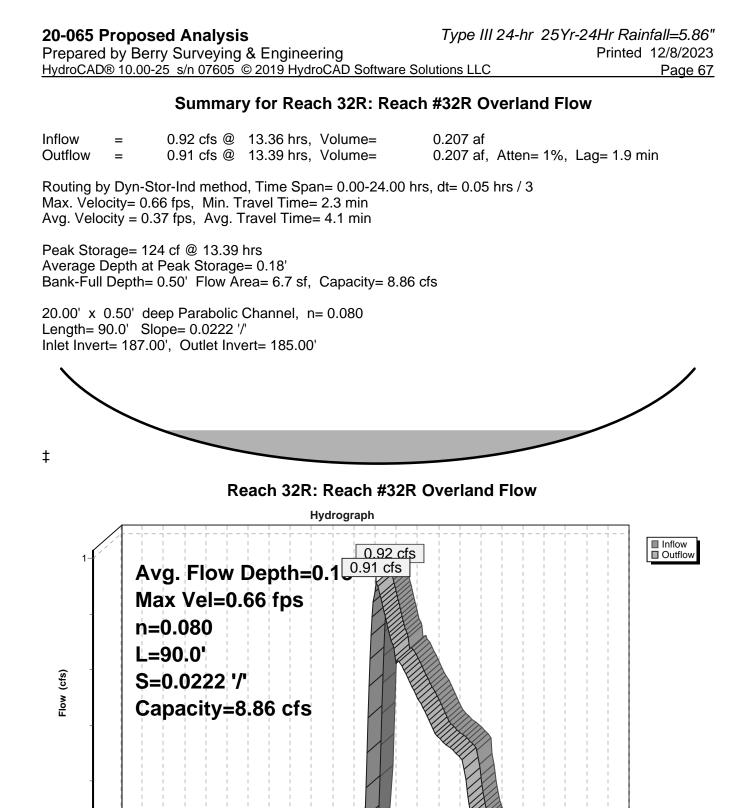

 Outflow =
 1.31 cfs @
 12.41 hrs, Volume=
 0.162 af, Atten= 0%, Lag= 1.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 1.36 fps, Min. Travel Time= 2.5 min Avg. Velocity = 0.51 fps, Avg. Travel Time= 6.5 min


Peak Storage= 194 cf @ 12.41 hrs Average Depth at Peak Storage= 0.17' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 29.56 cfs

5.00' x 1.00' deep channel, n= 0.045 Side Slope Z-value= 3.0 '/' Top Width= 11.00' Length= 201.0' Slope= 0.0199 '/' Inlet Invert= 189.00', Outlet Invert= 185.00'


‡



Summary for Reach 30R: Reach #30 Conveyance Swale

Summary for Reach 31R: Reach #31

11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

2 3

5

8 9 10

Time (hours)

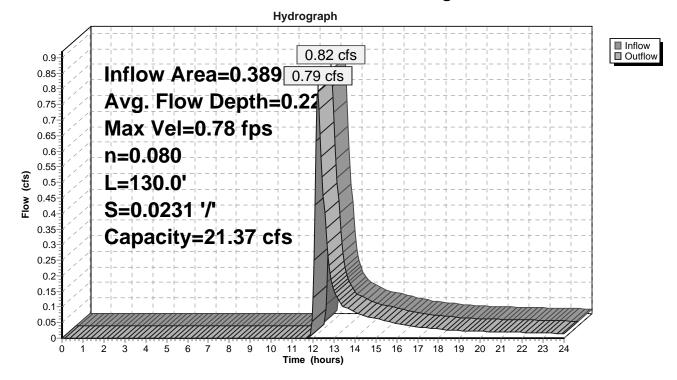
Summary for Reach 33aR: Reach #33a Flow Through Wetlands

[62] Hint: Exceeded Reach 33R OUTLET depth by 0.01' @ 16.10 hrs

 Inflow Area =
 0.389 ac, 37.71% Impervious, Inflow Depth > 2.17" for 25Yr-24Hr event

 Inflow =
 0.82 cfs @ 12.20 hrs, Volume=
 0.070 af

 Outflow =
 0.79 cfs @ 12.24 hrs, Volume=
 0.070 af, Atten= 3%, Lag= 2.3 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 0.78 fps, Min. Travel Time= 2.8 min Avg. Velocity = 0.32 fps, Avg. Travel Time= 6.7 min

Peak Storage= 132 cf @ 12.24 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 1.00' Flow Area= 10.0 sf, Capacity= 21.37 cfs

15.00' x 1.00' deep Parabolic Channel, n= 0.080 Earth, long dense weeds Length= 130.0' Slope= 0.0231 '/' Inlet Invert= 184.00', Outlet Invert= 181.00'

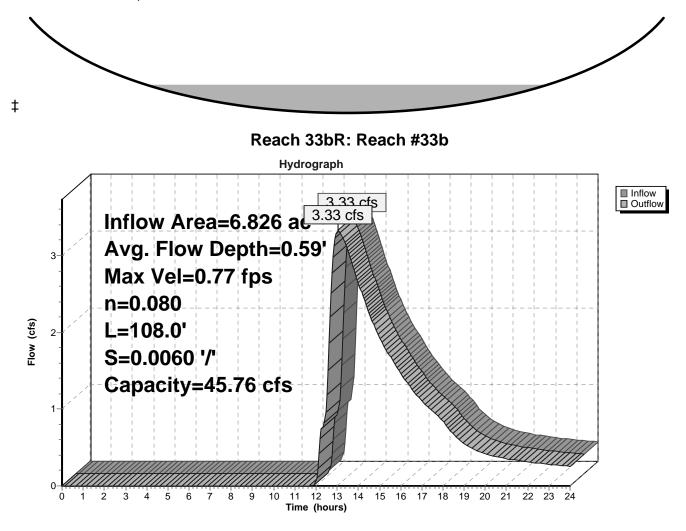
‡

Reach 33aR: Reach #33a Flow Through Wetlands

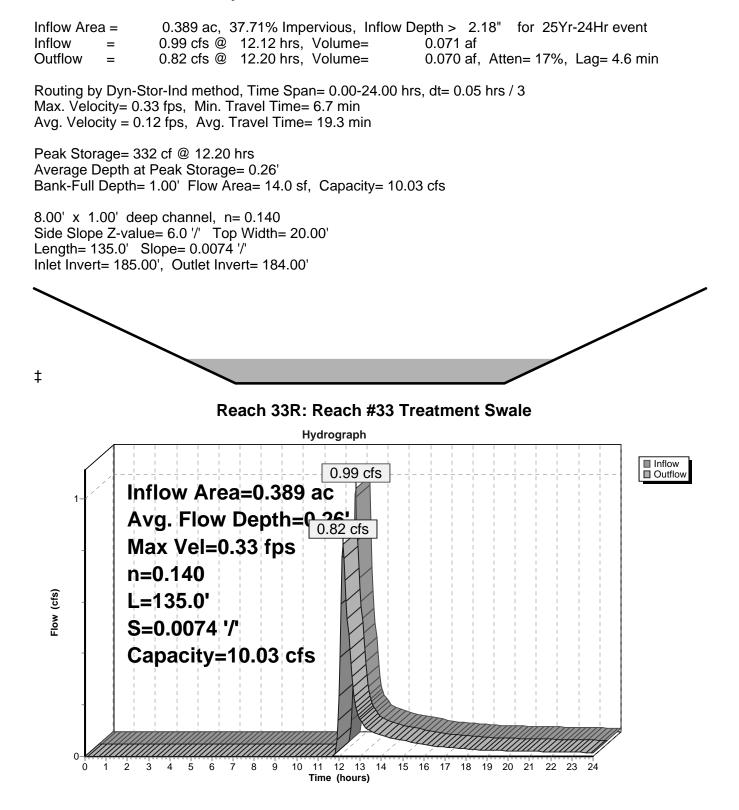
Summary for Reach 33bR: Reach #33b

[62] Hint: Exceeded Reach 33aR OUTLET depth by 0.50' @ 13.15 hrs [62] Hint: Exceeded Reach 101bR OUTLET depth by 0.27' @ 12.20 hrs

 Inflow Area =
 6.826 ac,
 4.68% Impervious, Inflow Depth >
 1.93" for 25Yr-24Hr event


 Inflow =
 3.33 cfs @
 13.02 hrs, Volume=
 1.099 af

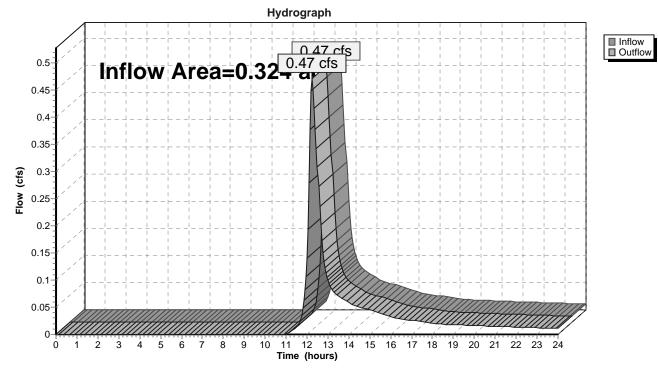
 Outflow =
 3.33 cfs @
 13.05 hrs, Volume=
 1.097 af, Atten= 0%, Lag= 1.9 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 0.77 fps, Min. Travel Time= 2.3 min Avg. Velocity = 0.50 fps, Avg. Travel Time= 3.6 min

Peak Storage= 465 cf @ 13.05 hrs Average Depth at Peak Storage= 0.59' Bank-Full Depth= 2.00' Flow Area= 26.7 sf, Capacity= 45.76 cfs

20.00' x 2.00' deep Parabolic Channel, n= 0.080 Earth, long dense weeds Length= 108.0' Slope= 0.0060 '/' Inlet Invert= 181.00', Outlet Invert= 180.35'

Summary for Reach 33R: Reach #33 Treatment Swale



Summary for Reach 100R: Final Reach #100

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	=	0.324 ac,	10.22% Impe	ervious,	Inflow De	pth >	1.82"	for 25Yr-24Hr event
Inflow =	(0.47 cfs @	12.25 hrs,	Volume	=	0.049 a	af	
Outflow =	(0.47 cfs @	12.25 hrs,	Volume	=	0.049 a	af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Reach 100R: Final Reach #100

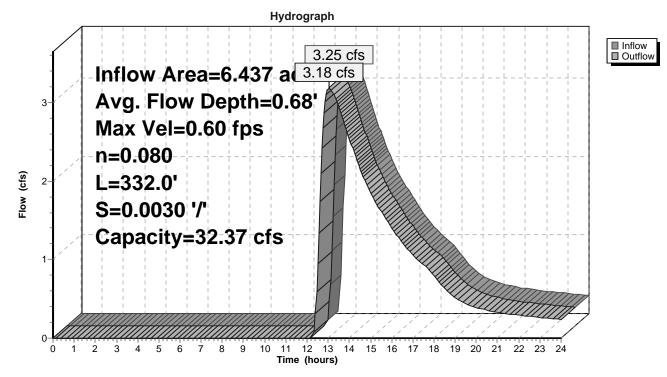
Summary for Reach 101bR: Reach #101b

[61] Hint: Exceeded Reach 1R outlet invert by 0.38' @ 13.05 hrs

 Inflow Area =
 6.437 ac, 2.68% Impervious, Inflow Depth > 1.93" for 25Yr-24Hr event

 Inflow =
 3.25 cfs @ 12.87 hrs, Volume=
 1.035 af

 Outflow =
 3.18 cfs @ 13.05 hrs, Volume=
 1.029 af, Atten= 2%, Lag= 10.8 min

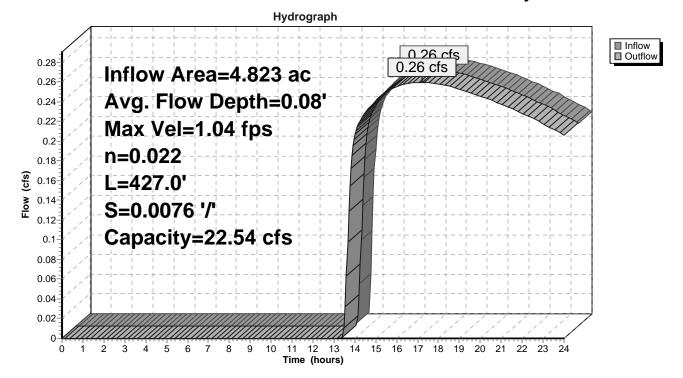

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 0.60 fps, Min. Travel Time= 9.2 min Avg. Velocity = 0.39 fps, Avg. Travel Time= 14.1 min

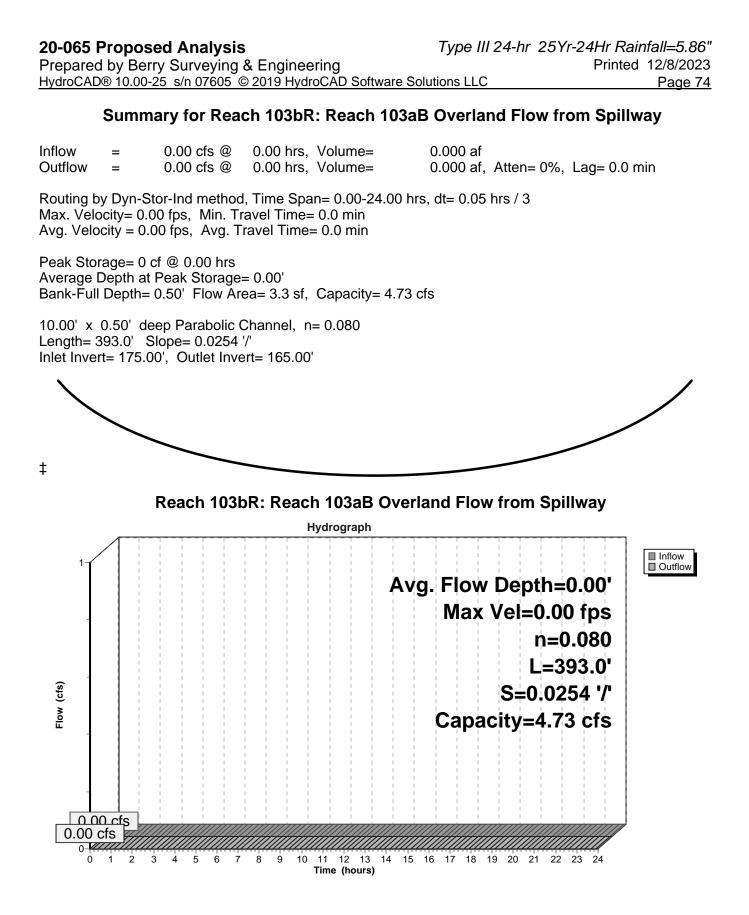
Peak Storage= 1,764 cf @ 13.05 hrs Average Depth at Peak Storage= 0.68' Bank-Full Depth= 2.00' Flow Area= 26.7 sf, Capacity= 32.37 cfs

20.00' x 2.00' deep Parabolic Channel, n= 0.080 Earth, long dense weeds Length= 332.0' Slope= 0.0030 '/' Inlet Invert= 182.00', Outlet Invert= 181.00'

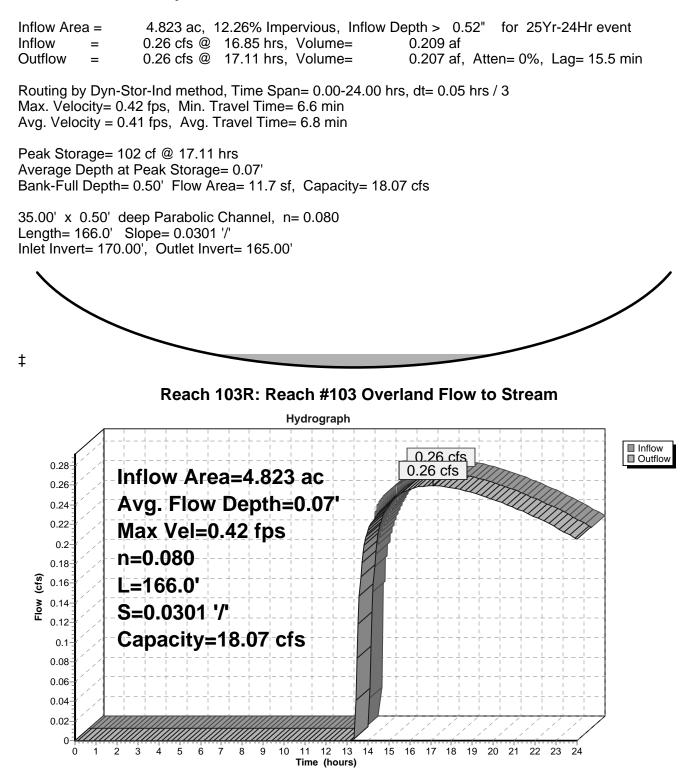
‡

Reach 101bR: Reach #101b

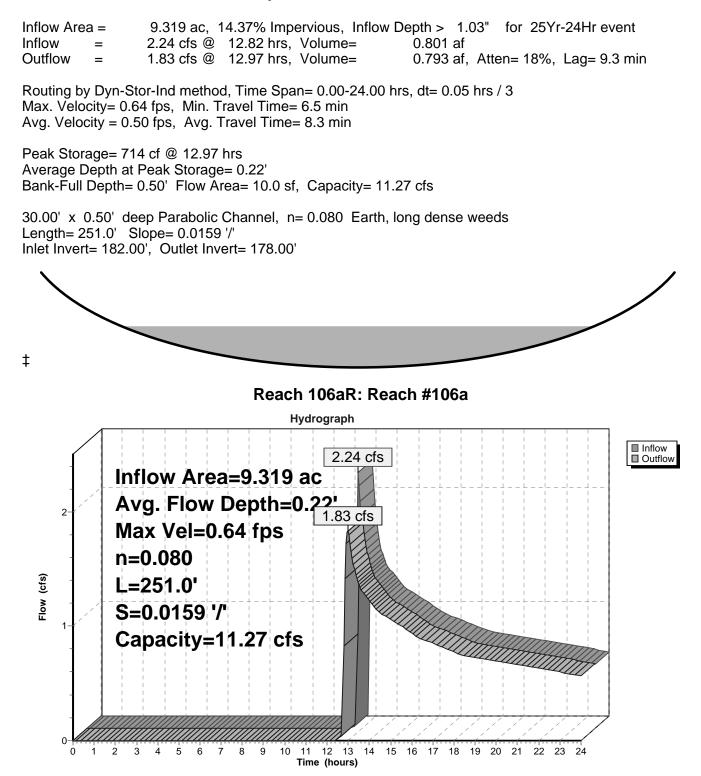

Summary for Reach 103aR: Reach #103aR Stream flow to Final Analysis Point

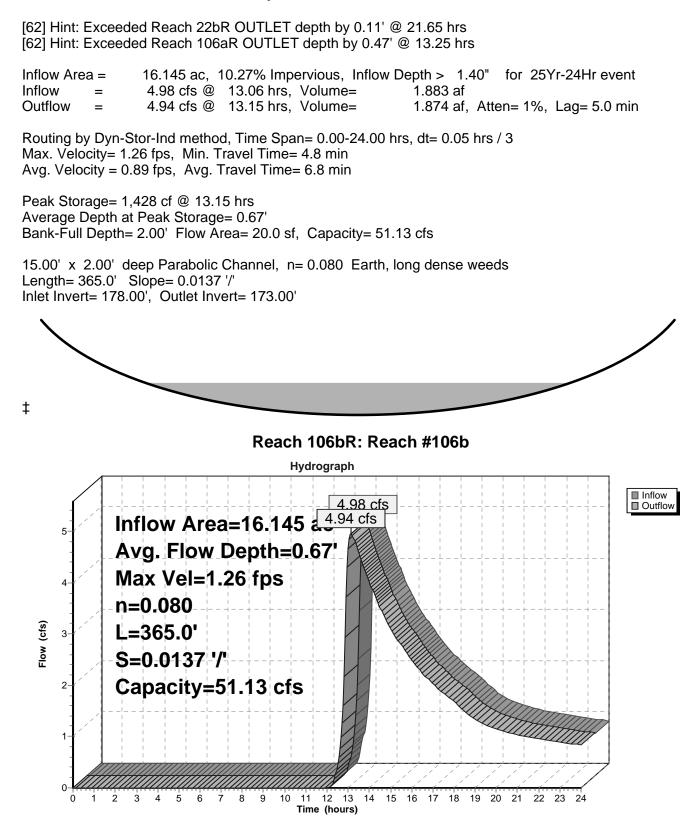

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 1.04 fps, Min. Travel Time= 6.8 min Avg. Velocity = 0.99 fps, Avg. Travel Time= 7.2 min

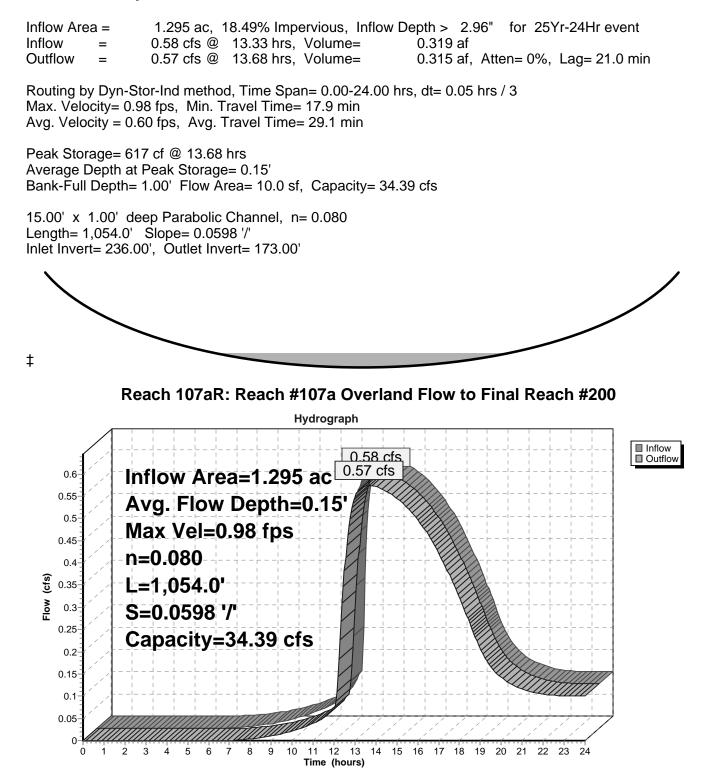
Peak Storage= 106 cf @ 17.20 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 1.00' Flow Area= 5.0 sf, Capacity= 22.54 cfs


3.00' x 1.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 2.0 '/' Top Width= 7.00' Length= 427.0' Slope= 0.0076 '/' Inlet Invert= 164.75', Outlet Invert= 161.50'

Reach 103aR: Reach #103aR Stream flow to Final Analysis Point




Summary for Reach 103R: Reach #103 Overland Flow to Stream


Summary for Reach 106aR: Reach #106a

Summary for Reach 106bR: Reach #106b

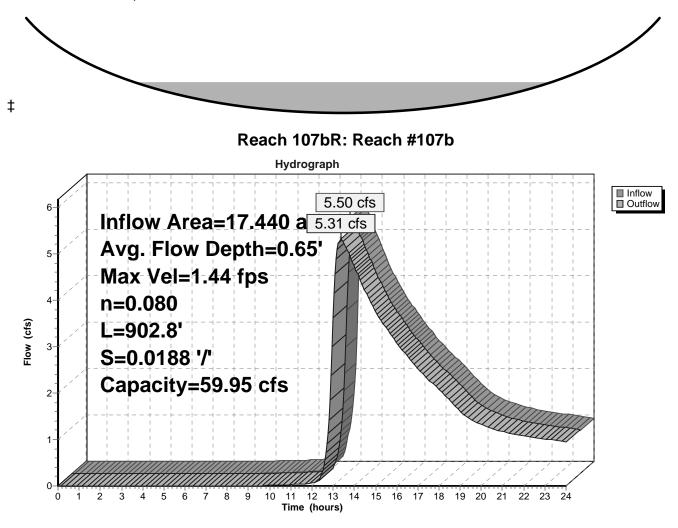
Summary for Reach 107aR: Reach #107a Overland Flow to Final Reach #200

Summary for Reach 107bR: Reach #107b

 [62] Hint: Exceeded Reach 106bR OUTLET depth by 0.08' @ 12.05 hrs

 [62] Hint: Exceeded Reach 107aR OUTLET depth by 0.50' @ 13.35 hrs

 Inflow Area =
 17.440 ac, 10.88% Impervious, Inflow Depth > 1.51" for 25Yr-24Hr event


 Inflow =
 5.50 cfs @ 13.15 hrs, Volume=
 2.189 af

 Outflow =
 5.31 cfs @ 13.37 hrs, Volume=
 2.166 af, Atten= 4%, Lag= 13.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 1.44 fps, Min. Travel Time= 10.4 min Avg. Velocity = 0.77 fps, Avg. Travel Time= 19.6 min

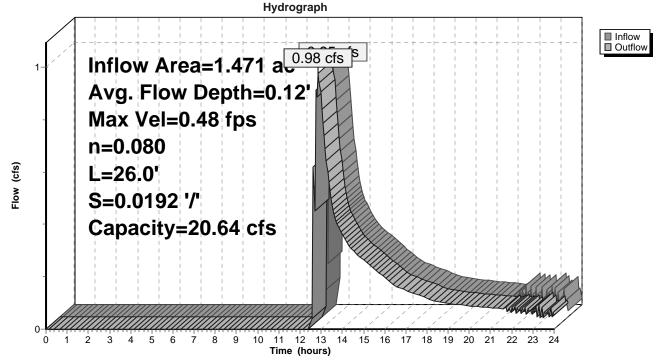
Peak Storage= 3,324 cf @ 13.37 hrs Average Depth at Peak Storage= 0.65' Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 59.95 cfs

15.00' x 2.00' deep Parabolic Channel, n= 0.080 Earth, long dense weeds Length= 902.8' Slope= 0.0188 '/' Inlet Invert= 173.00', Outlet Invert= 156.00'

Summary for Reach 108R: Reach #108 Overland Flow to Boundary

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

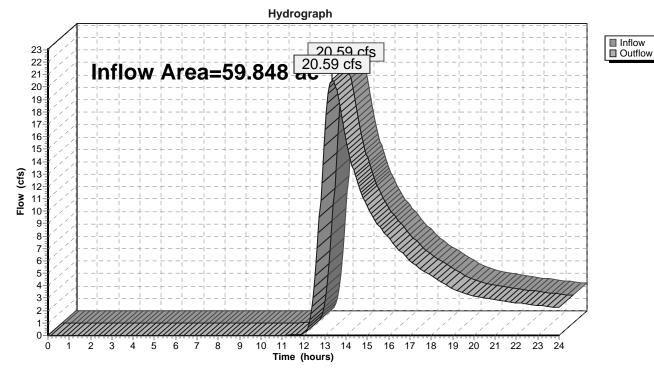
Inflow Area =1.471 ac, 14.18% Impervious, Inflow Depth >1.49" for 25Yr-24Hr eventInflow =0.95 cfs @12.90 hrs, Volume =0.182 afOutflow =0.98 cfs @12.86 hrs, Volume =0.182 af, Atten = 0%, Lag = 0.0 minRouting by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt = 0.05 hrs / 3


Max. Velocity= 0.48 fps, Min. Travel Time= 0.9 min Avg. Velocity = 0.27 fps, Avg. Travel Time= 1.6 min

Peak Storage= 52 cf @ 12.86 hrs Average Depth at Peak Storage= 0.12' Bank-Full Depth= 0.50' Flow Area= 16.7 sf, Capacity= 20.64 cfs

50.00' x 0.50' deep Parabolic Channel, n= 0.080 Earth, long dense weeds Length= 26.0' Slope= 0.0192 '/' Inlet Invert= 183.00', Outlet Invert= 182.50'

‡

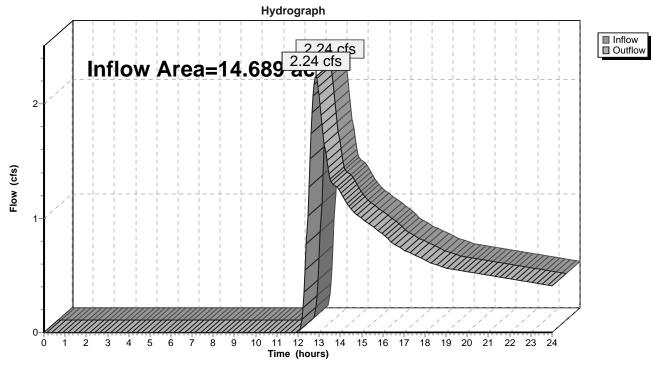


Summary for Reach 200R: Final Reach #200

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	59.848 ac,	4.19% Impervious, Inflow E	Depth > 1.27"	for 25Yr-24Hr event
Inflow	=	20.59 cfs @	13.35 hrs, Volume=	6.332 af	
Outflow	=	20.59 cfs @	13.35 hrs, Volume=	6.332 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

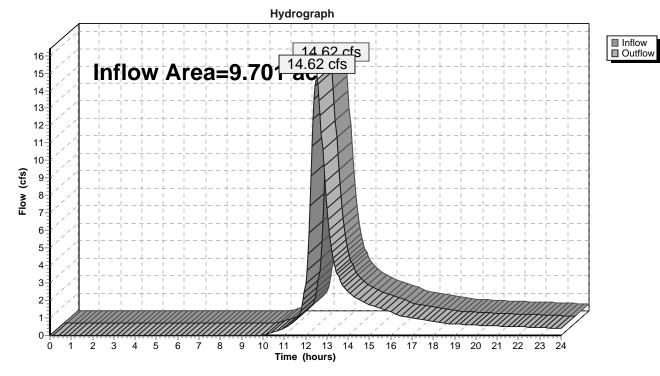

Reach 200R: Final Reach #200

Summary for Reach 300R: Final Reach #300

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	14.689 ac,	4.62% Impervious, Inflow I	Depth > 0.62"	for 25Yr-24Hr event
Inflow =	2.24 cfs @	12.84 hrs, Volume=	0.757 af	
Outflow =	2.24 cfs @	12.84 hrs, Volume=	0.757 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

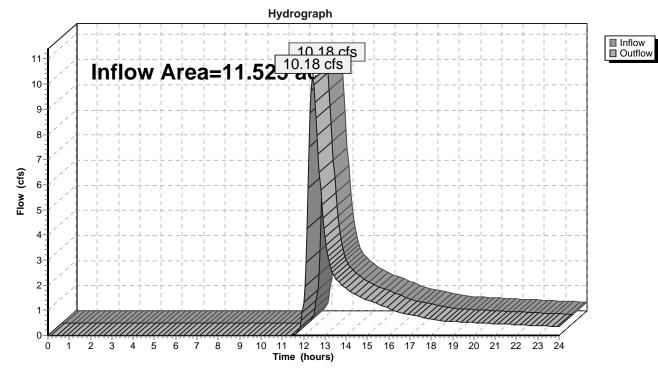

Reach 300R: Final Reach #300

Summary for Reach 400R: Final Reach #400

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	9.701 ac,	0.94% Impervious, Inflow	Depth > 2.49"	for 25Yr-24Hr event
Inflow	=	14.62 cfs @	12.52 hrs, Volume=	2.015 af	
Outflow	=	14.62 cfs @	12.52 hrs, Volume=	2.015 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3


Reach 400R: Final Reach #400

Summary for Reach 500R: Final Reach #500

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	11.525 ac,	0.00% Impervious, Inflov	v Depth > 1.43"	for 25Yr-24Hr event
Inflow	=	10.18 cfs @	12.43 hrs, Volume=	1.370 af	
Outflow	=	10.18 cfs @	12.43 hrs, Volume=	1.370 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

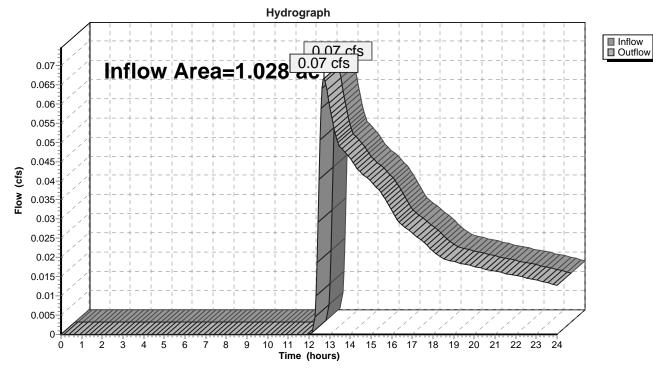
Reach 500R: Final Reach #500

Summary for Reach 600R: Final Reach #600

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	6.645 ac,	0.18% Impervious, Inflov	w Depth > 0.56"	for 25Yr-24Hr event
Inflow	=	1.13 cfs @	12.85 hrs, Volume=	0.308 af	
Outflow	=	1.13 cfs @	12.85 hrs, Volume=	0.308 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

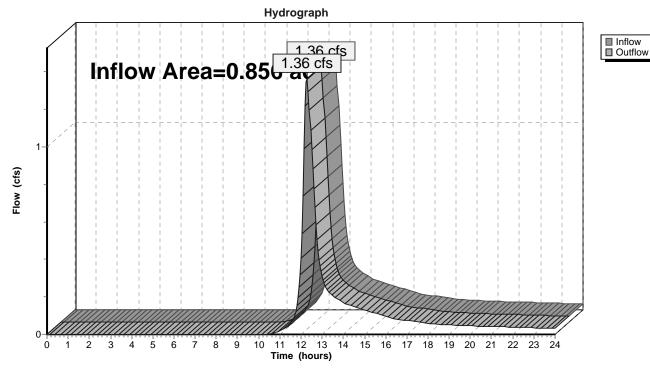

Reach 600R: Final Reach #600

Summary for Reach 700R: Final Reach #700

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	= 1.0)28 ac, 0.00%	6 Impervious	, Inflow Depth >	0.30"	for 25Yr-24Hr event
Inflow =	0.0	7 cfs @ 12.73	3 hrs, Volum	e= 0.026	6 af	
Outflow =	0.0	7 cfs @ 12.73	3 hrs, Volum	e= 0.026	Saf, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

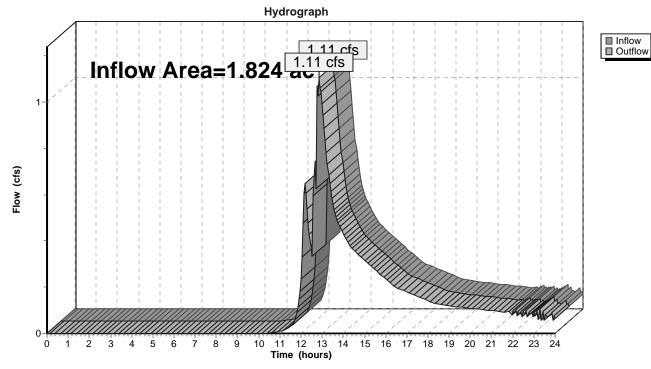

Reach 700R: Final Reach #700

Summary for Reach 800R: Final Reach #800

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	0.856 ac,	0.00% Impervious, Inflo	ow Depth > 2.07"	for 25Yr-24Hr event
Inflow	=	1.36 cfs @	12.28 hrs, Volume=	0.148 af	
Outflow	=	1.36 cfs @	12.28 hrs, Volume=	0.148 af, Att	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3


Reach 800R: Final Reach #800

Summary for Reach 900R: Final Reach #900

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	1.824 ac, 1	4.62% Impervious	, Inflow Depth >	1.60"	for 25Yr-24Hr event
Inflow	=	1.11 cfs @	12.86 hrs, Volum	e= 0.243	af	
Outflow	=	1.11 cfs @	12.86 hrs, Volum	e= 0.243	af, Atte	n= 0%, Lag= 0.0 min

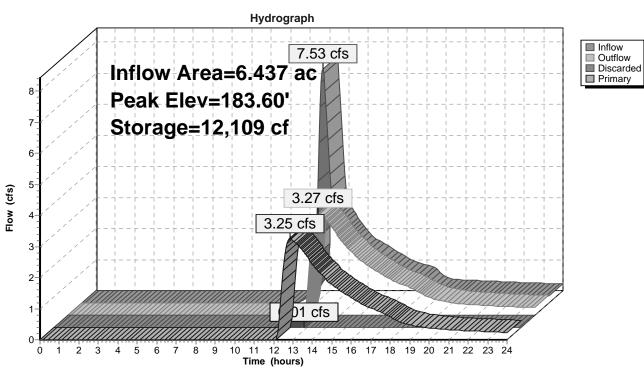
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3

Reach 900R: Final Reach #900

Summary for Pond 1P: Pond #1

Inflow Area =	6.437 ac,	2.68% Impervious, Inflow De	epth > 2.12" for 25Yr-24Hr event
Inflow =	7.53 cfs @	12.38 hrs, Volume=	1.140 af
Outflow =	3.27 cfs @	12.86 hrs, Volume=	1.046 af, Atten= 57%, Lag= 28.8 min
Discarded =	0.01 cfs @	12.87 hrs, Volume=	0.011 af
Primary =	3.25 cfs @	12.86 hrs, Volume=	1.036 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 183.60' @ 12.87 hrs Surf.Area= 18,423 sf Storage= 12,109 cf


Plug-Flow detention time= 89.0 min calculated for 1.044 af (92% of inflow) Center-of-Mass det. time= 51.7 min (934.4 - 882.7)

Volume	Inve	ert Avail	.Storage	Storage Description	on		
#1	182.5	50' 6	65,416 cf	Open Water Stor	age (Irregular)List	ted below (Recalc)	
Elevatio (fee 182.5	et)	Surf.Area (sq-ft) 596	Perim. (feet) 133.6	Inc.Store (cubic-feet) 0	Cum.Store (cubic-feet) 0	Wet.Area (sq-ft) 596	
183.0 184.0	-	12,993	630.0	2,729	2,729	30,761	
184.0	-	22,564 22,564	840.0 840.0	17,560 45,128	20,288 65,416	55,337 57,017	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	183.		" Round (2) 24" R			
#0	Discordo	d 100	Inlet n= 0	.024, Flow Area= 2	2.50' / 182.00' [°] S= 2.53 sf	: 0.0100 '/' Cc= 0.900	
#2	Discarde	d 182.	50 0.03	0 in/hr Exfiltration	over Sufface are	a	

Discarded OutFlow Max=0.01 cfs @ 12.87 hrs HW=183.60' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

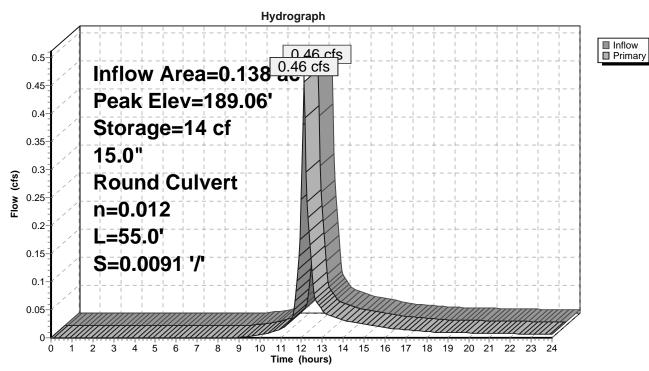
Primary OutFlow Max=3.25 cfs @ 12.86 hrs HW=183.60' TW=183.30' (Dynamic Tailwater) **1=(2)** 24" RCP (Outlet Controls 3.25 cfs @ 1.90 fps)

Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 ions LLC Page 90

Pond 1P: Pond #1

Summary for Pond 29P: Pond #29

Inflow Area =	=	0.138 ac, 2	26.21% Impervious,	Inflow Depth >	2.88"	for 25Yr-24Hr event
Inflow =	-	0.46 cfs @	12.09 hrs, Volume	e= 0.033	af	
Outflow =	•	0.46 cfs @	12.10 hrs, Volume	e= 0.033	af, Atte	en= 0%, Lag= 0.5 min
Primary =	:	0.46 cfs @	12.10 hrs, Volume	e= 0.033	af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 189.06' @ 12.10 hrs Surf.Area= 75 sf Storage= 14 cf Flood Elev= 190.00' Surf.Area= 205 sf Storage= 140 cf

Plug-Flow detention time= 0.9 min calculated for 0.033 af (100% of inflow) Center-of-Mass det. time= 0.6 min (834.7 - 834.1)

Volume	Inv	ert Avail.	Storage	Storage Description	on		
#1	188.7	75'	140 cf	Open Water Stor	age (Irregular) Lis	ted below (Recalc)	1
Elevation (feet	-	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
188.75 189.00 190.00	0	15 68 205	17.0 32.3 54.5	0 10 130	0 10 140	15 75 235	
Device	Routing	Inv	ert Outle	et Devices			
#1	Primary	188.7	L= 5 Inlet	Round 15" HDP 5.0' CPP, square / Outlet Invert= 188 .012, Flow Area= 7	edge headwall, k 3.75' / 188.25' S		900

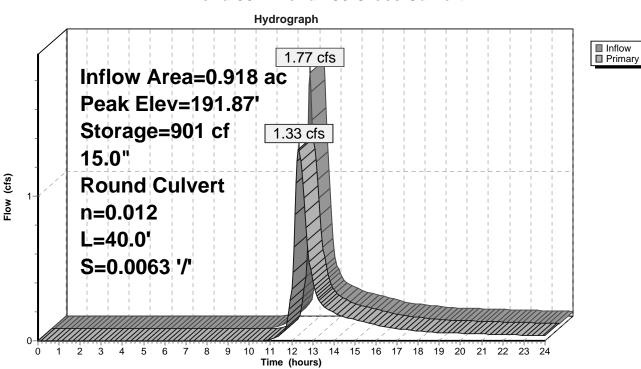
Primary OutFlow Max=0.45 cfs @ 12.10 hrs HW=189.06' TW=184.11' (Dynamic Tailwater) **1=15" HDPE N-12** (Barrel Controls 0.45 cfs @ 2.84 fps)

Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 ions LLC Page 92

Pond 29P: Pond #29

Summary for Pond 30P: Pond #30 Cross Culvert

Inflow Area =	0.918 ac,	7.55% Impervious, Infl	ow Depth > 2.16"	for 25Yr-24Hr event
Inflow =	1.77 cfs @	12.20 hrs, Volume=	0.165 af	
Outflow =	1.33 cfs @	12.34 hrs, Volume=	0.163 af, Atte	n= 25%, Lag= 8.6 min
Primary =	1.33 cfs @	12.34 hrs, Volume=	0.163 af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 191.87' @ 12.34 hrs Surf.Area= 2,409 sf Storage= 901 cf Flood Elev= 192.50' Surf.Area= 4,322 sf Storage= 3,038 cf

Plug-Flow detention time= 17.4 min calculated for 0.163 af (99% of inflow) Center-of-Mass det. time= 11.6 min (870.5 - 858.8)

Volume	Inv	rert Ava	il.Storage	Storage Descripti	on	
#1	191.	25'	13,659 cf	Open Water Stor	r age (Irregular) Lis	ted below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
191.2 192.0 194.0	0	672 2,904 10,261	407.0 483.0 597.0	0 1,243 12,416	0 1,243 13,659	672 6,065 15,922
Device	Routing	In	vert Outle	et Devices		
#1	Primary	191	L= 4 Inlet	Round 15" HDF 0.0' CPP, square / Outlet Invert= 19 .012, Flow Area=	edge headwall, K 1.25' / 191.00' S=	

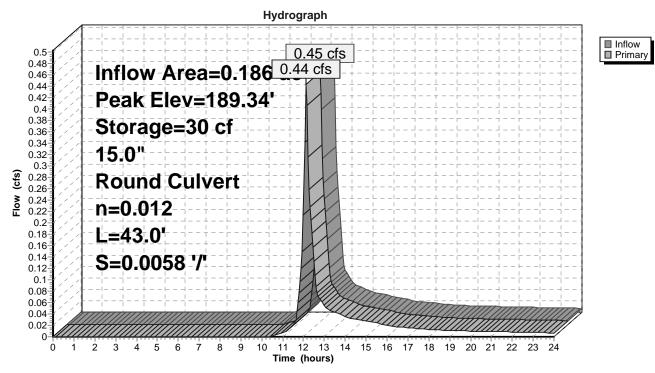
Primary OutFlow Max=1.33 cfs @ 12.34 hrs HW=191.87' TW=191.16' (Dynamic Tailwater) **1=15" HDPE N-12** (Barrel Controls 1.33 cfs @ 3.20 fps)

Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 ions LLC Page 94

Pond 30P: Pond #30 Cross Culvert

Summary for Pond 31P: Pond #31 Cross Culvert

Inflow Area	=	0.186 ac, 3	30.07% Impervious	Inflow Depth >	2.16"	for 25Yr-24Hr event
Inflow	=	0.45 cfs @	12.10 hrs, Volum	e= 0.033	af	
Outflow	=	0.44 cfs @	12.11 hrs, Volum	e= 0.033	af, Atte	en= 2%, Lag= 0.9 min
Primary	=	0.44 cfs @	12.11 hrs, Volum	e= 0.033	af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 189.34' @ 12.11 hrs Surf.Area= 126 sf Storage= 30 cf Flood Elev= 191.00' Surf.Area= 990 sf Storage= 835 cf

Plug-Flow detention time= 2.6 min calculated for 0.033 af (100% of inflow) Center-of-Mass det. time= 1.6 min (854.9 - 853.3)

Volume	Inv	ert Avail	.Storage	Storage Descripti	on		
#1	189.0	00'	835 cf	Open Water Stor	rage (Irregular)Lis	sted below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
189.00 190.00 191.00	0	51 364 990	51.5 116.3 205.1	0 184 651	0 184 835	51 920 3,197	
Device	Routing	١n	vert Outle	et Devices			
#1	Primary	189.	L= 4 Inlet	Round 15" HDF 3.0' CPP, square / Outlet Invert= 18 .012, Flow Area=	edge headwall, k 9.00' / 188.75' S	Ke= 0.500 = 0.0058 '/' Cc= 0.900)

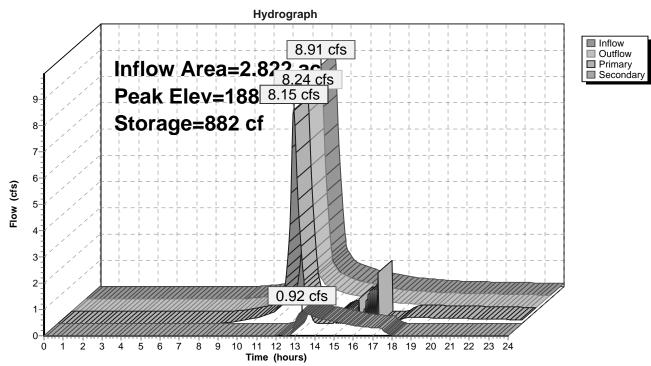
Primary OutFlow Max=0.43 cfs @ 12.11 hrs HW=189.34' TW=188.64' (Dynamic Tailwater) **1=15" HDPE N-12** (Barrel Controls 0.43 cfs @ 2.41 fps)

Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 ions LLC Page 96

Pond 31P: Pond #31 Cross Culvert

Summary for Pond 32P: Inlet Sump (Lt.)

Inflow Area =	2.822 ac, 18.55% Impervious,	Inflow Depth > 3.25" for 25Yr-24Hr event
Inflow =	8.91 cfs @ 12.16 hrs, Volume	= 0.765 af
Outflow =	8.24 cfs @ 12.19 hrs, Volume	= 0.754 af, Atten= 8%, Lag= 1.5 min
Primary =	8.15 cfs @ 12.18 hrs, Volume	= 0.614 af
Secondary =	0.92 cfs @ 13.36 hrs, Volume	= 0.207 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 188.88' @ 13.36 hrs Surf.Area= 741 sf Storage= 882 cf Flood Elev= 189.50' Surf.Area= 945 sf Storage= 1,402 cf

Plug-Flow detention time= 16.0 min calculated for 0.754 af (99% of inflow) Center-of-Mass det. time= 7.9 min (836.9 - 829.0)

Volume	Inver	t Avail.S	Storage	Storage Description	on		
#1	187.00)'	1,918 cf	Open Water Stor	age (Irregular) Lis	ted below (Recalc)	
Elevation (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
187.00	0	242	63.3	0	0	242	
188.00	0	472	84.0	351	351	496	
189.00	0	781	107.0	620	971	858	
190.00	0	1,125	126.0	948	1,918	1,229	
#1	Routing Primary Secondary	Inve 187.0	00' 18.0 ' L= 1 Inlet n= 0 5' 8.0' I Head 2.50 Coef	012, Flow Area= ong x 6.0' breadt d (feet) 0.20 0.40 3.00 3.50 4.00 4	E N-12 edge headwall, K 7.00' / 186.00' S= 1.77 sf h E-Spillway 0.60 0.80 1.00 1.50 5.00 5.50 51 2.70 2.68 2.0	Ge= 0.500 = 0.0588 '/' Cc= 0.900 1.20 1.40 1.60 1.80 2.00 68 2.67 2.65 2.65 2.65)

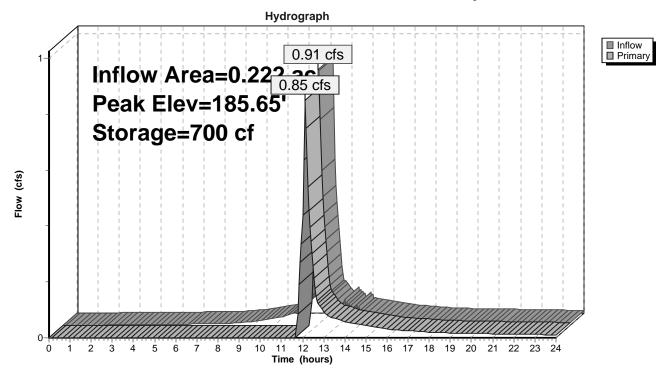
Primary OutFlow Max=6.95 cfs @ 12.18 hrs HW=188.73' TW=188.07' (Dynamic Tailwater) **1=18" HDPE N-12** (Inlet Controls 6.95 cfs @ 3.93 fps)

Secondary OutFlow Max=0.92 cfs @ 13.36 hrs HW=188.88' TW=187.17' (Dynamic Tailwater) 2=E-Spillway (Weir Controls 0.92 cfs @ 0.86 fps)

Pond 32P: Inlet Sump (Lt.)

Summary for Pond 33P: Treatment Swale Forebay

[80] Warning: Exceeded Pond C05P by 0.02' @ 13.40 hrs (0.90 cfs 0.355 af)


Inflow Area	=	0.222 ac, 66.14% Impervious, In	flow Depth > 3.77" for 25Yr-24Hr event
Inflow :	=	0.91 cfs @ 12.09 hrs, Volume=	0.070 af
Outflow :	=	0.85 cfs @ 12.12 hrs, Volume=	0.057 af, Atten= 7%, Lag= 2.0 min
Primary :	=	0.85 cfs @ 12.12 hrs, Volume=	0.057 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 185.65' @ 12.12 hrs Surf.Area= 1,080 sf Storage= 700 cf

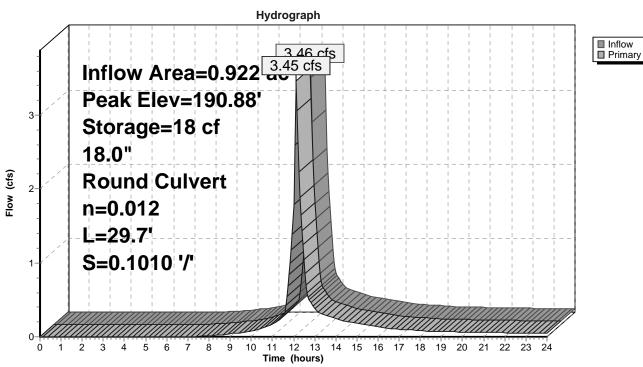
Plug-Flow detention time= 124.3 min calculated for 0.057 af (82% of inflow) Center-of-Mass det. time= 50.2 min (846.8 - 796.6)

Volume	Inv	rert Avai	I.Storage	Storage Descripti	on		
#1	184.	00'	1,155 cf	Swale Forebay (Irregular)Listed be	elow (Recalc)	
Elevatio (fee 184.0 185.0 186.0	90 90 90	Surf.Area (sq-ft) 50 451 1,531	Perim. (feet) 118.3 238.1 387.7	Inc.Store (cubic-feet) 0 217 938	Cum.Store (cubic-feet) 0 217 1,155	Wet.Area (sq-ft) 50 3,452 10,909	
Device	Routing			et Devices			
#1	Primary	185		0		Rectangular Weir	
				· · · ·		1.20 1.40 1.60 1.80	2.00
				3.00 3.50 4.00			~~
						65 2.64 2.64 2.68 2	.68
			2.72	2.81 2.92 2.97	3.07 3.32		

Primary OutFlow Max=0.82 cfs @ 12.12 hrs HW=185.65' TW=185.23' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.82 cfs @ 0.94 fps)

Pond 33P: Treatment Swale Forebay

Summary for Pond 34P: Inlet Sump (Rt.)


Inflow Area	=	0.922 ac, 2	21.43% Impervious,	Inflow Depth >	3.55"	for 25Yr-24Hr event
Inflow	=	3.46 cfs @	12.12 hrs, Volume	= 0.273	af	
Outflow	=	3.45 cfs @	12.12 hrs, Volume	= 0.273	af, Atte	en= 0%, Lag= 0.1 min
Primary	=	3.45 cfs @	12.12 hrs, Volume	= 0.273	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 190.88' @ 12.12 hrs Surf.Area= 39 sf Storage= 18 cf Flood Elev= 193.00' Surf.Area= 319 sf Storage= 310 cf

Plug-Flow detention time= 0.1 min calculated for 0.273 af (100% of inflow) Center-of-Mass det. time= 0.1 min (819.3 - 819.2)

Volume	Inv	vert Avail.	Storage	Storage Descriptio	n	
#1	190.	00'	310 cf	Open Water Stora	age (Irregular)Liste	ed below (Recalc)
Elevatio	et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
190.0		6	10.0	0	0	6
191.0	00	45	27.0	22	22	59
192.0	00	117	44.2	78	101	163
193.0	00	319	78.6	210	310	505
Device	Routing	Inve	ert Outle	et Devices		
#1	Primary	190.0	L= 2 Inlet	Round 18" HDPI 9.7' CPP, square 6 / Outlet Invert= 190 .012, Flow Area= 1	edge headwall, Ke 0.00' / 187.00' S= 0	= 0.500 0.1010 '/' Cc= 0.900

Primary OutFlow Max=3.36 cfs @ 12.12 hrs HW=190.87' TW=187.05' (Dynamic Tailwater) **1=18" HDPE N-12** (Inlet Controls 3.36 cfs @ 3.17 fps)

Pond 34P: Inlet Sump (Rt.)

Summary for Pond 102P: Gravel Wetland #102

[80] Warning: Exceeded Pond C04P by 0.02' @ 17.40 hrs (2.18 cfs 0.112 af)

Inflow Area =	5.553 ac, 22.01% Impervious, Inflow	Depth > 2.72" for 25Yr-24Hr event
Inflow =	14.94 cfs @ 12.16 hrs, Volume=	1.259 af
Outflow =	0.70 cfs @ 16.60 hrs, Volume=	0.671 af, Atten= 95%, Lag= 266.7 min
Primary =	0.10 cfs @ 12.18 hrs, Volume=	0.110 af
Secondary =	0.61 cfs @ 16.60 hrs, Volume=	0.561 af
Tertiary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 188.92' @ 16.60 hrs Surf.Area= 23,501 sf Storage= 33,726 cf Flood Elev= 191.00' Surf.Area= 27,849 sf Storage= 63,349 cf

Plug-Flow detention time= 345.3 min calculated for 0.670 af (53% of inflow) Center-of-Mass det. time= 224.4 min (1,050.2 - 825.8)

Volume	Invert Ava	il.Storage	Storage Description	on		
#1	184.00'	6,827 cf Forebay (Irregular)Listed below (Recalc)				
#2	184.00'	3,069 cf	Cell #1 (Irregular)Listed below (Recalc)			
#3	184.00'	2,570 cf	Cell #2 (Irregular)Listed below (Recalc)			
#4	186.50'	1,755 cf	Open Water Abo			
#5	187.00'	49,080 cf	Open Water Storage (Irregular)Listed below (Recalc)			
#6	183.67'	48 cf	4.00'D x 3.83'H O	utlet Structure		
		63,349 cf	Total Available St	orage		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
184.00	101	37.0	0	0	101	
185.00	1,533	240.0	676	676	4,578	
186.00	3,259	330.0	2,342	3,018	8,670	
187.00	4,386	365.0	3,809	6,827	10,637	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
184.00	763	113.0	0	0	763	
185.00	1,118	134.0	935	935	1,194	
186.00	1,521	153.0	1,314	2,249	1,651	
186.50	1,760	163.0	820	3,069	1,914	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
184.00	583	99.0	0	0	583	
185.00	920	121.0	745	745	984	
186.00	1,316	143.0	1,112	1,857	1,464	
186.50	1,538	152.0	713	2,570	1,688	

20-065 Proposed Analysis Type III 24-hr 25Yr-24Hr Rainfall=5.86" Prepared by Berry Surveying & Engineering Printed 12/8/2023 HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC Page 104 Elevation Surf.Area Perim. Inc.Store Cum.Store Wet.Area (feet) (cubic-feet) (cubic-feet) (sq-ft) (feet) (sq-ft) 3.278 3,278 186.50 309.0 0 0 187.00 3,749 318.0 1,755 1,755 3,754 Elevation Surf.Area Perim. Inc.Store Cum.Store Wet.Area (cubic-feet) (cubic-feet) (feet) (sq-ft) (feet) (sq-ft) 187.00 8,373 8,373 601.0 0 0 9,277 188.00 10,211 623.0 9,277 10,602 12.233 657.0 11,207 20.484 14.123 189.00 190.00 14,304 690.0 13,255 33,739 17,724 708.0 191.00 16.403 15,342 49.080 19.845 Device Routing Invert **Outlet Devices** Primary #1 183.67 6.0" Round 6" Drain L= 101.2' Ke= 0.500 Inlet / Outlet Invert= 183.67' / 183.50' S= 0.0017 '/' Cc= 0.900 n= 0.012, Flow Area= 0.20 sf #2 Device 1 183.67' **1.5" Vert. 1.50" Orifice (Str. A)** C= 0.600 #3 Secondary 185.50' 24.0" Round 24" HDPE N-12 L= 90.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 185.50' / 185.00' S= 0.0056 '/' Cc= 0.900 n= 0.012, Flow Area= 3.14 sf #4 Device 3 186.50' **4.0" Vert. 4" Orifice (Str. B)** C= 0.600 #5 Device 3 190.00' **48.0" Horiz. 4' Grate (Str. B)** C= 0.600

 #6
 Tertiary
 190.50'
 20.0' long x 9.0' breadth E-Spillway

 #6
 Tertiary
 190.50'
 20.0' long x 9.0' breadth E-Spillway

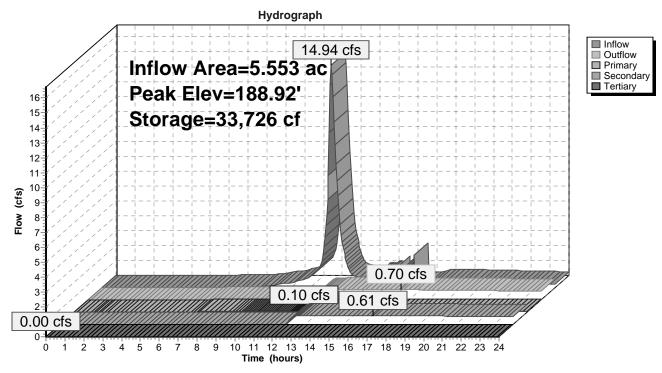
 Head (feet)
 0.20
 0.40
 0.60
 0.80
 1.00
 1.20
 1.40
 1.60
 1.80
 2.00

 2.50
 3.00
 3.50
 4.00
 4.50
 5.00
 5.50

 Coef. (English)
 2.46
 2.55
 2.70
 2.69
 2.68
 2.67
 2.64
 2.64

Primary OutFlow Max=0.10 cfs @ 12.18 hrs HW=187.36' TW=184.30' (Dynamic Tailwater) 1=6" Drain (Passes 0.10 cfs of 0.96 cfs potential flow) 2=1.50" Orifice (Str. A) (Orifice Controls 0.10 cfs @ 8.42 fps)

Secondary OutFlow Max=0.61 cfs @ 16.60 hrs HW=188.91' TW=186.80' (Dynamic Tailwater) -3=24" HDPE N-12 (Passes 0.61 cfs of 21.99 cfs potential flow) -4=4" Orifice (Str. B) (Orifice Controls 0.61 cfs @ 7.00 fps) -5=4' Grate (Str. B) (Controls 0.00 cfs)


Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=183.67' TW=189.50' (Dynamic Tailwater) **6=E-Spillway** (Controls 0.00 cfs)

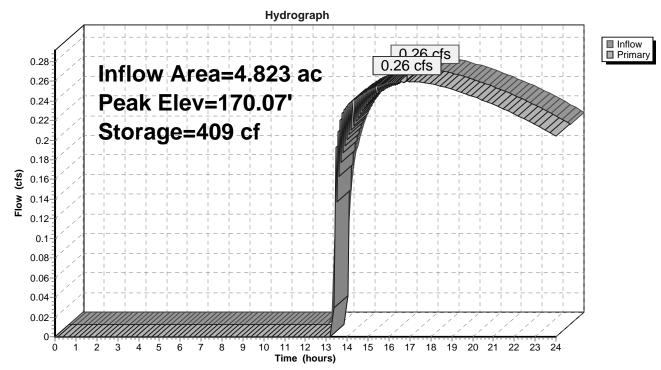
 Type III 24-hr
 25Yr-24Hr
 Rainfall=5.86"

 Printed
 12/8/2023

 ions LLC
 Page 105

Summary for Pond 103aP: Level Spreader

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=29)


Inflow Area :	=	4.823 ac,	12.26% Impervious	, Inflow Depth >	0.54"	for 25Yr-24Hr event
Inflow =	=	0.26 cfs @	17.04 hrs, Volum	e= 0.218	af	
Outflow =	=	0.26 cfs @	16.85 hrs, Volum	e= 0.209	af, Atte	en= 0%, Lag= 0.0 min
Primary =	=	0.26 cfs @	16.85 hrs, Volum	e= 0.209	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 170.07' @ 17.15 hrs Surf.Area= 535 sf Storage= 409 cf Flood Elev= 171.00' Surf.Area= 535 sf Storage= 906 cf

Plug-Flow detention time= 28.5 min calculated for 0.209 af (96% of inflow) Center-of-Mass det. time= 14.3 min (1,118.6 - 1,104.3)

Volume	Inv	ert Avai	I.Storage	Storage Descript	ion		
#1	169.0	00'	906 cf	Open Water (Irre	egular)Listed belo	w (Recalc)	
Elevatio (feet	••	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
169.0 170.0 171.0	0	228 535 535	67.0 106.0 106.0	0 371 535	0 371 906	228 772 878	
Device #1	Routing Invert Outlet Devices Primary 170.00' 33.0' long x 4.7' breadth Level Lip Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 1.80 2.00						
		2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.35 2.51 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.66 2.69 2.68 2.70 2.73 2.78 2.87 3.01					

Primary OutFlow Max=0.26 cfs @ 16.85 hrs HW=170.07' TW=170.07' (Dynamic Tailwater)

Pond 103aP: Level Spreader

Summary for Pond 103P: Infiltration Rain Garden #103

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=5)

Inflow Area =	4.823 ac, 12.26% Impervious, Inflow E	Depth > 2.32" for 25Yr-24Hr event
Inflow =	8.16 cfs @ 12.26 hrs, Volume=	0.934 af
Outflow =	0.44 cfs @ 17.04 hrs, Volume=	0.424 af, Atten= 95%, Lag= 286.5 min
Discarded =	0.19 cfs @ 11.10 hrs, Volume=	0.206 af
Primary =	0.26 cfs @ 17.04 hrs, Volume=	0.218 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 183.08' @ 17.04 hrs Surf.Area= 800 sf Storage= 25,931 cf Flood Elev= 185.00' Surf.Area= 800 sf Storage= 44,502 cf

Plug-Flow detention time= 341.8 min calculated for 0.424 af (45% of inflow) Center-of-Mass det. time= 214.7 min (1,071.9 - 857.2)

Volume	Invert	Avail.Storage	Storage Description
#1	178.75'	2,326 cf	Forebay (Irregular)Listed below (Recalc) -Impervious
#2	176.00'	160 cf	Stone (Irregular) Listed below (Recalc) - Impervious
			400 cf Overall x 40.0% Voids
#3	177.00'	120 cf	BioMedia (Irregular)Listed below (Recalc)
			600 cf Overall x 20.0% Voids
#4	178.50'	20 cf	Loam Layer (Irregular)Listed below (Recalc)
			100 cf Overall x 20.0% Voids
#5	178.75'	5,694 cf	Open Water Storage (Irregular)Listed below (Recalc) -Impervious
#6	180.50'	36,182 cf	Combined Open Storage (Irregular)Listed below (Recalc) - Impervious
		44,502 cf	Total Available Storage

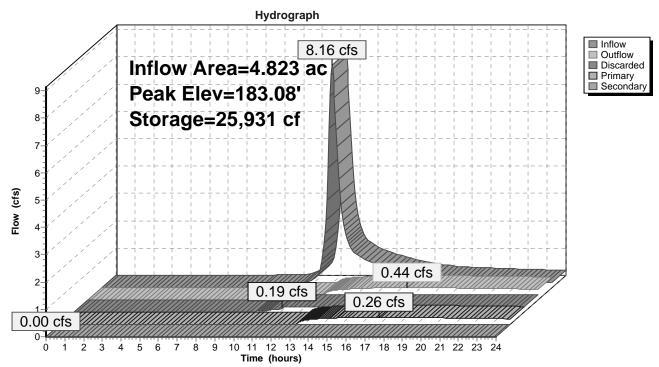
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
178.75 179.00	596 877	110.0 127.0	0 183 1.070	0 183 1.255	596 918
180.00	1,279	159.0	1,072	1,255	1,660
180.75	1,583	172.4	1,071	2,326	2,035
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
176.00	400	81.0	0	0	400
177.00	400	81.0	400	400	481
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
177.00	400	81.0	0	0	400
178.50	400	81.0	600	600	522
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
178.50	400	81.0	0	0	400
178.75	400	81.0	100	100	420

Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Printed 12/8/2023 Page 109

Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
178.7	75	2,695	220.2	0	0	2,695	
179.0	00	2,861	224.0	694	694	2,840	
180.0	00	3,492	243.0	3,171	3,866	3,584	
180.5	50	3,823	252.0	1,828	5,694	3,960	
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
180.5	50	5,428	327.0	0	0	5,428	
181.(00	5,926	337.0	2,838	2,838	5,982	
182.0	00	7,062	369.0	6,486	9,323	7,814	
183.0	00	8,231	392.0	7,639	16,962	9,258	
184.(00	9,490	418.0	8,853	25,815	10,982	
185.0	00	11,269	551.0	10,367	36,182	21,249	
		_					
Device	Routing	Inve	ert Outlet	Devices			
#1	Discarde			0 in/hr Exfiltration		3	
#2	Primary	175.0		Round 15" HDPE			
				9.0' CPP, square e			
						.0321 '/' Cc= 0.900	
				12, Flow Area= 1.2			
#3	Device 2	181.7		ert. 3" Orifice C=			
#4	Device 2	184.4				o weir flow at low hea	ads
#5	Seconda	ry 184.5		ong x 8.5' breadtl			~ ~~
						20 1.40 1.60 1.80	2.00
				3.00 3.50 4.00 4.5			~ 4
				(English) 2.45 2.5		2.68 2.66 2.64 2.0	04

2.64 2.65 2.65 2.65 2.66 2.67 2.69 2.71


Discarded OutFlow Max=0.19 cfs @ 11.10 hrs HW=178.69' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.19 cfs)

Primary OutFlow Max=0.26 cfs @ 17.04 hrs HW=183.08' TW=170.07' (Dynamic Tailwater) -2=15" HDPE N-12 (Passes 0.26 cfs of 16.13 cfs potential flow)

3=3" Orifice (Orifice Controls 0.26 cfs @ 5.28 fps)

-4=4' Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=176.00' TW=175.00' (Dynamic Tailwater) 5=E-Spillway (Controls 0.00 cfs)

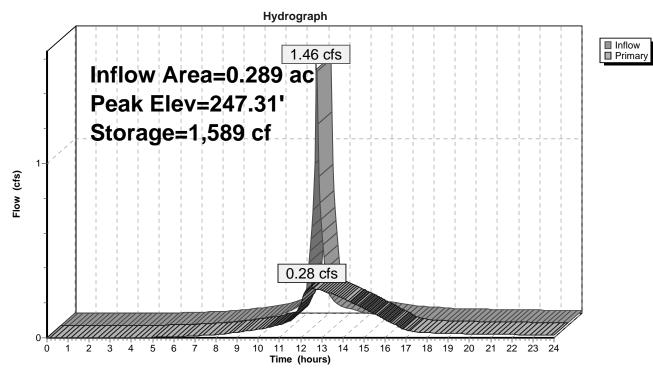
Pond 103P: Infiltration Rain Garden #103

Summary for Pond 104P: Detention Pond #104

Inflow Area =	0.289 ac, 58.28% Impervious, Inflow Depth > 4.60" for 25Yr-24Hr even	ıt
Inflow =	1.46 cfs @ 12.09 hrs, Volume= 0.111 af	
Outflow =	0.28 cfs @ 12.53 hrs, Volume= 0.111 af, Atten= 81%, Lag= 26.5	min
Primary =	0.28 cfs @ 12.53 hrs, Volume= 0.111 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 247.31' @ 12.53 hrs Surf.Area= 1,504 sf Storage= 1,589 cf Flood Elev= 250.00' Surf.Area= 4,003 sf Storage= 8,723 cf

Plug-Flow detention time= 48.2 min calculated for 0.111 af (100% of inflow) Center-of-Mass det. time= 47.4 min (835.9 - 788.5)


tion	orage Description	I.Storage	rt Avai	Inve	Volume
orage (Irregular)Listed below (Recalc)	oen Water Storage (Irr	8,723 cf	5'	245.75	#1
Cum.Store Wet.Area	Inc.Store C	Perim.	Surf.Area	on S	Elevatio
(cubic-feet) (sq-ft)	(cubic-feet) (cu	(feet)	(sq-ft)	et)	(fee
0 10	0	10.0	10	75	245.7
81 976	81	110.6	871	00	246.0
1,157 1,368	1,076	130.1	1,295	00	247.0
2,805 2,159	1,648	163.4	2,028	00	248.0
5,270 3,149	2,465	197.3	2,930	00	249.0
8,723 4,357	3,453	232.1	4,003	00	250.0
	evices	vert Outle	In	Routing	Device
PE N-12	ound 15" HDPE N-12	.75' 15.0 '	245	Primary	#1
e edge headwall, Ke= 0.500					
C= 0.600 Limited to weir flow at low heads	oriz. 4' Grate C= 0.60	.50' 48.0 '	249	Device 1	#3
$\begin{array}{c c} (cubic-feet) & (sq-ft) \\ 0 & 10 \\ 81 & 976 \\ 1,157 & 1,368 \\ 2,805 & 2,159 \\ 5,270 & 3,149 \\ 8,723 & 4,357 \end{array}$	(cubic-feet) (cu 0 81 1,076 1,648 2,465 3,453 evices ound 15" HDPE N-12 CPP, square edge he utlet Invert= 245.75' / 2 2, Flow Area= 1.23 sf rt. 3" Orifice C= 0.600	(feet) 10.0 110.6 130.1 163.4 197.3 232.1 vert Outle .75' 15.0 L= 6 Inlet n= 0 .75' 3.0 "	(sq-ft) 10 871 1,295 2,028 2,930 4,003 In	et) 75 00 00 00 00 00 Routing Primary Device 1	(fee 245.7 246.0 247.0 248.0 249.0 250.0 Device

Primary OutFlow Max=0.28 cfs @ 12.53 hrs HW=247.31' TW=240.67' (Dynamic Tailwater)

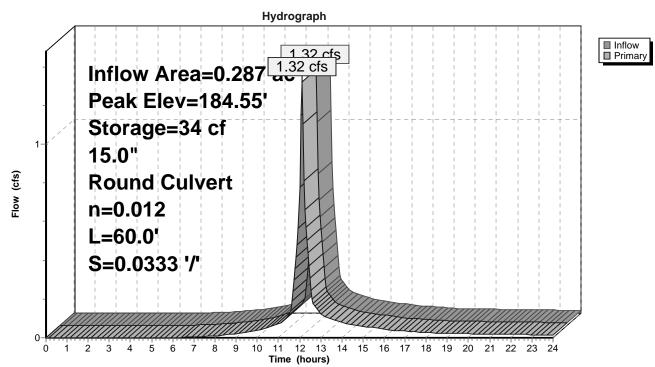
-1=15" HDPE N-12 (Passes 0.28 cfs of 5.71 cfs potential flow)

2=3" Orifice (Orifice Controls 0.28 cfs @ 5.76 fps)

-3=4' Grate (Controls 0.00 cfs)

Pond 104P: Detention Pond #104

Summary for Pond 105P: Center of Cul-de-sac Pond #105


Inflow Area =	0.287 ac,	57.92% Impervious, I	nflow Depth > 4.06	for 25Yr-24Hr event
Inflow =	1.32 cfs @	12.09 hrs, Volume=	0.097 af	
Outflow =	1.32 cfs @	12.10 hrs, Volume=	0.097 af, A	Atten= 0%, Lag= 0.4 min
Primary =	1.32 cfs @	12.10 hrs, Volume=	0.097 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 184.55' @ 12.10 hrs Surf.Area= 107 sf Storage= 34 cf Flood Elev= 187.50' Surf.Area= 1,781 sf Storage= 2,025 cf

Plug-Flow detention time= 0.8 min calculated for 0.097 af (100% of inflow) Center-of-Mass det. time= 0.6 min (804.5 - 803.9)

Volume	Inv	ert Ava	il.Storage	Storage Description	on		
#1	184.	00'	3,126 cf	Open Water Stor	age (Irregular) List	ed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
184.(00	26	45.2	0	0	26	
185.0	00	213	77.7	104	104	350	
186.0	00	592	109.9	387	491	840	
187.(00	1,083	135.4	825	1,316	1,352	
188.0	00	2,652	200.1	1,810	3,126	3,088	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	184		" Round 15" HDP		Ke= 0.500	
						0.0333 '/' Cc= 0.900	
			n= 0	.012, Flow Area= 1	1.23 sf		
						· - ·· · · ·	

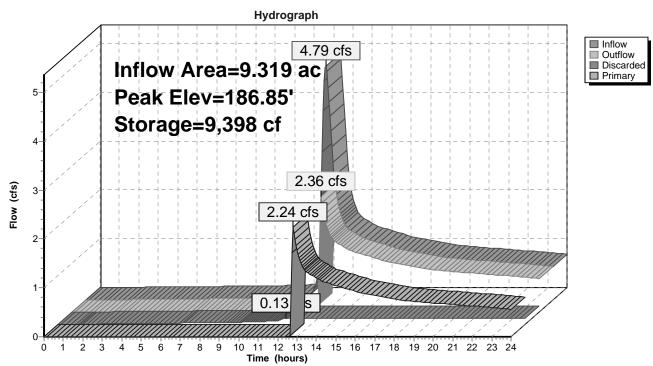
Primary OutFlow Max=1.31 cfs @ 12.10 hrs HW=184.55' TW=179.69' (Dynamic Tailwater) **1=15" HDPE N-12** (Inlet Controls 1.31 cfs @ 2.52 fps)

Pond 105P: Center of Cul-de-sac Pond #105

Summary for Pond 106P: Infiltration Pond #106

Inflow Area =	9.319 ac, 14.37% Impervious, Inflow De	epth > 1.50" for 25Yr-24Hr event
Inflow =	4.79 cfs @ 12.33 hrs, Volume=	1.168 af
Outflow =	2.36 cfs @ 12.82 hrs, Volume=	0.958 af, Atten= 51%, Lag= 29.4 min
Discarded =	0.13 cfs @ 11.70 hrs, Volume=	0.157 af
Primary =	2.24 cfs @ 12.82 hrs, Volume=	0.801 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 186.85' @ 12.82 hrs Surf.Area= 1,828 sf Storage= 9,398 cf Flood Elev= 188.00' Surf.Area= 1,828 sf Storage= 15,106 cf


Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 52.9 min (1,032.1 - 979.2)

Volume	Invert Ava	ail.Storage	Storage Descripti	on		
#1	183.25'	91 cf		gular)Listed belov	v (Recalc)	
# 2	102 50	15 015 of	457 cf Overall x 2		ted below (Decele)	Imponious
#2	183.50'	15,015 cf			ted below (Recalc) ·	<u>-impervious</u>
		15,106 cf	Total Available St	orage		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)		(cubic-feet)	(cubic-feet)	(sq-ft)	
183.25			0	0	1,828	
183.50	1,828		457	457	1,877	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
183.50	1,828	197.0	0	0	1,828	
184.00	2,028	203.0	964	964	2,044	
185.00	2,449	216.4	2,235	3,199	2,538	
186.00	3,365	246.5	2,895	6,094	3,670	
187.00	4,426	279.1	3,883	9,977	5,059	
188.00	5,675	316.1	5,038	15,015	6,836	
Device F	Routing	nvert Outl	et Devices			
			0 in/hr Exfiltration		surface area	
#2 F	Primary 18		' long x 11.0' brea		1 20 1 40 1 60	
			d (feet) 0.20 0.40			
		Coe	r. (Englisn) 2.53 2		67 2.68 2.66 2.64	

Discarded OutFlow Max=0.13 cfs @ 11.70 hrs HW=183.30' (Free Discharge) **1=Exfiltration (Soil 313)** (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=2.17 cfs @ 12.82 hrs HW=186.84' TW=182.16' (Dynamic Tailwater) ←2=E-Spillway (Weir Controls 2.17 cfs @ 0.77 fps)

Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023 ions LLC Page 116

Pond 106P: Infiltration Pond #106

Summary for Pond 107P: Rain Garden #107

Inflow Area =	1.295 ac, 18.49% Impervious, Inflow De	epth > 3.40" for 25Yr-24Hr event
Inflow =	3.24 cfs @ 12.17 hrs, Volume=	0.367 af
Outflow =	0.58 cfs @ 13.33 hrs, Volume=	0.319 af, Atten= 82%, Lag= 69.7 min
Primary =	0.45 cfs @ 13.33 hrs, Volume=	0.198 af
Secondary =	0.12 cfs @ 13.33 hrs, Volume=	0.121 af
Tertiary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 240.83' @ 13.33 hrs Surf.Area= 6,879 sf Storage= 6,394 cf Flood Elev= 244.00' Surf.Area= 7,350 sf Storage= 26,385 cf

Plug-Flow detention time= 173.1 min calculated for 0.319 af (87% of inflow) Center-of-Mass det. time= 116.6 min (951.0 - 834.4)

Volume	Invert Ava	ail.Storage	Storage Description	on		
#1	244.00'	990 cf	Forebay (Irregula	ar)Listed below (R	lecalc)	
#2	236.50'	917 cf	Stone (Irregular)	Listed below (Red		
			2,293 cf Overall >	40.0% Voids		
#3	237.50'	688 cf	BioMedia (Irregu		Recalc)	
			3,440 cf Overall			
#4	239.00'	115 cf	Loam Layer (Irre		w (Recalc)	
			573 cf Overall x 2			
#5	239.25'	24,666 cf			ted below (Recalc	<u>) -Impervio</u> us
		27,376 cf	Total Available St	orage		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
244.00	471	107.0	0	0	471	
245.00	500		485	485	611	
246.00	510	115.0	505	990	737	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
236.50	2,293	170.0	0	0	2,293	
237.50	2,293	170.0	2,293	2,293	2,463	
Elevation	Surf.Area	-	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
237.50	2,293	170.0	0	0	2,293	
239.00	2,293	170.0	3,440	3,440	2,548	
Elevation	Surf.Area		Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)		(cubic-feet)	(cubic-feet)	(sq-ft)	
239.00	2,293		0	0	2,293	
239.25	2,293	170.0	573	573	2,336	

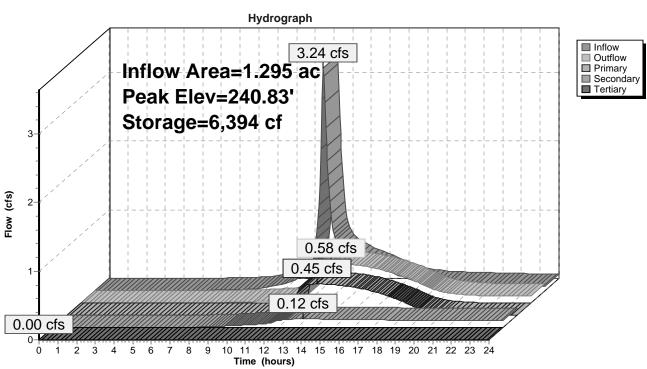
20-065 Proposed Analysis

Type III 24-hr 25Yr-24Hr Rainfall=5.86"

Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC Printed 12/8/2023 Page 118

Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>
239.2	25	2,293	170.0	0	0	2,293
240.0	00	2,834	189.0	1,919	1,919	2,852
242.0	00	5,436	328.0	8,130	10,049	8,594
244.(00	9,357	405.0	14,617	24,666	13,145
Device	Routing	Inver	t Outle	t Devices		
#1	Primary	236.50	' 15.0 "	Round 15" HDPE	N-12	
				.0' CPP, square edg		
				Outlet Invert= 236.5		0089 '/' Cc= 0.900
				012, Flow Area = 1.23		
#2	Secondary	236.50		Round 6" U.D. L= 1		
				Outlet Invert= 236.5		0000 '/' Cc= 0.900
				012, Flow Area = 0.20		
#3	Device 2	236.50		/ert. 1.5" Orifice End		
#4	Device 3	236.50		in/hr Exfiltration ov		
#5	Device 1	239.50		/ert. 4" Orifice C=		
#6	Device 1	243.00				weir flow at low heads
#7	Tertiary	243.50		long x 9.0' breadth		
						0 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4.50		
						2.68 2.67 2.64 2.64
			2.64	2.65 2.64 2.65 2.65	5 2.66 2.67 2.69	

Primary OutFlow Max=0.45 cfs @ 13.33 hrs HW=240.83' TW=236.15' (Dynamic Tailwater) -1=15" HDPE N-12 (Passes 0.45 cfs of 11.38 cfs potential flow)


-5=4" Orifice (Orifice Controls 0.45 cfs @ 5.20 fps)

-6=4' Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.12 cfs @ 13.33 hrs HW=240.83' TW=236.15' (Dynamic Tailwater) -2=6" U.D. (Passes 0.12 cfs of 1.91 cfs potential flow)

-3=1.5" Orifice End Cap (Orifice Controls 0.12 cfs @ 9.95 fps) -4=Exfiltration (Passes 0.12 cfs of 1.27 cfs potential flow)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=236.50' TW=236.00' (Dynamic Tailwater) **7=E-Spillway** (Controls 0.00 cfs)

Pond 107P: Rain Garden #107

Summary for Pond 108P: Gravel Wetland #108

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=21)

Inflow Area =	1.471 ac, 14.18% Impervious, Inflow Depth > 2.54" for 25Yr-2	24Hr event
Inflow =	2.60 cfs @ 12.34 hrs, Volume= 0.311 af	
Outflow =	1.64 cfs @ 12.48 hrs, Volume= 0.201 af, Atten= 37%, L	.ag= 8.3 min
Primary =	0.02 cfs @ 12.26 hrs, Volume= 0.005 af	
Secondary =	1.47 cfs @ 12.48 hrs, Volume= 0.202 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 185.10' @ 12.85 hrs Surf.Area= 7,863 sf Storage= 5,154 cf Flood Elev= 185.50' Surf.Area= 8,518 sf Storage= 7,043 cf

Plug-Flow detention time= 176.1 min calculated for 0.201 af (65% of inflow) Center-of-Mass det. time= 71.2 min (926.5 - 855.2)

Volume	Invert Ava	ail.Storage	Storage Description	on		
#1	183.50'	869 cf	Forebay (Irregula	ar)Listed below (R	Recalc)	
#2	183.50'	1,076 cf	Cell #1 (Irregular			
#3	183.50'	1,097 cf	Cell #2 (Irregular	Listed below (Re	ecalc)	
#4	184.50'	6,712 cf			sted below (Recalc)
#5	183.17'	6 cf	2.00'D x 1.83'H 4	' Structure		-
		9,759 cf	Total Available St	orage		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
				· · · ·		
183.50	287		0	0	287	
184.00	458		185	185	499	
185.00	939	259.1	684	869	5,173	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
183.50	886		0	0	886	
184.00	1,073	125.1	489	489	1,107	
184.50	1,277	136.4	587	1,076	1,351	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
183.50	905	114.7	0	0	905	
184.00	1,094	125.8	499	499	1,126	
184.50	1,299	136.9	598	1,097	1,367	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
184.50	2,662	217.0	0	0	2,662	
185.00	4,197	273.8	1,700	1,700	4,884	
186.00	5,873	369.2	5,012	6,712	9,776	

20-065 Proposed Analysis

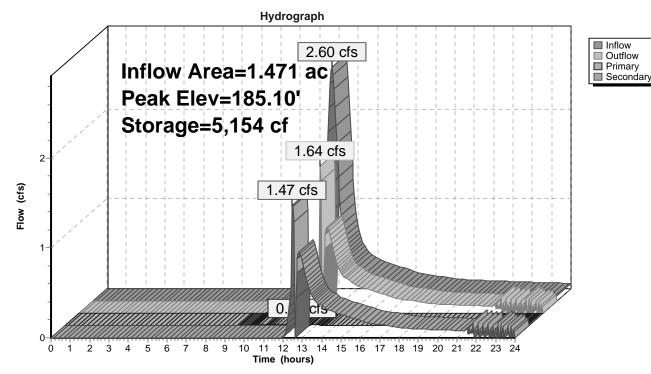
Type III 24-hr 25Yr-24Hr Rainfall=5.86" Printed 12/8/2023

Page 121

Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	183.17'	12.0" Round 12" HDPE
			L= 35.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 183.17' / 183.00' S= 0.0049 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Secondary	183.25'	12.0" Round 12" HDPE N-12
			L= 47.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 183.25' / 183.00' S= 0.0053 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#3	Device 1	183.17'	1.0" Vert. 1.0" Orifice C= 0.600
#4	Device 2	184.00'	3.0" W x 9.0" H Vert. 3"Wx9"T Slot C= 0.600
#5	Device 2	184.75'	60.0" Horiz. 5' Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.02 cfs @ 12.26 hrs HW=184.48' TW=183.79' (Dynamic Tailwater)


1=12" HDPE (Passes 0.02 cfs of 2.90 cfs potential flow) **3=1.0" Orifice** (Orifice Controls 0.02 cfs @ 4.00 fps)

Secondary OutFlow Max=1.63 cfs @ 12.48 hrs HW=184.84' TW=184.65' (Dynamic Tailwater) 2=12" HDPE N-12 (Inlet Controls 1.63 cfs @ 2.07 fps)

-4=3"Wx9"T Slot (Passes < 0.38 cfs potential flow)

-5=5' Grate (Passes < 1.39 cfs potential flow)

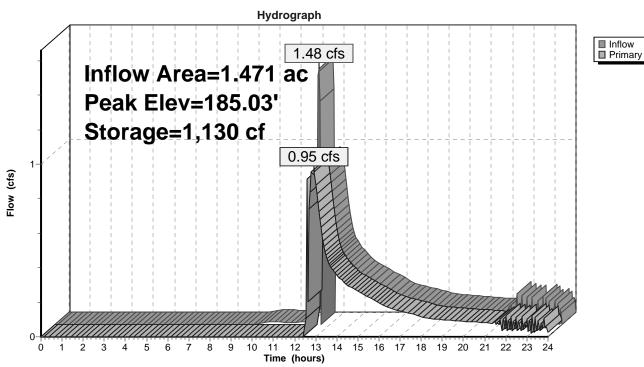
Pond 108P: Gravel Wetland #108

Summary for Pond 109P: Level Spreader

[80] Warning: Exceeded Pond 108P by 0.11' @ 12.55 hrs (0.01 cfs 0.000 af) [80] Warning: Exceeded Pond 108P by 0.11' @ 12.55 hrs (1.23 cfs 0.024 af)

Inflow Area =	1.471 ac, 14.18% Impervious, Inflow Depth > 1.6	68" for 25Yr-24Hr event
Inflow =	1.48 cfs @ 12.48 hrs, Volume= 0.207 af	
Outflow =	0.95 cfs @ 12.90 hrs, Volume= 0.181 af,	Atten= 36%, Lag= 25.1 min
Primary =	0.95 cfs @ 12.90 hrs, Volume= 0.182 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 185.03' @ 12.90 hrs Surf.Area= 1,035 sf Storage= 1,130 cf


Plug-Flow detention time= 80.0 min calculated for 0.181 af (88% of inflow) Center-of-Mass det. time= 26.8 min (948.8 - 922.0)

Volume	Inv		il.Storage	Storage Descript		ated below (Decelo)
#1	183.0	00	1,615 cf	Open water Sto	rage (irregular)∟	sted below (Recalc)
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
183.00		128	130.0	0	0	128
184.00		553	151.0	316	316	618
185.00		1,035	170.0	782	1,097	1,129
185.50		1,035	170.0	518	1,615	1,214
-	<u>Routing</u> Primary		5.00' 65.0 Head 2.50 Coef	3.00´3.50	0.60 0.80 1.00	1.20 1.40 1.60 1.80 2.00 .66 2.70 2.77 2.89 2.88

Primary OutFlow Max=0.95 cfs @ 12.90 hrs HW=185.03' TW=183.12' (Dynamic Tailwater) 1=Level Lip (Weir Controls 0.95 cfs @ 0.46 fps)

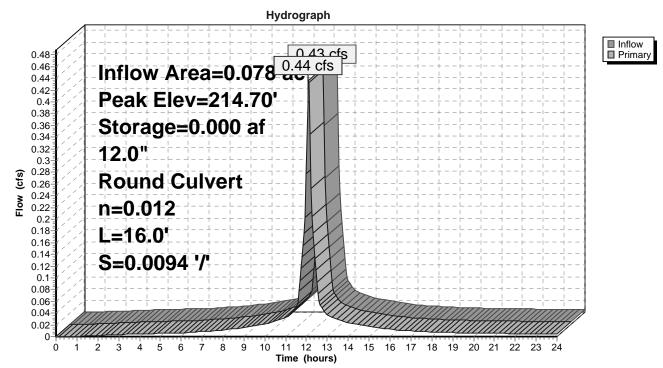
20-065 Proposed Analysis

Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Pond 109P: Level Spreader

Summary for Pond C01P: Catch Basin #1

Inflow Area	ι =	0.078 ac,10	0.00% Impervious,	Inflow Depth >	5.62"	for 25Yr-24Hr event
Inflow	=	0.43 cfs @	12.09 hrs, Volume	= 0.036	af	
Outflow	=	0.44 cfs @	12.09 hrs, Volume	= 0.036	af, Atte	en= 0%, Lag= 0.2 min
Primary	=	0.44 cfs @	12.09 hrs, Volume	= 0.036	af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 214.70' @ 12.09 hrs Surf.Area= 0.000 ac Storage= 0.000 af Flood Elev= 219.55' Surf.Area= 0.000 ac Storage= 0.002 af

Plug-Flow detention time= 0.6 min calculated for 0.036 af (100% of inflow) Center-of-Mass det. time= 0.5 min (745.5 - 745.1)

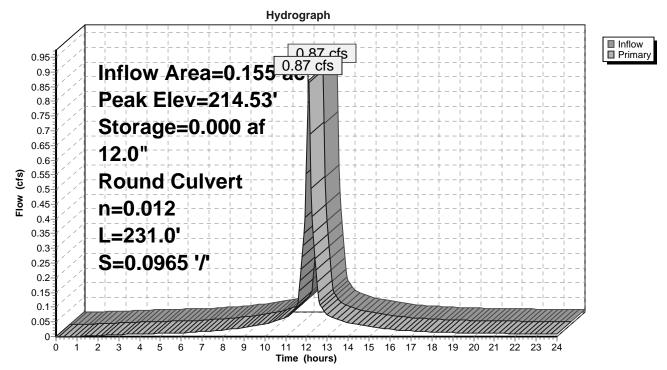
Volume	Invert	Avail.Storag	ge Storage Description
#1	214.30'	0.002 a	af 4.00'D x 5.25'H 4' Structure
Device #1	Routing Primary	214.30'	Outlet Devices 12.0" Round 12" HDPE N-12 L= 16.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 214.30' / 214.15' S= 0.0094 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.42 cfs @ 12.09 hrs HW=214.69' TW=214.52' (Dynamic Tailwater) **1=12" HDPE N-12** (Outlet Controls 0.42 cfs @ 2.22 fps)

Pond C01P: Catch Basin #1

Summary for Pond C02P: Catch Basin #2

Inflow Area	ι =	0.155 ac,10	0.00% Impervious	, Inflow Depth >	5.62"	for 25Yr-24Hr event
Inflow	=	0.87 cfs @	12.09 hrs, Volum	e= 0.072	af	
Outflow	=	0.87 cfs @	12.09 hrs, Volum	e= 0.072	af, Atte	en= 0%, Lag= 0.1 min
Primary	=	0.87 cfs @	12.09 hrs, Volum	e= 0.072	af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 214.53' @ 12.09 hrs Surf.Area= 0.000 ac Storage= 0.000 af Flood Elev= 219.55' Surf.Area= 0.000 ac Storage= 0.002 af

Plug-Flow detention time= 0.4 min calculated for 0.072 af (100% of inflow) Center-of-Mass det. time= 0.3 min (745.6 - 745.3)

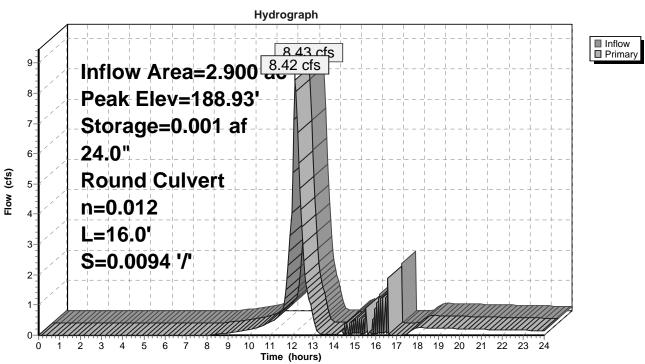
Volume	Invert	Avail.Storag	ge Storage Description
#1	214.05'	0.002	af 4.00'D x 5.50'H 4' Structure
Device #1	Routing Primary	214.05'	Outlet Devices 12.0" Round 12" HDPE N-12 L= 231.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 214.05' / 191.77' S= 0.0965 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.85 cfs @ 12.09 hrs HW=214.52' TW=192.14' (Dynamic Tailwater) **1=12" HDPE N-12** (Inlet Controls 0.85 cfs @ 2.34 fps)

Pond C02P: Catch Basin #2

Summary for Pond C03P: Catch Basin #3

[80] Warning: Exceeded Pond 32P by 0.11' @ 16.55 hrs (2.78 cfs 0.476 af)


Inflow Area =	2.900 ac, 20.75% Impervious, Inflow E	Depth > 2.69" for 25Yr-24Hr event
Inflow =	8.43 cfs @ 12.18 hrs, Volume=	0.650 af
Outflow =	8.42 cfs @ 12.18 hrs, Volume=	0.649 af, Atten= 0%, Lag= 0.1 min
Primary =	8.42 cfs @ 12.18 hrs, Volume=	0.649 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 188.93' @ 16.56 hrs Surf.Area= 0.000 ac Storage= 0.001 af Flood Elev= 191.75' Surf.Area= 0.000 ac Storage= 0.002 af

Plug-Flow detention time= 1.2 min calculated for 0.649 af (100% of inflow) Center-of-Mass det. time= 0.3 min (826.7 - 826.5)

Volume	Invert	Avail.Storage	Storage Description
#1	185.50'	0.002 af	4.00'D x 6.25'H 4' Structure
Device	Routing	Invert Ou	utlet Devices
#1	Primary	L= Inl	.0" Round 24" HDPE N-12 16.0' CPP, square edge headwall, Ke= 0.500 et / Outlet Invert= 185.50' / 185.35' S= 0.0094 '/' Cc= 0.900 0.012, Flow Area= 3.14 sf

Primary OutFlow Max=8.36 cfs @ 12.18 hrs HW=188.05' TW=187.74' (Dynamic Tailwater) **1=24" HDPE N-12** (Inlet Controls 8.36 cfs @ 2.66 fps)

Pond C03P: Catch Basin #3

Summary for Pond C04P: Catch Basin #4

[80] Warning: Exceeded Pond C03P by 0.04' @ 16.90 hrs (3.02 cfs 0.352 af)

Inflow Area =	3.137 ac, 26.73% Impervious, Inflow I	Depth > 2.91" for 25Yr-24Hr event
Inflow =	9.39 cfs @ 12.17 hrs, Volume=	0.760 af
Outflow =	9.37 cfs @ 12.17 hrs, Volume=	0.759 af, Atten= 0%, Lag= 0.0 min
Primary =	9.37 cfs @ 12.17 hrs, Volume=	0.759 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 188.92' @ 16.56 hrs Surf.Area= 0.000 ac Storage= 0.001 af Flood Elev= 191.75' Surf.Area= 0.000 ac Storage= 0.002 af

Plug-Flow detention time= 1.0 min calculated for 0.758 af (100% of inflow) Center-of-Mass det. time= 0.2 min (815.2 - 814.9)

Volume	Invert	Avail.Storage	Storage Description
#1	185.25'	0.002 af	4.00'D x 6.50'H 4' Structure
Device	Routing	Invert Ou	utlet Devices
#1	Primary	L= Inl	.0" Round 24" HDPE N-12 20.0' CPP, square edge headwall, Ke= 0.500 et / Outlet Invert= 185.25' / 185.00' S= 0.0125 '/' Cc= 0.900 0.012, Flow Area= 3.14 sf

Primary OutFlow Max=9.25 cfs @ 12.17 hrs HW=187.67' TW=187.29' (Dynamic Tailwater) **1=24" HDPE N-12** (Inlet Controls 9.25 cfs @ 2.95 fps)

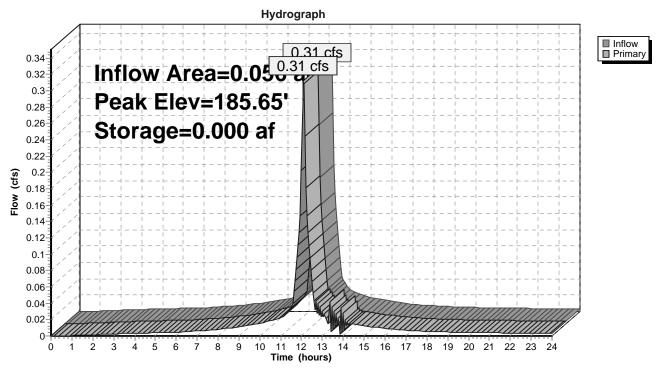
Hydrograph Inflow 9.39 cfs Primary 10-Inflow Area=3.137 9.37 cfs 9 Peak Elev=188.92' 8 Storage=0.001 af 7 24.0" 6 Flow (cfs) **Round Culvert** 5 n=0.012 4 L=20.0' 3 S=0.0125 '/' 2 2 ġ 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 3 Time (hours)

Pond C04P: Catch Basin #4

Summary for Pond C05P: Rain Guardian #1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=14)

Inflow Area	=	0.056 ac,100.00% Impervious, Inflow Depth > 5.62" for 25Yr-24Hr even	nt
Inflow	=	0.31 cfs @ 12.09 hrs, Volume= 0.026 af	
Outflow	=	0.31 cfs @ 12.09 hrs, Volume= 0.026 af, Atten= 0%, Lag= 0.1 m	nin
Primary	=	0.31 cfs @ 12.09 hrs, Volume= 0.026 af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 185.65' @ 12.12 hrs Surf.Area= 0.000 ac Storage= 0.000 af Flood Elev= 191.75' Surf.Area= 0.000 ac Storage= 0.000 af

Plug-Flow detention time= 6.3 min calculated for 0.026 af (99% of inflow) Center-of-Mass det. time= 0.3 min (745.4 - 745.1)

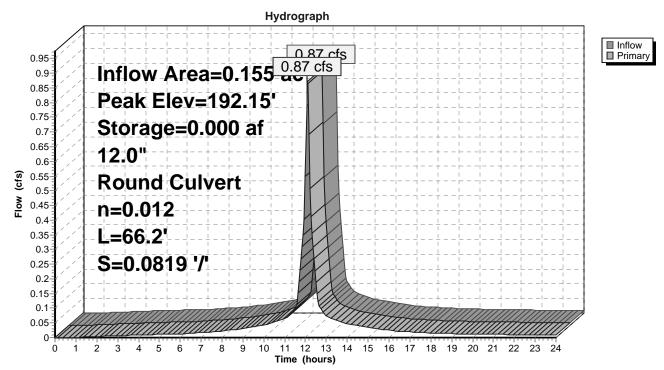
Volume	Invert	Avail.Storage	Storage Description
#1	185.10'	0.000 af	4.00'D x 0.87'H Rain Guardian
Device	Routing	Invert Ou	tlet Devices
#1	Primary	185.10' 36 .	0" W x 10.5" H Vert. Orifice/Grate C= 0.600

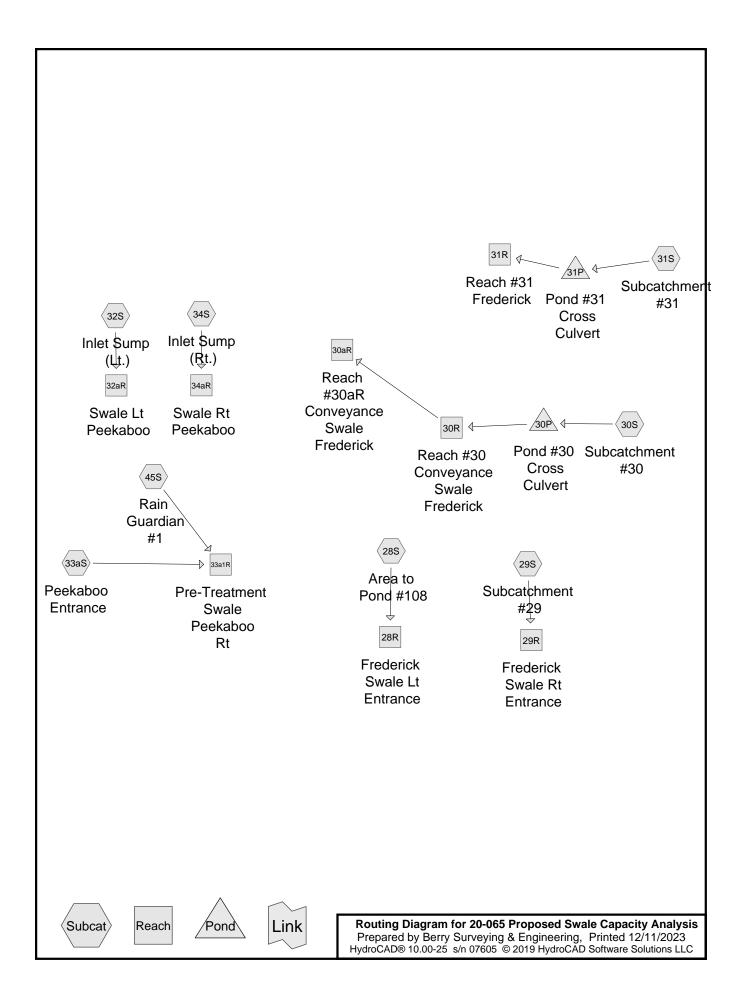
Primary OutFlow Max=0.30 cfs @ 12.09 hrs HW=185.64' TW=185.64' (Dynamic Tailwater)

Pond C05P: Rain Guardian #1

Summary for Pond D01P: Drain Manhole #1

Inflow Area	a =	0.155 ac,100.00	0% Impervious, Inflow E	Depth > 5.62"	for 25Yr-24Hr event
Inflow	=	0.87 cfs @ 12.	.09 hrs, Volume=	0.072 af	
Outflow	=	0.87 cfs @ 12.	.09 hrs, Volume=	0.072 af, Atte	en= 0%, Lag= 0.1 min
Primary	=	0.87 cfs @ 12.	.09 hrs, Volume=	0.072 af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 192.15' @ 12.09 hrs Surf.Area= 0.000 ac Storage= 0.000 af Flood Elev= 196.67' Surf.Area= 0.000 ac Storage= 0.001 af


Plug-Flow detention time= 0.4 min calculated for 0.072 af (100% of inflow) Center-of-Mass det. time= 0.3 min (745.9 - 745.6)

Volume	Invert	Avail.Storage	e Storage Description
#1	191.67'	0.001 a	f 4.00'D x 5.00'H 4' Structure
Device #1	Routing Primary	191.67' 1 L Ir	Dutlet Devices 2.0" Round 12" HDPE N-12 .= 66.2' CPP, square edge headwall, Ke= 0.500 nlet / Outlet Invert= 191.67' / 186.25' S= 0.0819 '/' Cc= 0.900 I= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.85 cfs @ 12.09 hrs HW=192.14' TW=187.15' (Dynamic Tailwater) **1=12" HDPE N-12** (Inlet Controls 0.85 cfs @ 2.34 fps)

Pond D01P: Drain Manhole #1

20-065 Proposed Swale Capacity Analysis

Prepared by Berry Surveying & Engineering	
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC	

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.251	39	>75% Grass cover, Good, HSG A (30S, 31S, 32S, 33aS, 34S)
1.132	61	>75% Grass cover, Good, HSG B (28S, 29S, 30S, 31S, 32S, 33aS)
1.892	74	>75% Grass cover, Good, HSG C (28S, 30S, 32S, 34S)
0.010	96	Gravel surface, HSG A (31S, 32S, 33aS)
0.036	96	Gravel surface, HSG B (28S, 29S, 30S, 31S, 33aS)
0.022	96	Gravel surface, HSG C (28S, 30S, 32S, 34S)
0.976	71	Meadow, non-grazed, HSG C (32S)
0.151	98	Paved parking, HSG A (30S, 31S, 32S, 33aS, 45S)
0.312	98	Paved parking, HSG B (28S, 29S, 30S, 31S, 32S, 33aS)
0.500	98	Paved parking, HSG C (28S, 30S, 32S, 34S)
0.048	98	Roofs, HSG B (28S, 32S)
0.190	98	Roofs, HSG C (32S, 34S)
0.530	55	Woods, Good, HSG B (28S, 29S, 30S, 32S)
0.491	70	Woods, Good, HSG C (28S, 30S, 32S, 34S)
6.540	73	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.412	HSG A	30S, 31S, 32S, 33aS, 34S, 45S
2.058	HSG B	28S, 29S, 30S, 31S, 32S, 33aS
4.071	HSG C	28S, 30S, 32S, 34S
0.000	HSG D	
0.000	Other	
6.540		TOTAL AREA

20-065 Proposed Swale Capacity Analysis Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Printed 12/11/2023 Page 4

				,			
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchmei Numbers
0.251	1.132	1.892	0.000	0.000	3.275	>75% Grass cover, Good	28S,
						,	29S,
							30S,
							31S,
							32S,
							33aS,
							34S
0.010	0.036	0.022	0.000	0.000	0.067	Gravel surface	28S,
							29S,
							30S,
							31S,
							32S,
							33aS,
							34S
0.000	0.000	0.976	0.000	0.000	0.976	Meadow, non-grazed	32S
0.151	0.312	0.500	0.000	0.000	0.963	Paved parking	28S,
							29S,
							30S,
							31S,
							32S,
							33aS,
							34S, 45S
0.000	0.048	0.190	0.000	0.000	0.238	Roofs	28S,
							32S, 34S
0.000	0.530	0.491	0.000	0.000	1.021	Woods, Good	28S,
							29S,
							30S,
							32S, 34S
0.412	2.058	4.071	0.000	0.000	6.540	TOTAL AREA	

Ground Covers (all nodes)

20-065 Proposed Swale Capacity Analysis

Prepared by Berry Surveying & Engineering	
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LL	С

Li	ine#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
	1	30P	191.25	191.00	40.0	0.0063	0.012	15.0	0.0	0.0
	2	31P	189.00	188.75	43.0	0.0058	0.012	15.0	0.0	0.0

Pipe Listing (all nodes)

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 28S: Area to Pond #108	Runoff Area=58,076 sf 12.93% Impervious Runoff Depth>3.40" Flow Length=247' Tc=24.0 min CN=68 Runoff=3.31 cfs 0.378 af
Subcatchment 29S: Subcatchment #29	Runoff Area=6,005 sf 26.21% Impervious Runoff Depth>3.83" Tc=6.0 min CN=72 Runoff=0.61 cfs 0.044 af
Subcatchment30S: Subcatchment#30	Runoff Area=40,007 sf 7.55% Impervious Runoff Depth>3.00" Flow Length=159' Tc=13.1 min CN=64 Runoff=2.52 cfs 0.230 af
Subcatchment31S: Subcatchment#31	Runoff Area=8,090 sf 30.07% Impervious Runoff Depth>3.01" Tc=6.0 min CN=64 Runoff=0.64 cfs 0.047 af
Subcatchment 32S: Inlet Sump (Lt.)	Runoff Area=122,911 sf 18.55% Impervious Runoff Depth>4.26" Flow Length=809' Tc=11.6 min CN=76 Runoff=11.65 cfs 1.001 af
Subcatchment 33aS: Peekaboo Entranc	e Runoff Area=7,232 sf 54.76% Impervious Runoff Depth>4.15" Tc=6.0 min CN=75 Runoff=0.79 cfs 0.057 af
Subcatchment 34S: Inlet Sump (Rt.)	Runoff Area=40,148 sf 21.43% Impervious Runoff Depth>4.59" Flow Length=594' Tc=8.6 min CN=79 Runoff=4.45 cfs 0.352 af
Subcatchment 45S: Rain Guardian #1	Runoff Area=2,431 sf 100.00% Impervious Runoff Depth>6.77" Tc=6.0 min CN=98 Runoff=0.37 cfs 0.031 af
	e Avg. Flow Depth=0.25' Max Vel=4.49 fps Inflow=3.31 cfs 0.378 af =10.0' S=0.0400 '/' Capacity=256.95 cfs Outflow=3.31 cfs 0.378 af
	e Avg. Flow Depth=0.10' Max Vel=2.62 fps Inflow=0.61 cfs 0.044 af =10.0' S=0.0400 '/' Capacity=256.95 cfs Outflow=0.61 cfs 0.044 af
	Avg. Flow Depth=0.21' Max Vel=1.54 fps Inflow=1.86 cfs 0.227 af =201.0' S=0.0199 '/' Capacity=29.56 cfs Outflow=1.85 cfs 0.226 af
Reach 30R: Reach #30 Conveyance n=0.045 L	Avg. Flow Depth=0.20' Max Vel=1.07 fps Inflow=1.87 cfs 0.228 af =205.0' S=0.0098 '/' Capacity=30.09 cfs Outflow=1.86 cfs 0.227 af
Reach 31R: Reach #31 Frederick n=0.045 L	Avg. Flow Depth=0.17' Max Vel=1.32 fps Inflow=0.63 cfs 0.046 af =158.0' S=0.0222 '/' Capacity=19.07 cfs Outflow=0.60 cfs 0.046 af
Reach 32aR: Swale Lt Peekaboo n=0.069 L=	Avg. Flow Depth=0.63' Max Vel=3.57 fps Inflow=11.65 cfs 1.001 af 10.0' S=0.0850 '/' Capacity=352.11 cfs Outflow=11.65 cfs 1.001 af
Reach 33a1R: Pre-Treatment Swale n=0.022	Avg. Flow Depth=0.21' Max Vel=2.06 fps Inflow=1.17 cfs 0.089 af L=10.0' S=0.0100 '/' Capacity=24.04 cfs Outflow=1.17 cfs 0.089 af
Reach 34aR: Swale Rt Peekaboo n=0.069 L:	Avg. Flow Depth=0.38' Max Vel=2.70 fps Inflow=4.45 cfs 0.352 af =10.0' S=0.0850 '/' Capacity=352.11 cfs Outflow=4.45 cfs 0.352 af

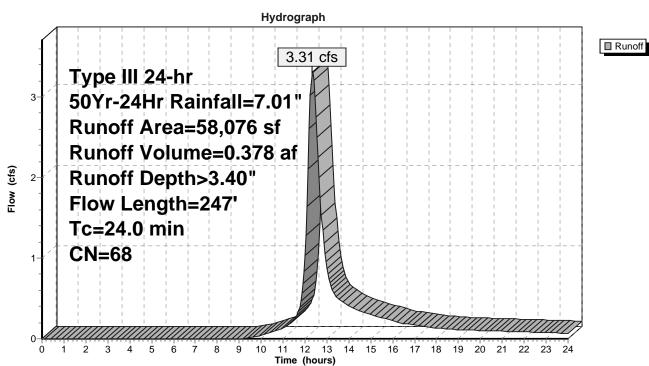
20-065 Proposed Swale Capacity Analysis	Type III 24-hr 50Yr-24Hr Rainfall=7.01"
Prepared by Berry Surveying & Engineering	Printed 12/11/2023
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software So	olutions LLC Page 7

 Pond 30P: Pond #30 Cross Culvert
 Peak Elev=192.01' Storage=1,260 cf
 Inflow=2.52 cfs
 0.230 af

 15.0" Round Culvert
 n=0.012
 L=40.0'
 S=0.0063 '/'
 Outflow=1.87 cfs
 0.228 af

 Pond 31P: Pond #31 Cross Culvert
 Peak Elev=189.41'
 Storage=39 cf
 Inflow=0.64 cfs
 0.047 af

 15.0"
 Round Culvert
 n=0.012
 L=43.0'
 S=0.0058 '/'
 Outflow=0.63 cfs
 0.046 af


Total Runoff Area = 6.540 ac Runoff Volume = 2.141 af Average Runoff Depth = 3.93" 81.63% Pervious = 5.339 ac 18.37% Impervious = 1.201 ac

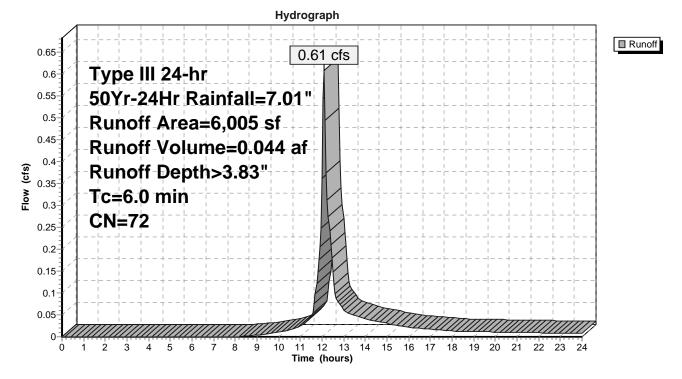
Summary for Subcatchment 28S: Area to Pond #108

Runoff = 3.31 cfs @ 12.34 hrs, Volume= 0.378 af, Depth> 3.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50Yr-24Hr Rainfall=7.01"

A	rea (sf)	CN [Description					
	1,584	98 F	Roofs, HSG B					
	26,908	61 >	>75% Grass cover, Good, HSG B					
	5,660	98 F	Paved park	ing, HSG B				
	8,948	55 N	Voods, Go	od, HSG B				
	641			ace, HSG E				
	4,142	74 >	75% Gras	s cover, Go	ood, HSG C			
	268			ing, HSG C				
	9,909		,	od, HSG C				
	16	96 (Gravel surfa	ace, HSG C				
	58,076	68 V	Veighted A	verage				
	50,564	8	87.07% Per	vious Area				
	7,512	1	2.93% Imp	pervious Are	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
22.0	100	0.0200	0.08		Sheet Flow, Segment #1			
					Woods: Light underbrush n= 0.400 P2= 3.06"			
1.0	69	0.0508	1.13		Shallow Concentrated Flow, Segment #2			
					Woodland Kv= 5.0 fps			
1.0	78	0.0319	1.25		Shallow Concentrated Flow, Segment #3			
					Short Grass Pasture Kv= 7.0 fps			
24.0	247	Total						

Subcatchment 28S: Area to Pond #108

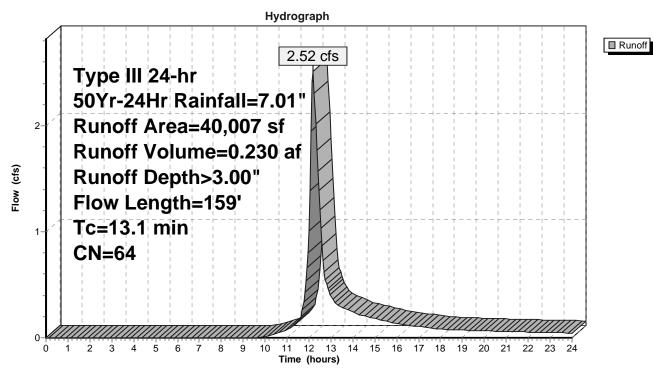

Summary for Subcatchment 29S: Subcatchment #29

Runoff = 0.61 cfs @ 12.09 hrs, Volume= 0.044 af, Depth> 3.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50Yr-24Hr Rainfall=7.01"

A	rea (sf)	CN	Description					
	3,178	61	>75% Gras	s cover, Go	bod, HSG B			
	1,574		Paved park					
	317	96	Gravel surfa	ace, HSG E	3			
	936	55	Woods, Go	od, HSG B				
	6,005	72	Weighted Average					
	4,431		73.79% Pervious Area					
	1,574		26.21% Impervious Area					
_		~			- · · · ·			
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
6.0					Direct Entry, Direct Entry			

Subcatchment 29S: Subcatchment #29



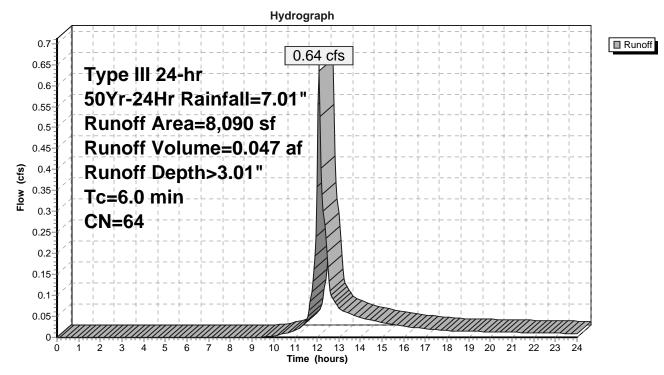
Summary for Subcatchment 30S: Subcatchment #30

Runoff = 2.52 cfs @ 12.19 hrs, Volume= 0.230 af, Depth> 3.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50Yr-24Hr Rainfall=7.01"

A	rea (sf)	CN E	Description						
	3,175	39 >75% Grass cover, Good, HSG A							
	126	98 F	Paved parking, HSG A						
	10,042	61 >	-75% Gras	s cover, Go	ood, HSG B				
	1,715			ing, HSG B					
	11,216			od, HSG B					
	322			ace, HSG E					
	4,652				ood, HSG C				
	1,178			ing, HSG C					
	7,329			od, HSG C					
	252			ace, HSG C	;				
	40,007	64 V	Veighted A	verage					
	36,988	-		vious Area					
	3,019	7	7.55% Impe	ervious Area	a				
_		<u>.</u>		a 1					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
12.0	100	0.0900	0.14		Sheet Flow, Segment #1				
					Woods: Light underbrush n= 0.400 P2= 3.06"				
0.7	36	0.0277	0.83		Shallow Concentrated Flow, Segment #2				
					Woodland Kv= 5.0 fps				
0.4	23	0.0216	1.03		Shallow Concentrated Flow, Segment #3				
					Short Grass Pasture Kv= 7.0 fps				
13.1	159	Total							

Subcatchment 30S: Subcatchment #30

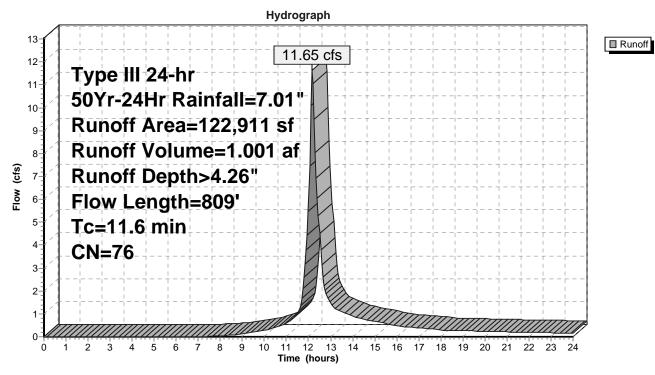

Summary for Subcatchment 31S: Subcatchment #31

Runoff = 0.64 cfs @ 12.10 hrs, Volume= 0.047 af, Depth> 3.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50Yr-24Hr Rainfall=7.01"

a (sf)	CN	Description		
3,590	39	>75% Gras	s cover, Go	ood, HSG A
838	98	Paved park	ing, HSG A	N
83	96	Gravel surfa	ace, HSG A	N Contraction of the second seco
1,763	61	>75% Gras	s cover, Go	ood, HSG B
1,595	98	Paved park	ing, HSG B	
221	96	Gravel surfa	ace, HSG E	3
8,090	64	Weighted A	verage	
5,657		69.93% Pei	vious Area	
2,433		30.07% Imp	pervious Are	ea
onath	Slop) /olooity	Conocity	Description
		•		Description
(leet)	(11/11) (11/Sec)	(CIS)	
				Direct Entry, Direct Entry
	3,590 838 83 1,763 1,595 221 3,090 5,657	3,590 39 838 98 83 96 1,763 61 1,595 98 221 96 3,090 64 5,657 2,433	3,590 39 >75% Gras 838 98 Paved park 83 96 Gravel surfa 1,763 61 >75% Gras 1,595 98 Paved park 221 96 Gravel surfa 3,090 64 Weighted A 5,657 69.93% Per 2,433 30.07% Imp	3,59039>75% Grass cover, Go83898Paved parking, HSG A8396Gravel surface, HSG A1,76361>75% Grass cover, Go1,59598Paved parking, HSG B22196Gravel surface, HSG E3,09064Weighted Average5,65769.93% Pervious Area2,43330.07% Impervious Area

Subcatchment 31S: Subcatchment #31



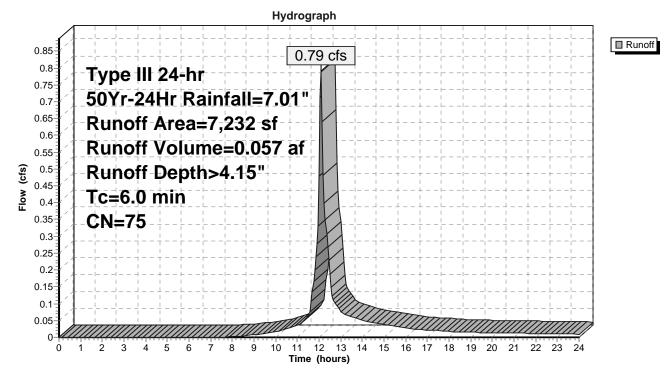
Summary for Subcatchment 32S: Inlet Sump (Lt.)

Runoff = 11.65 cfs @ 12.16 hrs, Volume= 1.001 af, Depth> 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50Yr-24Hr Rainfall=7.01"

Α	rea (sf)	CN I	Description		
	1,449	39 >	>75% Gras	s cover, Go	ood, HSG A
	174	98 I	Paved park	ing, HSG A	
	16	96 (Gravel surfa	ace, HSG A	N Contraction of the second seco
	7,170	61 >	>75% Gras	s cover, Go	ood, HSG B
	504		Roofs, HSO		
	2,102			ing, HSG B	
	1,984			od, HSG B	
	6,192		Roofs, HSC		
	42,536			on-grazed,	
	42,536				ood, HSG C
	13,827			ing, HSG C	
	4,116			od, HSG C	
	305			ace, HSG C	
	22,911		Neighted A		
	00,112			vious Area	
	22,799		18.55% Imp	pervious Ar	ea
То	Length	Slope	Velocity	Capacity	Description
Tc (min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	Description
5.9	100	0.0750	0.28	(013)	Shoot Elow Sogmont #1
5.9	100	0.0750	0.20		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06"
0.2	25	0.0800	1.98		Shallow Concentrated Flow, Segment #2
0.2	25	0.0000	1.50		Short Grass Pasture Kv= 7.0 fps
0.0	9	0.3300	4.02		Shallow Concentrated Flow, Segment #3
0.0	0	0.0000	1.02		Short Grass Pasture Kv= 7.0 fps
5.5	675	0.0844	2.03		Shallow Concentrated Flow, Segment #4
0.0	0.0				Short Grass Pasture Kv= 7.0 fps
11.6	809	Total			· · · · ·

Subcatchment 32S: Inlet Sump (Lt.)

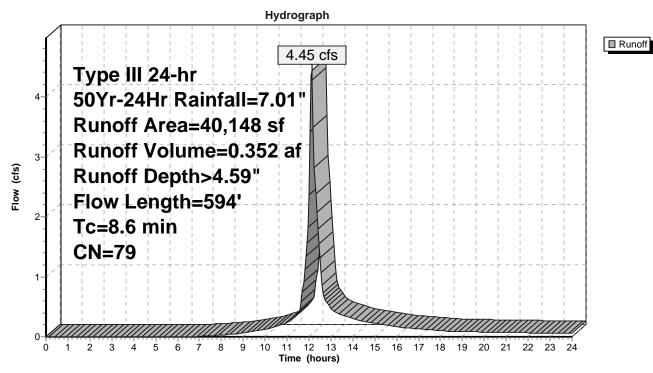

Summary for Subcatchment 33aS: Peekaboo Entrance

Runoff = 0.79 cfs @ 12.09 hrs, Volume= 0.057 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50Yr-24Hr Rainfall=7.01"

A	rea (sf)	CN	Description		
	2,648	39	>75% Gras	s cover, Go	bod, HSG A
	3,022	98	Paved park	ing, HSG A	N Contraction of the second seco
	316	96	Gravel surfa	ace, HSG A	Ą
	251	61	>75% Gras	s cover, Go	bod, HSG B
	938	98	Paved park	ing, HSG B	3
	57	96	Gravel surfa	ace, HSG E	3
	7,232	75	Weighted A	verage	
	3,272		45.24% Pe	vious Area	l
	3,960		54.76% lmp	pervious Ar	ea
Тс	Longth	Slond	Volocity	Capacity	Description
	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.0					Direct Entry, Direct Entry

Subcatchment 33aS: Peekaboo Entrance



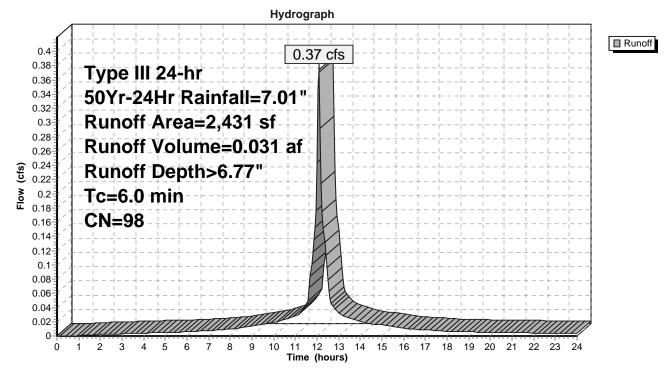
Summary for Subcatchment 34S: Inlet Sump (Rt.)

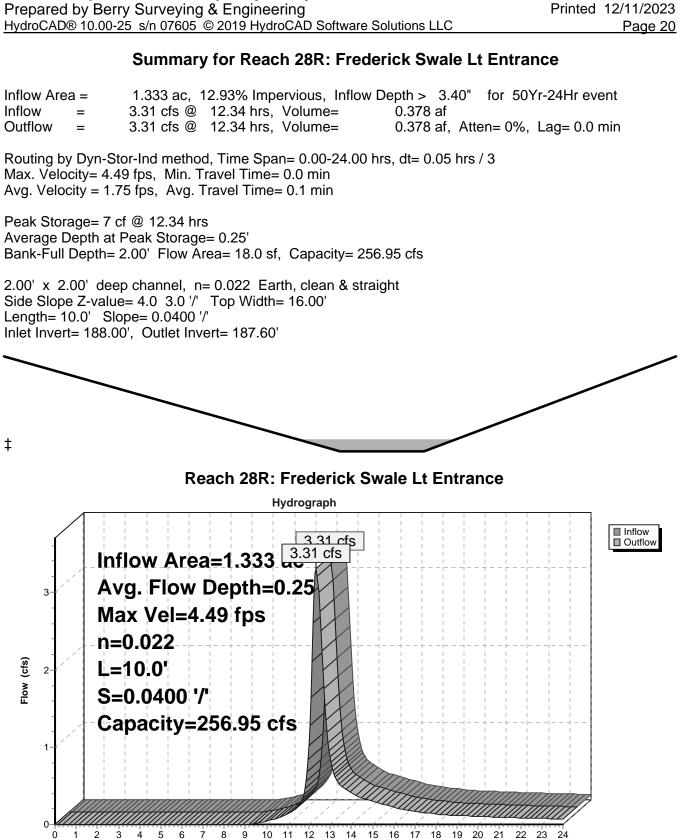
Runoff = 4.45 cfs @ 12.12 hrs, Volume= 0.352 af, Depth> 4.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50Yr-24Hr Rainfall=7.01"

A	rea (sf)	CN [Description						
	63	39 >	75% Gras	s cover, Go	ood, HSG A				
	31,078	74 >	75% Gras	s cover, Go	ood, HSG C				
	6,517	98 F	Paved park	ing, HSG C					
	2,088	98 F	Roofs, HSG	G C					
	372			ace, HSG C					
	30	70 V	Voods, Go	od, HSG C					
	40,148	79 N	Veighted A	verage					
	31,543	7	8.57% Per	vious Area					
	8,605	2	21.43% Imp	pervious Ar	ea				
Tc Length Slope Velocity Capacity Description									
Тс	Length	Slope	Velocity	Capacity	Description				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
					Sheet Flow, Segment #1				
<u>(min)</u> 4.8	(feet) 92	(ft/ft) 0.1087	(ft/sec) 0.32		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06"				
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06" Shallow Concentrated Flow, Segment #2				
(min) 4.8 0.0	(feet) 92 9	(ft/ft) 0.1087 0.3300	(ft/sec) 0.32 4.02		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06" Shallow Concentrated Flow, Segment #2 Short Grass Pasture Kv= 7.0 fps				
<u>(min)</u> 4.8	(feet) 92	(ft/ft) 0.1087	(ft/sec) 0.32		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06" Shallow Concentrated Flow, Segment #2 Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Segment #3				
(min) 4.8 0.0	(feet) 92 9	(ft/ft) 0.1087 0.3300	(ft/sec) 0.32 4.02		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06" Shallow Concentrated Flow, Segment #2 Short Grass Pasture Kv= 7.0 fps				
(min) 4.8 0.0	(feet) 92 9	(ft/ft) 0.1087 0.3300	(ft/sec) 0.32 4.02		Sheet Flow, Segment #1 Grass: Short n= 0.150 P2= 3.06" Shallow Concentrated Flow, Segment #2 Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Segment #3				

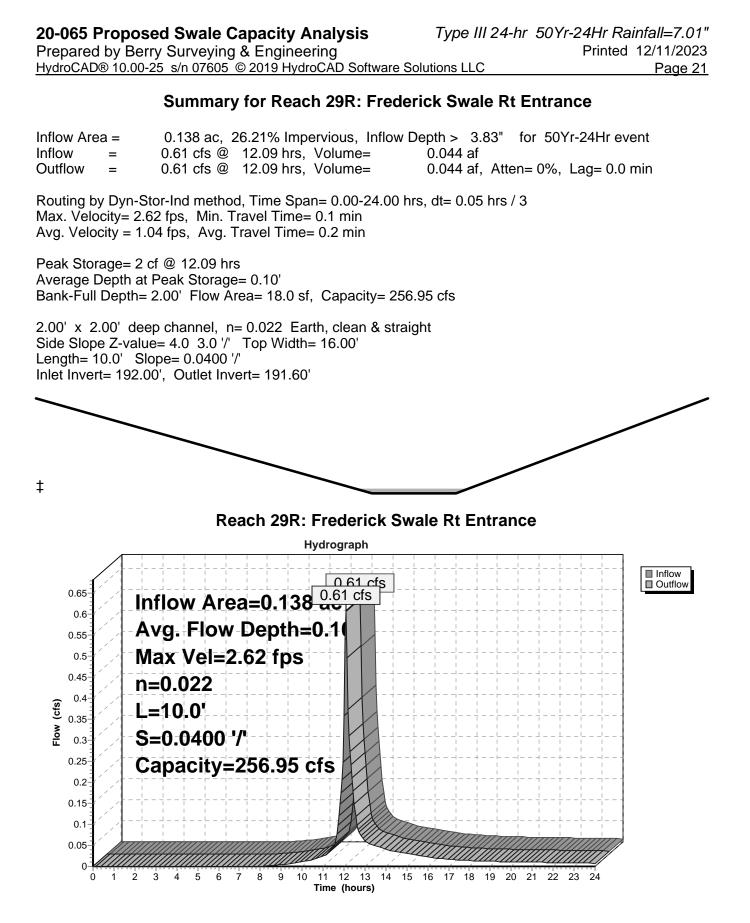
Subcatchment 34S: Inlet Sump (Rt.)


Summary for Subcatchment 45S: Rain Guardian #1


Runoff = 0.37 cfs @ 12.09 hrs, Volume= 0.031 af, Depth> 6.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50Yr-24Hr Rainfall=7.01"

Α	rea (sf)	CN	Description							
	2,431	98	Paved park	ing, HSG A						
	2,431		100.00% In	npervious A	vrea					
Tc (min)	6 1 7 1 7 1									
6.0					Direct Entry, Direct					
			• •							


Subcatchment 45S: Rain Guardian #1

Type III 24-hr 50Yr-24Hr Rainfall=7.01"

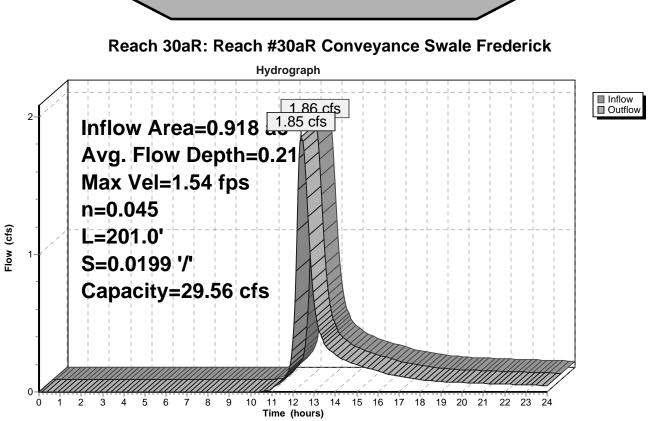
20-065 Proposed Swale Capacity Analysis

Summary for Reach 30aR: Reach #30aR Conveyance Swale Frederick

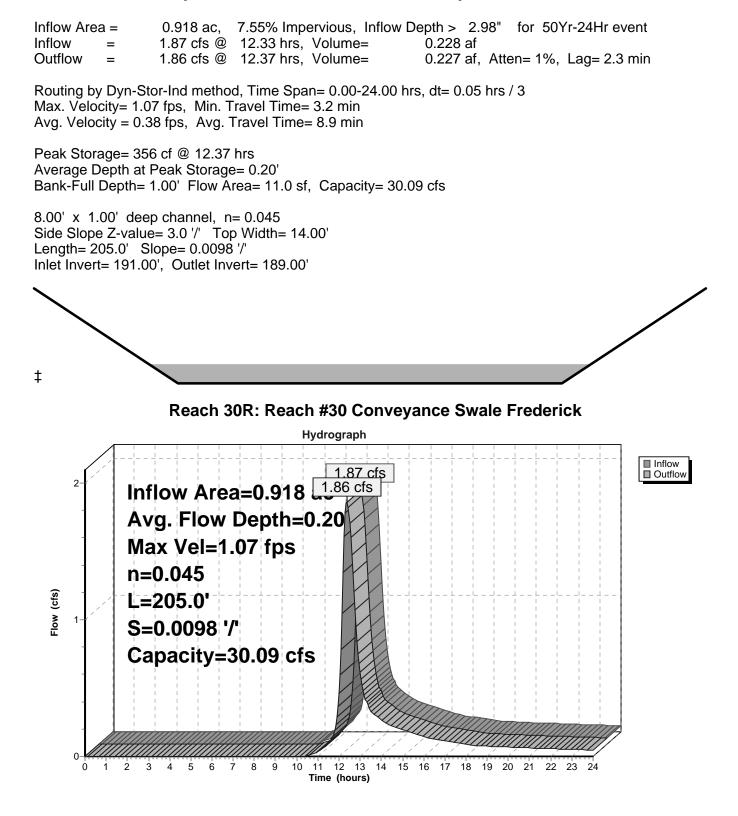
[62] Hint: Exceeded Reach 30R OUTLET depth by 0.02' @ 12.70 hrs

 Inflow Area =
 0.918 ac,
 7.55% Impervious, Inflow Depth >
 2.96" for 50Yr-24Hr event

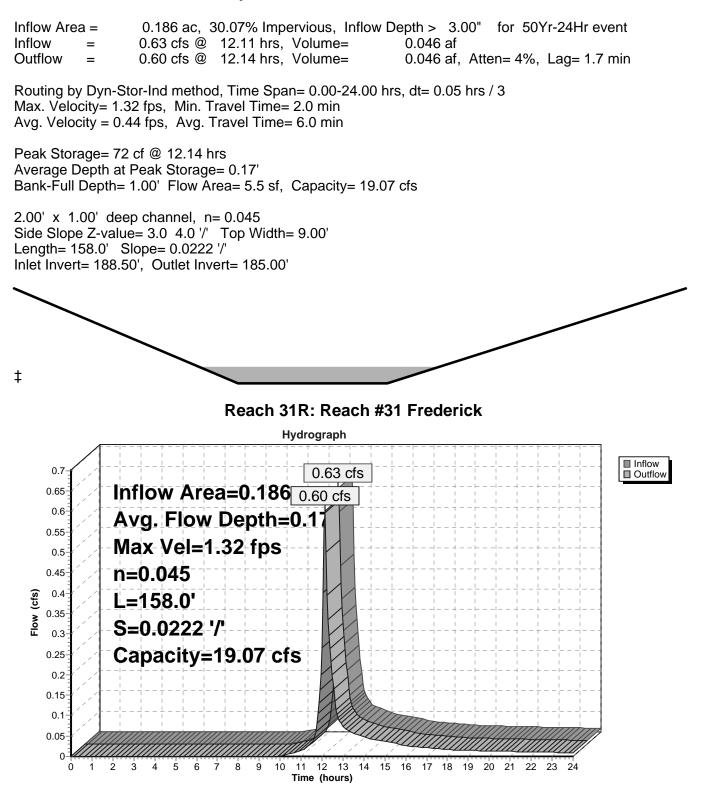
 Inflow =
 1.86 cfs @
 12.37 hrs, Volume=
 0.227 af

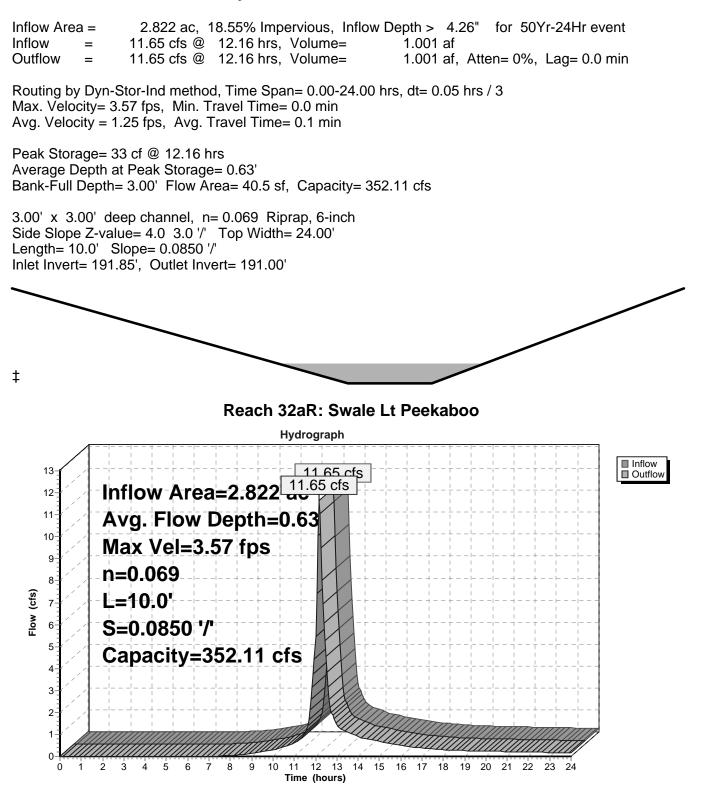

 Outflow =
 1.85 cfs @
 12.40 hrs, Volume=
 0.226 af, Atten= 0%, Lag= 1.7 min

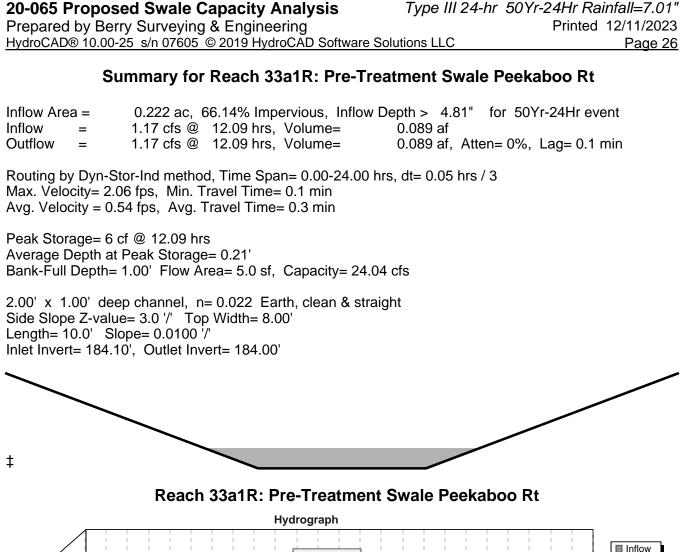
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 1.54 fps, Min. Travel Time= 2.2 min Avg. Velocity = 0.57 fps, Avg. Travel Time= 5.9 min

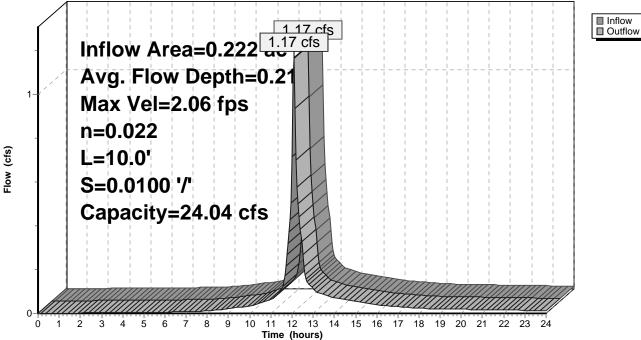

Peak Storage= 242 cf @ 12.40 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 29.56 cfs

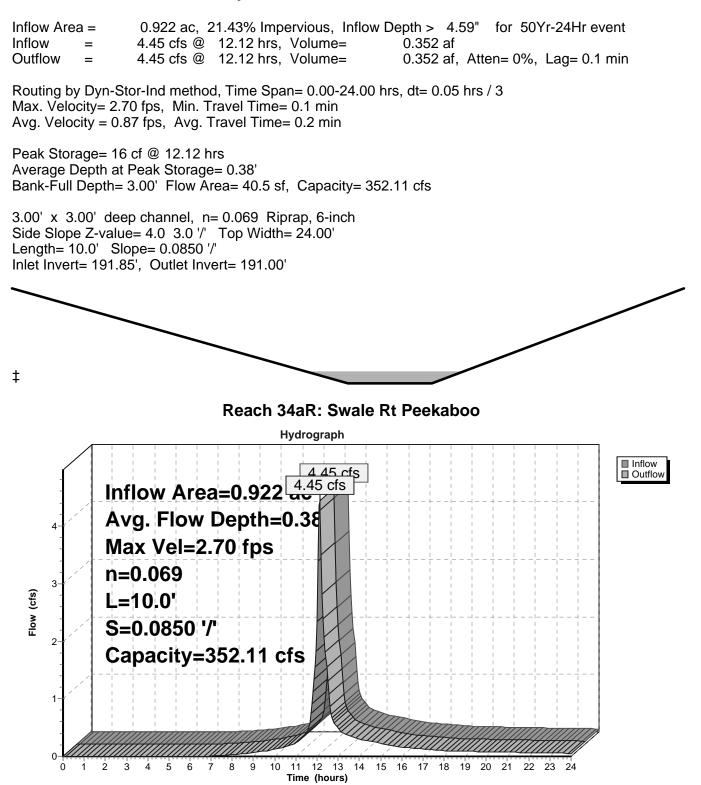
5.00' x 1.00' deep channel, n= 0.045 Side Slope Z-value= 3.0 '/' Top Width= 11.00' Length= 201.0' Slope= 0.0199 '/' Inlet Invert= 189.00', Outlet Invert= 185.00'


‡


Summary for Reach 30R: Reach #30 Conveyance Swale Frederick




Summary for Reach 31R: Reach #31 Frederick


Summary for Reach 32aR: Swale Lt Peekaboo

Summary for Reach 34aR: Swale Rt Peekaboo

Summary for Pond 30P: Pond #30 Cross Culvert

Inflow Area	a =	0.918 ac,	7.55% Impervious,	Inflow Depth >	3.00"	for 50Yr-24Hr event
Inflow	=	2.52 cfs @	12.19 hrs, Volume	= 0.230	af	
Outflow	=	1.87 cfs @	12.33 hrs, Volume	= 0.228	af, Atte	en= 26%, Lag= 8.5 min
Primary	=	1.87 cfs @	12.33 hrs, Volume	= 0.228	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 192.01' @ 12.33 hrs Surf.Area= 2,919 sf Storage= 1,260 cf Flood Elev= 192.50' Surf.Area= 4,322 sf Storage= 3,038 cf

Plug-Flow detention time= 16.0 min calculated for 0.227 af (99% of inflow) Center-of-Mass det. time= 11.1 min (860.2 - 849.1)

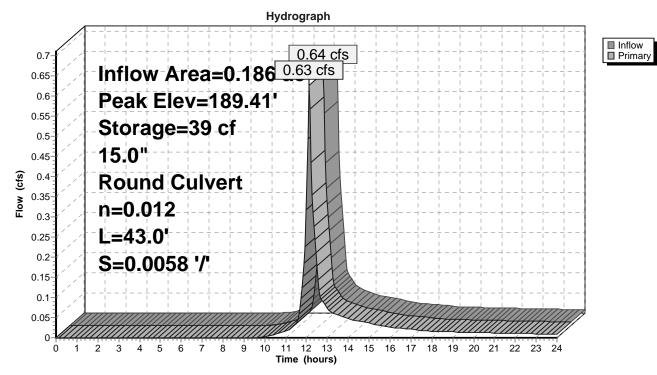
Volume	Inv	ert Ava	il.Storage	Storage Descripti	on	
#1	191.2	25'	13,659 cf	Open Water Stor	a ge (Irregular) List	ed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>
191.2 192.0 194.0	0	672 2,904 10,261	407.0 483.0 597.0	0 1,243 12,416	0 1,243 13,659	672 6,065 15,922
Device	Routing	In	vert Outle	et Devices		
#1	Primary	191	L= 4 Inlet	Round 15" HDF 0.0' CPP, square / Outlet Invert= 19 .012, Flow Area=	edge headwall, Ko 1.25' / 191.00' S=	

Primary OutFlow Max=1.86 cfs @ 12.33 hrs HW=192.00' TW=191.20' (Dynamic Tailwater) **1=15" HDPE N-12** (Barrel Controls 1.86 cfs @ 3.45 fps)

Hydrograph InflowPrimary 2.52 cfs Inflow Area=0.918 ac Peak Elev=192.01' Storage=1,260 cf 2-15.0" Flow (cfs) **Round Culvert** n=0.012 L=40.0' 1 S=0.0063 '/' 0-10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 1 2 Ś 4 5 6 7 8 ģ Ó

Pond 30P: Pond #30 Cross Culvert

Summary for Pond 31P: Pond #31 Cross Culvert


Inflow Area =	0.186 ac,30.07% Im	pervious, Inflow Depth >	3.01" for 50Yr-24Hr event
Inflow =	0.64 cfs @ 12.10 hrs	, Volume= 0.047	7 af
Outflow =	0.63 cfs @ 12.11 hrs	, Volume= 0.046	6 af, Atten= 1%, Lag= 0.8 min
Primary =	0.63 cfs @ 12.11 hrs	, Volume= 0.046	Saf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 189.41' @ 12.11 hrs Surf.Area= 146 sf Storage= 39 cf Flood Elev= 191.00' Surf.Area= 990 sf Storage= 835 cf

Plug-Flow detention time= 2.3 min calculated for 0.046 af (100% of inflow) Center-of-Mass det. time= 1.5 min (845.0 - 843.5)

Volume	Inv	vert Avai	I.Storage	Storage Description	on		
#1	189.	00'	835 cf	Open Water Stor	age (Irregular) Lis	ted below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
189.0 190.0 191.0	0	51 364 990	51.5 116.3 205.1	0 184 651	0 184 835	51 920 3,197	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	189	L= 4 Inlet	Round 15" HDP 3.0' CPP, square / Outlet Invert= 189 .012, Flow Area=	edge headwall, K 9.00' / 188.75' S=	e= 0.500 = 0.0058 '/' Cc= 0.900	

Primary OutFlow Max=0.61 cfs @ 12.11 hrs HW=189.41' TW=188.67' (Dynamic Tailwater) **1=15" HDPE N-12** (Barrel Controls 0.61 cfs @ 2.63 fps)

Pond 31P: Pond #31 Cross Culvert

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	71.062 degrees West
Latitude	43.138 degrees North
Elevation	0 feet
Date/Time	Fri, 18 Feb 2022 10:48:20 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.81	1.03	1yr	0.70	0.98	1.20	1.53	1.97	2.56	2.78	1yr	2.26	2.68	3.09	3.80	4.38	1yr
2yr	0.32	0.49	0.61	0.80	1.01	1.28	2yr	0.87	1.16	1.49	1.89	2.40	3.06	3.40	2yr	2.71	3.27	3.77	4.49	5.12	2yr
5yr	0.37	0.57	0.72	0.96	1.23	1.58	5yr	1.06	1.44	1.85	2.36	3.02	3.87	4.35	5yr	3.43	4.19	4.80	5.68	6.42	5yr
10yr	0.41	0.64	0.81	1.10	1.43	1.86	10yr	1.23	1.70	2.18	2.81	3.61	4.63	5.25	10yr	4.10	5.05	5.76	6.78	7.63	10yr
25yr	0.47	0.75	0.95	1.31	1.75	2.29	25yr	1.51	2.10	2.71	3.52	4.55	5.86	6.73	25yr	5.19	6.47	7.33	8.58	9.59	25yr
50yr	0.53	0.84	1.08	1.51	2.04	2.70	50yr	1.76	2.48	3.21	4.19	5.43	7.01	8.12	50yr	6.21	7.81	8.81	10.26	11.41	50yr
100yr	0.59	0.96	1.24	1.75	2.37	3.18	100yr	2.05	2.92	3.79	4.97	6.47	8.39	9.81	100yr	7.43	9.43	10.59	12.28	13.58	100yr
200yr	0.66	1.08	1.40	2.01	2.77	3.75	200yr	2.39	3.44	4.50	5.92	7.74	10.04	11.85	200yr	8.89	11.39	12.72	14.70	16.17	200yr
500yr	0.78	1.29	1.68	2.43	3.41	4.65	500yr	2.94	4.28	5.61	7.44	9.77	12.75	15.22	500yr	11.28	14.63	16.23	18.66	20.39	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.73	0.90	1yr	0.63	0.88	0.95	1.27	1.55	2.00	2.49	1yr	1.77	2.40	2.86	3.40	3.87	1yr
2yr	0.31	0.48	0.60	0.81	1.00	1.18	2yr	0.86	1.15	1.35	1.81	2.33	2.96	3.27	2yr	2.62	3.14	3.64	4.36	4.98	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.60	2.13	2.75	3.52	3.91	5yr	3.11	3.76	4.34	5.32	5.85	5yr
10yr	0.38	0.59	0.73	1.02	1.32	1.60	10yr	1.14	1.56	1.81	2.42	3.10	3.98	4.46	10yr	3.53	4.29	4.95	6.17	6.59	10yr
25yr	0.44	0.67	0.83	1.19	1.57	1.90	25yr	1.35	1.86	2.11	2.82	3.63	4.67	5.28	25yr	4.13	5.08	5.90	7.50	8.36	25yr
50yr	0.49	0.74	0.92	1.33	1.79	2.17	50yr	1.54	2.13	2.37	3.18	4.09	5.25	5.97	50yr	4.65	5.74	6.73	8.70	9.62	50yr
100yr	0.55	0.83	1.03	1.49	2.05	2.49	100yr	1.77	2.44	2.67	3.56	4.59	5.90	6.75	100yr	5.22	6.49	7.70	10.08	11.05	100yr
200yr	0.61	0.92	1.16	1.68	2.34	2.84	200yr	2.02	2.78	2.99	4.00	5.16	6.59	8.89	200yr	5.84	8.54	8.81	11.70	12.70	200yr
500yr	0.71	1.06	1.36	1.98	2.82	3.41	500yr	2.43	3.34	3.49	4.66	6.05	7.60	10.78	500yr	6.73	10.37	10.52	14.26	15.23	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.44	0.53	0.72	0.88	1.08	1yr	0.76	1.05	1.23	1.71	2.17	2.79	3.14	1yr	2.47	3.02	3.43	4.08	4.80	1yr
2yr	0.33	0.51	0.62	0.84	1.04	1.24	2yr	0.90	1.22	1.46	1.93	2.47	3.22	3.57	2yr	2.85	3.43	3.95	4.64	5.29	2yr
5yr	0.39	0.61	0.76	1.04	1.32	1.58	5yr	1.14	1.54	1.84	2.45	3.13	4.24	4.83	5yr	3.75	4.64	5.29	6.04	7.01	5yr
10yr	0.46	0.71	0.88	1.23	1.59	1.92	10yr	1.37	1.87	2.22	2.97	3.76	5.27	6.09	10yr	4.67	5.86	6.62	7.40	8.66	10yr
25yr	0.57	0.86	1.07	1.53	2.02	2.47	25yr	1.74	2.42	2.85	3.84	4.80	7.04	8.32	25yr	6.23	8.00	8.90	9.72	10.79	25yr
50yr	0.66	1.00	1.25	1.80	2.42	2.99	50yr	2.09	2.93	3.45	4.65	5.79	8.77	10.56	50yr	7.77	10.15	11.16	11.95	13.18	50yr
100yr	0.77	1.17	1.46	2.12	2.90	3.62	100yr	2.50	3.54	4.19	5.66	7.00	10.94	13.40	100yr	9.68	12.88	13.97	14.69	16.11	100yr
200yr	0.90	1.36	1.72	2.49	3.48	4.40	200yr	3.00	4.30	5.09	6.89	8.44	13.69	15.12	200yr	12.12	14.54	17.50	18.05	19.73	200yr
500yr	1.11	1.66	2.13	3.10	4.41	5.67	500yr	3.81	5.54	6.56	8.94	10.84	18.44	20.32	500yr	16.32	19.54	23.56	23.76	25.82	500yr

RIP RAP CALCULATIONS

Residences at Fort Hill

Smoke Street

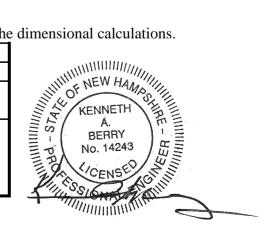
Nottingham, NH

Berry Surveying & Engineering

335 Second Crown Point Road

Barrington, NH

2/15/2023/Rev: 12/11/2023


Rip Rap equations were obtained from the *Stormwater Management and Erosion Control Handbook for Urban and Developing Areas in New Hampshire.* Rip Rap was sized for the 25 year storm event. (Some d50 sizes and T values have been modified)

TAILWATER < HALF THE Do

La = (1.8 x Q) / Do 3/2 + (7 x) W = La + 3*Do or defined ch.	· ·		Flow & I	Do is Pipe	Diameter			
d50 = (0.02 x Q4/3) / (Tw x E)			Tw = Ta	ulwater D	epth			
T = Largest Stone Size x 1.5	,				1			
Culvert or	Tailwater	Discharge	Diameter	Length of	Width of	d50-Stone		
Catch Basin	(Feet)	(C.F.S.)	of Pipe	Rip Rap		Rip Rap	Actual	
	Tw	Q	Do	La (feet)	W (feet)	d50(ft.)	Size	Thickness
24" HDPE (Pond #1)	0.40	3.25	2.00	16.1	22.1	0.12	0.00	0.00
24" HDPE (Pond #1)	0.40	3.25	2.00	16.1	22.1	0.12	0.00	0.00
24" HDPE (Pond #C04P)	0.40	9.37	2.00	20.0	26.0	0.49	0.50	1.20
15" HDPE (Pond #104)	0.25	0.28	1.25	9.1	12.9	0.01	0.50	1.20
15" HDPE (Pond #107)	0.25	0.58	1.25	9.5	13.2	0.03	0.50	1.20
15" HDPE (Pond #108)	0.25	1.47	1.25	10.6	14.4	0.11	0.50	1.20
15" HDPE (Pond #29)	0.25	0.46	1.25	9.3	13.1	0.02	0.50	1.20
15" HDPE (Pond #30)	0.25	1.33	1.25	10.5	14.2	0.09	0.50	1.20
15" HDPE (Pond #31)	0.25	0.44	1.25	9.3	13.1	0.02	0.50	1.20
15" HDPE (Pond #105)	0.25	1.32	1.25	10.5	14.2	0.09	0.50	1.20
15" HDPE (Pond #103)	0.25	0.26	1.25	9.1	12.8	0.01	0.50	1.20

Please note that the designer chose to use the 25 Year Event for the dimensional calculations.

d50 Size =	0.5	Feet	6	Inches
% of Weight Smaller		Size of	f Stone	(Inches)
Than the Given d50 Size		From		То
100%		9		12
85%		8		11
50%		6		9
15%		2		3

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

0.39	ас	Area of HSG A soil that was replaced by impervious cover	0.40"
1.18	ас	Area of HSG B soil that was replaced by impervious cover	0.25"
1.72	ас	Area of HSG C soil that was replaced by impervious cover	0.10"
-	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.19	inches	Rd = Weighted groundwater recharge depth	
0.6202	ac-in	GRV = AI * Rd	
2,251	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

Rain Garden #103 = 16,755 CF of Infiltration Capacity
Infiltration Pond #106 = 8,997 CF Infiltration Capacity

GRAVEL WETLAND DESIGN CRITERIA (Env-Wq 1508.05)

Type/Node Name:	Subsurface Gravel Wetland #102 Pond #102	
	Enter the node name in the drainage analysis if applicable.	
5.55 ac	A = Area draining to the practice	
1.22 ac	A ₁ = Impervious area draining to the practice	
0.22 decimal	I = Percent impervious area draining to the practice, in decimal form	
0.25 unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
1.38 ac-in	WQV= 1" x Rv x A	
5,001 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
500 cf	10% x WQV (check calc for sediment forebay)	
2,250 cf	45% x WQV (check calc for gravel wetland treatment bay volume)	
6,827 cf	V _{SED} = Sediment forebay volume	<u>></u> 10%WQV
3,069 cf	V _{TB1} = Volume of treatment bay 1 ¹	<u>></u> 45%WQV
2,570 cf	V _{TB2} = Volume of treatment bay 2 ⁺	<u>></u> 45%WQV
0.12 cfs	2Q _{avg} = 2* WQV / 24 hrs * (1hr / 3600 sec) ²	
185.61 ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
0.08 cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	< 2Q _{avg}
34.73 hours	T_{ED} = Drawdown time of extended detention = 2WQV/Q _{WQV}	<u>></u> 24-hrs
3.00 :1	Pond side slopes	<u>></u> 3:1
188.50 ft	Elevation of SHWT	
186.50 ft	SHWT - 2 feet	
183.67 ft	Epp = Elevation of the permanent pool (elevation of lowest orifice) ³	<u><</u> Е _{ѕнwт} - 2 ft
40 & 35 ft	Length of the flow path between the inlet and outlet in each cell	<u>></u> 15 ft
	What mechanism is proposed to prevent the outlet structure from clog	ging (applicable for
Angle Grate	orifices/weirs with a dimension of <6")?	
189.27 ft	Peak elevation of the 50-year storm event (E_{50})	
191.00 ft	Berm elevation of the pond	
YES	$E_{50} \leq$ the berm elevation?	← yes
Qualified profession	al that developed the planting plan	
Name, Profession		
1. Volume stored abo	ve the wetland soil and below the high flow by-pass.	
	sized so that WQV is released at a relatively stable rate.	
3. 4" to 8" below the	wetland soil. If lowest orifice is higher than (SHWT - 2 feet), and saturated hydraul	ic conductivity (Ksat) is
greater than 0.015 in	/br_the system must be lined	

greater than 0.015 in/hr, the system must be lined.

Designer's Notes: K Sat Deerfield and Hinkley derived Udorthents > 0.015 in/hr -

System to be lined with a low perm material liner

Summary for Pond 102P: Gravel Wetland #102

[80] Warning: Exceeded Pond C04P by 0.02' @ 16.55 hrs (2.39 cfs 0.292 af)

Inflow Area =	5.553 ac, 22.01% Impervious, Inflow	Depth > 2.93" for 50Yr-24Hr event
Inflow =	17.19 cfs @ 12.14 hrs, Volume=	1.358 af
Outflow =	0.75 cfs @ 14.20 hrs, Volume=	0.720 af, Atten= 96%, Lag= 123.9 min
Primary =	0.10 cfs @ 12.11 hrs, Volume=	0.120 af
Secondary =	0.66 cfs @ 14.20 hrs, Volume=	0.600 af
Tertiary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 189.27' @ 14.07 hrs Surf.Area= 24,220 sf Storage= 38,118 cf Flood Elev= 191.00' Surf.Area= 27,849 sf Storage= 63,349 cf

Plug-Flow detention time= 350.9 min calculated for 0.719 af (53% of inflow) Center-of-Mass det. time= 231.8 min (1,042.7 - 810.9)

Volume	Invert Ava	il.Storage	Storage Description	on		
#1	184.00'	6,827 cf	Forebay (Irregula	ar)Listed below (R	ecalc)	
#2	184.00'	3,069 cf	Cell #1 (Irregular	Listed below (Re	calc)	
#3	184.00'	2,570 cf	Cell #2 (Irregular			
#4	186.50'	1,755 cf	Open Water Abo			
#5	187.00'	49,080 cf	Open Water Stor		ted below (Recale	c)
#6	183.67'	48 cf	4.00'D x 3.83'H O	utlet Structure		
		63,349 cf	Total Available Ste	orage		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
184.00	101	37.0	0	0	101	
185.00	1,533	240.0	676	676	4,578	
186.00	3,259	330.0	2,342	3,018	8,670	
187.00	4,386	365.0	3,809	6,827	10,637	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
184.00	763	113.0	0	0	763	
185.00	1,118	134.0	935	935	1,194	
186.00	1,521	153.0	1,314	2,249	1,651	
186.50	1,760	163.0	820	3,069	1,914	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
184.00	583	99.0	0	0	583	
185.00	920	121.0	745	745	984	
186.00	1,316	143.0	1,112	1,857	1,464	
186.50	1,538	152.0	713	2,570	1,688	

20-065 Proposed Analysis Prepared by Berry Surveying & Engineering

Type III 24-hr 50Yr-24Hr Rainfall=7.01" Printed 12/7/2023

<u></u>			1			
El sur d'a			Derive		Ourse Others	
Elevatio		urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	1	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
186.5		3,278	309.0	0	0	3,278
187.(00	3,749	318.0	1,755	1,755	3,754
Flowet			Derim	In a Ctore	Cum Store	Mat Area
Elevatio		urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
187.(8,373	601.0	0	0	8,373
188.0		10,211	623.0	9,277	9,277	10,602
189.0		12,233	657.0	11,207	20,484	14,123
190.0		14,304	690.0	13,255	33,739	17,724
191.(00	16,403	708.0	15,342	49,080	19,845
		_	- ·			
Device	Routing	Inve		Devices		
#1	Primary	183.6			= 101.2' Ke= 0.500	
						.0017 '/' Cc= 0.900
				012, Flow Area= 0.	20 sf	
#2	Device 1	183.6	7' 1.5" \	/ert. 1.50" Orifice ((Str. A) C= 0.600	
#3	Secondary	[,] 185.5		Round 24" HDPE		
			L= 90	.0' CPP, square e	dge headwall, Ke=	0.500
			Inlet /	Outlet Invert= 185.	50' / 185.00' S= 0.	.0056 '/' Cc= 0.900
			n= 0.0	012, Flow Area= 3.	14 sf	
#4	Device 3	186.5	0' 4.0" \	/ert. 4" Orifice (Str	. B) C= 0.600	
#5	Device 3	190.0	0' 48.0 "	Horiz. 4' Grate (St	r. B) C= 0.600	
			Limite	ed to weir flow at low	v heads	
#6	Tertiary	190.5	0' 20.0'	long x 9.0' breadt	h E-Spillway	
	,					0 1.40 1.60 1.80 2.00
				3.00 [´] 3.50 4.00 4.		
						2.68 2.67 2.64 2.64
					65 2.66 2.67 2.69	
						
Primary	OutFlow N	/lax=0.10 cf	s @ 12.11	hrs HW=187.62'	TW=184.64' (Dyna	amic Tailwater)
				fs potential flow)		,

2=1.50" Orifice (Str. A) (Orifice Controls 0.10 cfs @ 8.31 fps)

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Secondary OutFlow Max=0.66 cfs @ 14.20 hrs HW=189.27' TW=186.82' (Dynamic Tailwater) 3=24" HDPE N-12 (Passes 0.66 cfs of 23.66 cfs potential flow) 4=4" Orifice (Str. B) (Orifice Controls 0.66 cfs @ 7.53 fps) 5=4' Grate (Str. B) (Controls 0.00 cfs)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=183.67' TW=189.50' (Dynamic Tailwater) G=E-Spillway (Controls 0.00 cfs)

Stage-Area-Storage for Pond 102P: Gravel Wetland #102

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
183.67	0	188.97	34,387
183.77	1	189.07	35,614
183.87	3	189.17	36,861
183.97	4	189.27	38,129
184.07	109	189.37	39,417
184.17	271	189.47	40,725
184.27	448	189.57	42,054
184.37	642	189.67	43,404
184.47	855	189.77	44,774
184.57	1,089	189.87	46,166
184.67	1,345	189.97	47,580
184.77	1,625	190.07	49,014
184.87	1,932	190.17	50,469
184.97	2,266	190.27	51,944
185.07	2,629	190.37	53,440
185.17	3,013	190.47	54,957
185.27	3,421	190.57	56,495
185.37	3,851	190.67	58,054
185.47	4,306	190.77	59,634
185.57	4,786	190.87	61,235
185.67	5,292	190.97	62,858
185.77	5,824		02,050
185.87	6,384	WQV Elev.:	
185.97	6,972	185.61	
186.07	7,586		
186.17	8,221		
186.27	8,875	WQV = 5,001	CE
186.37	9,549	VQV = 5,001	CF
186.47	10,244		
186.57	10,957		
186.67	11,691		
186.77	12,446		
186.87	13,222		
186.97	14,019		
187.07	14,854		
187.17	15,714		
187.27	16,591		
187.37	17,487		
187.47	18,400		
187.57	19,331		
187.67	20,280		
187.77	21,248		
187.87	22,235		
187.97	23,240		
188.07	24,265		
188.17	25,310		
188.27	26,374		
188.37	27,458		
188.47	28,561		
188.57	29,685		
188.67	30,830		
188.77	31,995		
188.87	33,180		
		I Contraction of the second seco	

Stage-Discharge for Pond 102P: Gravel Wetland #102

Elevation	Discharge	Primary	Secondary	Tertiary	
(feet)	(cfs)	(cfs)	(cfs)	(cfs)	
183.67	0.00	0.00	0.00	0.00	
183.87	0.02	0.02	0.00	0.00	
184.07	0.03	0.03	0.00	0.00	
184.27	0.04	0.04	0.00	0.00	
184.47	0.05	0.05	0.00	0.00	
184.67	0.06	0.06	0.00	0.00	
184.87	0.06	0.06	0.00	0.00	
185.07	0.07	0.07	0.00	0.00	
185.27	0.07	0.07	0.00	0.00	
185.47	0.08	0.08	0.00	0.00	WQV Elev.:
185.67	0.08	0.08	0.00	0.00	185.61
185.87	0.09	0.09	0.00	0.00	WOV Discharge
186.07	0.09	0.09	0.00	0.00	WQV Discharge
186.27	0.09	0.09	0.00	0.00	= 0.08 CFS
186.47	0.10	0.10	0.00	0.00	
186.67	0.16	0.10	0.06	0.00	
186.87	0.29	0.10	0.19	0.00	
187.07	0.37	0.11	0.27	0.00	
187.27	0.44	0.11	0.33	0.00	
187.47	0.49	0.11	0.38	0.00	
187.67	0.54	0.12	0.42	0.00	
187.87	0.58	0.12	0.46	0.00	
188.07	0.62	0.12	0.50	0.00	
188.27	0.66	0.13	0.53	0.00	
188.47	0.69	0.13	0.56	0.00	
188.67	0.73	0.13	0.59	0.00	
188.87	0.76	0.13	0.62	0.00	
189.07	0.79	0.14	0.65	0.00	
189.27	0.82	0.14	0.68	0.00	
189.47	0.85	0.14	0.70	0.00	
189.67	0.87	0.14	0.73	0.00	
189.87	0.90	0.15	0.75	0.00	
190.07	1.68	0.15	1.54	0.00	
190.27	6.71	0.15	6.56	0.00	
190.47	14.21	0.15	14.06	0.00	
190.67	26.98	0.16	23.38	3.45	
190.87	43.20	0.16	31.62	11.42	

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Infiltration Rain Garden #103 (103P)

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

Yes		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.02	7(a)
4.82	- ac	A = Area draining to the practice	/(d).
0.59	-	A_1 = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
	ac-in	$WQV=1" \times Rv \times A$	
2,807	-	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
702	-	25% x WQV (check calc for sediment forebay volume)	
2,105	-	75% x WQV (check calc for surface sand filter volume)	
Fore	ebay	Method of Pretreatment? (not required for clean or roof runoff)	
2,326 cf		V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti	me to drain	if system IS NOT underdrained:	
400	sf	A _{SA} = Surface area of the practice	
3.00	- iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
No	Yes/No	(Use the calculations below)	
28.1	hours	T _{DRAIN} = Drain time = V / (A _{SA} * I _{DESIGN})	<u><</u> 72-hrs
Calculate ti	me to drain	if system IS underdrained:	
-	ft	E_{WQV} = Elevation of WQV (attach stage-storage table)	
-	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
-	hours	T_{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
- 177.00		T_{DRAIN} = Drain time = 2WQV/Q _{WQV} E _{FC} = Elevation of the bottom of the filter course material ²	<u><</u> 72-hrs
			<u><</u> 72-hrs
	feet feet	E_{FC} = Elevation of the bottom of the filter course material ²	
177.00 -	feet feet feet	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable	it)
177.00 - 176.00	feet feet feet feet	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
177.00 - 176.00 172.00	feet feet feet feet feet	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	it) pit)
177.00 - 176.00 172.00 177.00	feet feet feet feet feet	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course	it) pit) ≥ 1'
177.00 - 176.00 172.00 177.00 5.00	feet feet feet feet feet feet	$ \begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test} \\ & D_{FC \text{ to } UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC \text{ to } ROCK} = \text{Depth to bedrock from the bottom of the filter course} \end{split} $	it) pit) ≥1' ≥1'
177.00 - 176.00 172.00 177.00 5.00 1.00	feet feet feet feet feet feet feet	$\begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test} \\ & D_{FC \text{ to }UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC \text{ to }SHWT} = \text{Depth to SHWT from the bottom of the filter course} \end{split}$	it) pit) ≥1' ≥1'
177.00 - 176.00 172.00 177.00 5.00 1.00 184.26 185.00 YES	feet feet feet feet feet ft ft	$\begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test} \\ & D_{FC to UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC to ROCK} = \text{Depth to bedrock from the bottom of the filter course} \\ & D_{FC to SHWT} = \text{Depth to SHWT from the bottom of the filter course} \\ & \text{Peak elevation of the 50-year storm event (infiltration can be used in analysis)} \\ & \text{Elevation of the top of the practice} \\ & 50 \text{ peak elevation } \leq \text{Elevation of the top of the practice} \\ \end{aligned}$	it) pit) ≥1' ≥1'
177.00 - 176.00 172.00 177.00 5.00 1.00 184.26 185.00 YES If a surface	feet feet feet feet feet ft ft	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed:	it) pit) ≥ 1' ≥ 1' ≥ 1' < yes
177.00 - 176.00 172.00 177.00 5.00 1.00 184.26 185.00 YES	feet feet feet feet feet ft ft sand filter ac	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	it) pit) ≥1' ≥1' ≥1' ≥1'
177.00 - 176.00 172.00 177.00 5.00 1.00 184.26 185.00 YES If a surface	feet feet feet feet feet feet ft ft sand filter	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed:	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
177.00 - 176.00 172.00 177.00 5.00 1.00 184.26 185.00 YES If a surface	feet feet feet feet feet ft ft sand filter ac	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac
177.00 - 176.00 172.00 177.00 5.00 1.00 184.26 185.00 YES If a surface	feet feet feet feet feet feet ft ft sand filter ac cf inches	E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if
177.00 - 176.00 172.00 177.00 5.00 1.00 184.26 185.00 YES If a surface YES	feet feet feet feet feet feet ft ft sand filter ac cf inches	$ E_{FC} = Elevation of the bottom of the filter course material2 EUD = Invert elevation of the underdrain (UD), if applicable ESHWT = Elevation of SHWT (if none found, enter the lowest elevation of the test p EROCK = Elevation of bedrock (if none found, enter the lowest elevation of the test DFC to UD = Depth to UD from the bottom of the filter course DFC to ROCK = Depth to bedrock from the bottom of the filter course DFC to SHWT = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage3 (attach a stage-storage table) DFC = Filter course thickness$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

If a biorete	ention area	is proposed:	
YES	ас	Drainage Area no larger than 5 ac?	← yes
16,755	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
18.0	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	t P-103	Note what sheet in the plan set contains the filter course specification	
3.0) :1	Pond side slopes	<u>> 3</u> :1
Sheet	t P-103	Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	oavement is	proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet	t	Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:	16,755 CF Infiltrated

NHDES Alteration of Terrain

Last Revised: January 2019

Summary for Pond 103P: Infiltration Rain Garden #103

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=5)

Inflow Area =	4.823 ac, 12.26% Impervious, Inflow	Depth > 3.19" for 50Yr-24Hr event
Inflow =	11.45 cfs @ 12.25 hrs, Volume=	1.282 af
Outflow =	0.55 cfs @ 17.23 hrs, Volume=	0.545 af, Atten= 95%, Lag= 298.5 min
Discarded =	0.19 cfs @ 10.50 hrs, Volume=	0.216 af
Primary =	0.37 cfs @ 17.23 hrs, Volume=	0.330 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 184.26' @ 17.23 hrs Surf.Area= 800 sf Storage= 36,708 cf Flood Elev= 185.00' Surf.Area= 800 sf Storage= 44,502 cf

Plug-Flow detention time= 343.6 min calculated for 0.545 af (43% of inflow) Center-of-Mass det. time= 218.4 min (1,066.7 - 848.2)

Volume	Invert	Avail.Storage	Storage Description
#1	178.75'	2,326 cf	Forebay (Irregular)Listed below (Recalc) -Impervious
#2	176.00'	160 cf	Stone (Irregular) Listed below (Recalc) - Impervious
			400 cf Overall x 40.0% Voids
#3	177.00'	120 cf	BioMedia (Irregular)Listed below (Recalc)
			600 cf Overall x 20.0% Voids
#4	178.50'	20 cf	Loam Layer (Irregular)Listed below (Recalc)
			100 cf Overall x 20.0% Voids
#5	178.75'	5,694 cf	Open Water Storage (Irregular)Listed below (Recalc) -Impervious
#6	180.50'	36,182 cf	Combined Open Storage (Irregular)Listed below (Recalc) - Impervious
		44,502 cf	Total Available Storage

Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
178.75	596	110.0	0	0	596
179.00	877	127.0	183	183	918
180.00	1,279	159.0	1,072	1,255	1,660
180.75	1,583	172.4	1,071	2,326	2,035
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
176.00	400	81.0	0	0	400
177.00	400	81.0	400	400	481
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft <u>)</u>
177.00	400	81.0	0	0	400
178.50	400	81.0	600	600	522
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
178.50	400	81.0	0	0	400
178.75	400	81.0	100	100	420

20-065 Proposed Analysis

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
178.7	75	2,695	220.2	0	0	2,695
179.0	-	2,861	224.0	694	694	2,840
180.0		3,492	243.0	3,171	3,866	3,584
180.5		3,823	252.0	1,828	5,694	3,960
		-,)	-)	- ,
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
180.5	50	5,428	327.0	0	0	5,428
181.0	00	5,926	337.0	2,838	2,838	5,982
182.0	00	7,062	369.0	6,486	9,323	7,814
183.0	00	8,231	392.0	7,639	16,962	9,258
184.0	00	9,490	418.0	8,853	25,815	10,982
185.0	00	11,269	551.0	10,367	36,182	21,249
Device	Routing	Inve	ert Outlet	Devices		
#1	Discarde	d 177.0	00' 10.00	0 in/hr Exfiltration	over Surface area	a
#2	Primary	175.0		Round 15" HDPE		
				9.0' CPP, square		
						0.0321 '/' Cc= 0.900
				12, Flow Area= 1.		
	#3 Device 2 181.75'			3.0" Vert. 3" Orifice C= 0.600		
#4				48.0" Horiz. 4' Grate C= 0.600 Limited to weir flow at low heads		
#5	Seconda	ry 184.5		ong x 8.5' breadt		
						20 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4.		
						2.68 2.66 2.64 2.64
			2.64	2.65 2.65 2.65 2.6	66 2.67 2.69 2.71	1

Discarded OutFlow Max=0.19 cfs @ 10.50 hrs HW=178.68' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.19 cfs)

Primary OutFlow Max=0.37 cfs @ 17.23 hrs HW=184.26' TW=170.08' (Dynamic Tailwater) -2=15" HDPE N-12 (Passes 0.37 cfs of 17.37 cfs potential flow) -3=3" Orifice (Orifice Controls 0.37 cfs @ 7.44 fps)

-4=4' Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=176.00' TW=175.00' (Dynamic Tailwater) 5=E-Spillway (Controls 0.00 cfs)

Stage-Area-Storage for Pond 103P: Infiltration Rain Garden #103

				• •		
Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
176.00	0	0	181.30	800	12,984	
176.10	0	16	181.40	800	13,616	
176.20	0	32	181.50	800	14,258	
176.30	0	48	181.60	800	14,912	
176.40	0	64	181.70	800	15,577	
176.50	0	80	181.80	800	16,254	
176.60	0	96	181.90	800	16,943	
176.70 176.80	0	112	182.00	800	17,643	
176.90	0 0	128 144	182.10 182.20	800 800	18,355 19,078	
177.00	400	144	182.30	800	19,813	
177.10	400	168	182.40	800	20,559	
177.20	400	176	182.50	800	20,559	
177.30	400	184	182.60	800	22,086	
177.40	400	192	182.70	800	22,000	
177.50	400	200	182.80	800	23,660	Lowest
177.60	400	200	182.90	800	23,000 24,465	outlet elev:
177.70	400	200	183.00	800	25,282	181.75
177.80	400	210	183.10	800	26,111	16,755 CF
177.90	400	232	183.20	800	26,953	Storage
178.00	400	240	183.30	800	27,806	Otorage
178.10	400	248	183.40	800	28,673	
178.20	400	256	183.50	800	29,551	
178.30	400	264	183.60	800	30,442	
178.40	400	272	183.70	800	31,346	
178.50	800	280	183.80	800	32,263	
178.60	800	288	183.90	800	33,193	
178.70	800	296	184.00	800	34,135	
178.80	800	467	184.10	800	35,093	
178.90	800	813	184.20	800	36,067	
179.00	800	1,177	184.30	800	37,059	
179.10	800	1,556	184.40	800	38,069	
179.20	800	1,944	184.50	800	39,096	
179.30	800	2,343	184.60	800	40,141	
179.40	800	2,751	184.70	800	41,204	
179.50	800	3,170	184.80	800	42,285	
179.60	800	3,599	184.90	800	43,384	
179.70	800	4,038	185.00	800	44,502	
179.80	800	4,488				
179.90	800	4,949				
180.00	800	5,420				
180.10	800	5,903				
180.20	800	6,395				
180.30	800	6,899				
180.40	800	7,412				
180.50	800	7,937				
180.60	800	8,635				
180.70	800	9,346				
180.80	800	9,992				
180.90	800	10,570				
181.00	800	11,157				
181.10	800	11,755				
181.20	800	12,364				
			1			

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Infiltration Pond #106 Pond #106

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

-			I
Yes	-	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes
9.32	_	A = Area draining to the practice	
1.34	-	A ₁ = Impervious area draining to the practice	
0.14	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.18	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
1.67	ac-in	WQV= 1" x Rv x A	
6,066	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
1,516	cf	25% x WQV (check calc for sediment forebay volume)	
Behind	GW 102	Method of pretreatment? (not required for clean or roof runoff)	
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
8,997	cf	V = Volume ¹ (attach a stage-storage table)	> WQV
1,828	sf	A _{SA} = Surface area of the bottom of the pond	_
3.00	iph	Ksat _{DESIGN} = Design infiltration rate ⁴	
13.3	hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	< 72-hrs
183.25	feet	E_{BTM} = Elevation of the bottom of the basin	—
181.20	feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	oit)
179.98	feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	t pit)
2.05	feet	D _{SHWT} = Separation from SHWT	<u>></u> * ³
3.3	feet	D _{ROCK} = Separation from bedrock	<u>></u> * ³
	ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	> 24"
	ft	D _T = Depth of trench, if trench proposed	4 - 10 ft
	Yes/No	If a trench or underground system is proposed, has observation well been provid	ed? ←ves
	-	If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements. ⁴	← yes
Yes	Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
2 or 6	-	If a basin is proposed, pond side slopes.	<u>></u> 3:1
186.80	ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
186.93		Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
188.00	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES	-	10 peak elevation < Elevation of the top of the trench? ⁵	← yes
YES	•	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes: Receives treated stormwater from GW #102 and residential roofs and driveways that sheet down the hill to the BMP

NHDES Alteration of Terrain

Summary for Pond 106P: Infiltration Pond #106

Inflow Area =	9.319 ac, 14.37% Impervious, Inflow De	epth > 1.04" for 10Yr-24Hr event
Inflow =	2.56 cfs @ 12.37 hrs, Volume=	0.809 af
Outflow =	0.90 cfs @ 14.25 hrs, Volume=	0.600 af, Atten= 65%, Lag= 112.9 min
Discarded =	0.13 cfs @ 12.00 hrs, Volume=	0.150 af
Primary =	0.78 cfs @ 14.25 hrs, Volume=	0.449 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 186.80' @ 14.25 hrs Surf.Area= 1,828 sf Storage= 9,194 cf Flood Elev= 188.00' Surf.Area= 1,828 sf Storage= 15,106 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 79.5 min (1,077.0 - 997.5)

Volume	Invert Ava	ail.Storage	Storage Descripti	on		
#1	183.25'	91 cf		gular)Listed below	v (Recalc)	
#0	102 50	15 015 of	457 cf Overall x 2		ted below (Decele) Imp	miouo
#2	183.50'	15,015 cf			ted below (Recalc) -Impe	<u>sivio</u> us
		15,106 cf	Total Available St	orage		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)		(cubic-feet)	(cubic-feet)	(sq-ft)	
183.25	1,828	197.0	0	0	1,828	
183.50	1,828	197.0	457	457	1,877	
	• • • •					
Elevation	Surf.Area	-	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>	
183.50	1,828	197.0	0	0	1,828	
184.00	2,028	203.0	964	964	2,044	
185.00	2,449	216.4	2,235	3,199	2,538	
186.00	3,365	246.5	2,895	6,094	3,670	
187.00	4,426		3,883	9,977	5,059	
188.00			5,038	15,015	6,836	
	<u> </u>		et Devices			
			0 in/hr Exfiltratior		Surface area	
#2 F	rimary 18	6.75' 30.0	' long x 11.0' brea	adth E-Spillway		
		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60	
		Coe	f. (English) 2.53 2	.59 2.70 2.68 2.6	67 2.68 2.66 2.64	
			,			

Discarded OutFlow Max=0.13 cfs @ 12.00 hrs HW=183.33' (Free Discharge) **1=Exfiltration (Soil 313)** (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=0.78 cfs @ 14.25 hrs HW=186.80' TW=182.13' (Dynamic Tailwater) ←2=E-Spillway (Weir Controls 0.78 cfs @ 0.55 fps)

Summary for Pond 106P: Infiltration Pond #106

Inflow Area =	9.319 ac, 14.37% Impervious, Inflow De	epth > 1.86" for 50Yr-24Hr event
Inflow =	7.11 cfs @ 12.31 hrs, Volume=	1.444 af
Outflow =	6.00 cfs @ 12.52 hrs, Volume=	1.234 af, Atten= 16%, Lag= 12.3 min
Discarded =	0.13 cfs @ 11.25 hrs, Volume=	0.164 af
Primary =	5.87 cfs @ 12.52 hrs, Volume=	1.070 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 186.93' @ 12.52 hrs Surf.Area= 1,828 sf Storage= 9,770 cf Flood Elev= 188.00' Surf.Area= 1,828 sf Storage= 15,106 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 39.4 min (996.2 - 956.8)

Volume	Invert Ava	ail.Storage	Storage Descripti	on			
#1	183.25'	91 cf	Loam Layer (Irregular)Listed below (Recalc)				
#2	183.50'	15,015 cf	457 cf Overall x 2 Open Water Stor		ted below (Recalc) -	Impervious	
		15,106 cf	Total Available St			<u></u>	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)			(cubic-feet)	(cubic-feet)	(sq-ft)		
183.25			0	0	1,828		
183.50			457	457	1,877		
100.00	1,020	137.0	-57	-57	1,077		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
183.50	1,828	197.0	0	0	1,828		
184.00	2,028	203.0	964	964	2,044		
185.00	2,449	216.4	2,235	3,199	2,538		
186.00	3,365	246.5	2,895	6,094	3,670		
187.00	,		3,883	9,977	5,059		
188.00	5,675	316.1	5,038	15,015	6,836		
Device Routing Invert Outlet Devices							
#1 [viscarded 183.25' 3.000 in/hr Exfiltration (Soil 313) over Surface area						
			' long x 11.0' breadth E-Spillway				
	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60						
Coef. (English) 2.53 2.59 2.70 2.68 2.67 2.68 2.66 2.64							

Discarded OutFlow Max=0.13 cfs @ 11.25 hrs HW=183.32' (Free Discharge) **1=Exfiltration (Soil 313)** (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=5.59 cfs @ 12.52 hrs HW=186.93' TW=182.27' (Dynamic Tailwater) ←2=E-Spillway (Weir Controls 5.59 cfs @ 1.06 fps)

Stage-Area-Storage for Pond 106P: Infiltration Pond #106

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
183.25	1,828	0	185.90	1,828	5,853	
183.30	1,828	18	185.95	1,828	6,018	
183.35	1,828	37	186.00	1,828	6,185	
183.40	1,828	55	186.05	1,828	6,355	
183.45	1,828	73	186.10	1,828	6,527	
183.50	1,828	91	186.15	1,828	6,701	
183.55	1,828	183	186.20	1,828	6,878	
183.60	1,828	276	186.25	1,828	7,058	
183.65	1,828	370	186.30	1,828	7,240	
183.70	1,828	465	186.35	1,828	7,424	
183.75	1,828	561	186.40	1,828	7,612	
183.80	1,828	658	186.45	1,828	7,802	
183.85	1,828	755	186.50	1,828	7,994	
183.90	1,828	854	186.55	1,828	8,189	
183.95	1,828	954	186.60	1,828	8,387	Lowest
184.00	1,828	1,055	186.65	1,828	8,588	outlet elev:
184.05 184.10	1,828	1,157	186.70	1,828 1,828	8,791 8,997	186.75
184.15	1,828 1,828	1,260 1,364	<u>186.75</u> 186.80	1,828	9,206	8,997 CF
184.20	1,828	1,469	186.85	1,828	9,200 9,417	Storage
184.25	1,828	1,575	186.90	1,828	9,632	Slorage
184.30	1,828	1,682	186.95	1,828	9,849	
184.35	1,828	1,790	187.00	1,828	10,068	
184.40	1,828	1,899	187.05	1,828	10,291	
184.45	1,828	2,009	187.10	1,828	10,517	
184.50	1,828	2,000	187.15	1,828	10,746	
184.55	1,828	2,232	187.20	1,828	10,977	
184.60	1,828	2,345	187.25	1,828	11,212	
184.65	1,828	2,460	187.30	1,828	11,450	
184.70	1,828	2,575	187.35	1,828	11,690	
184.75	1,828	2,692	187.40	1,828	11,934	
184.80	1,828	2,809	187.45	1,828	12,181	
184.85	1,828	2,928	187.50	1,828	12,431	
184.90	1,828	3,047	187.55	1,828	12,684	
184.95	1,828	3,168	187.60	1,828	12,941	
185.00	1,828	3,290	187.65	1,828	13,200	
185.05	1,828	3,414	187.70	1,828	13,463	
185.10	1,828	3,539	187.75	1,828	13,728	
185.15	1,828	3,667	187.80	1,828	13,997	
185.20	1,828	3,797	187.85	1,828	14,270	
185.25	1,828	3,929	187.90	1,828	14,545	
185.30	1,828	4,063	187.95	1,828	14,824	
185.35	1,828	4,200	188.00	1,828	15,106	
185.40	1,828	4,339				
185.45	1,828	4,480				
185.50	1,828	4,623				
185.55	1,828	4,769				
185.60	1,828	4,917				
185.65	1,828	5,067				
185.70	1,828	5,219				
185.75	1,828	5,374				
185.80	1,828	5,532				
185.85	1,828	5,691				
		I				

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Rain Garden #107 Pond #107

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

		Check if you reviewed the restrictions on unlined systems sutlined in Env. W/s 1500.0	7(a)
YES		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.0	7(a).
1.30	-	A = Area draining to the practice	
0.24		A ₁ = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
	ac-in	WQV= 1" x Rv x A	
1,017	-	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
254	-	25% x WQV (check calc for sediment forebay volume)	
763	_	75% x WQV (check calc for surface sand filter volume)	
	ebay	Method of Pretreatment? (not required for clean or roof runoff)	> 259/14/01/
990		V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti		if system IS NOT underdrained:	
-	sf	A _{SA} = Surface area of the practice	
-	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
-	hours	T _{DRAIN} = Drain time = V / (A _{SA} * I _{DESIGN})	<u><</u> 72-hrs
Calculate ti	ime to drain	if system IS underdrained:	
239.34		E _{WQV} = Elevation of WQV (attach stage-storage table)	
0.10	_ cfs	Q_{WQV} = Discharge at the E _{WQV} (attach stage-discharge table)	
	hours	T_{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
237.50			
	τρρτ	$F_{ro} = Flevation of the bottom of the filter course material$	
	-	E_{FC} = Elevation of the bottom of the filter course material ²	
236.50	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	:
236.50 237.50	feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	
236.50	feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	pit)
236.50 237.50 230.00	feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	
236.50 237.50 230.00 1.00	feet feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
236.50 237.50 230.00 1.00	feet feet feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course	: pit) ≥1'
236.50 237.50 230.00 1.00	feet feet feet feet feet feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course	pit) ≥1' ≥1'
236.50 237.50 230.00 1.00 7.50 -	feet feet feet feet feet feet ft	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course	pit) ≥1' ≥1'
236.50 237.50 230.00 1.00 7.50 - 241.35	feet feet feet feet feet feet ft	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)	pit) ≥1' ≥1'
236.50 237.50 230.00 1.00 7.50 - 241.35 244.00 YES If a surface	feet feet feet feet feet ft ft	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice	pit) ≥1' ≥1' ≥1'
236.50 237.50 230.00 1.00 7.50 - 241.35 244.00 YES	feet feet feet feet feet ft ft	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice	pit) ≥1' ≥1' ≥1'
236.50 237.50 230.00 1.00 7.50 - 241.35 244.00 YES If a surface	feet feet feet feet feet ft ft sand filter	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed:	<pre>pit)</pre>
236.50 237.50 230.00 1.00 7.50 - 241.35 244.00 YES If a surface	feet feet feet feet feet ft ft sand filter ac cf	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	: pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac
236.50 237.50 230.00 1.00 7.50 - 241.35 244.00 YES If a surface	feet feet feet feet feet ft ft sand filter ac	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	<pre>pit)</pre>
236.50 237.50 230.00 1.00 7.50 - 241.35 244.00 YES If a surface	feet feet feet feet feet ft ft sand filter ac cf inches	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	<pre>pit)</pre>
236.50 237.50 230.00 1.00 7.50 - 241.35 244.00 YES If a surface YES	feet feet feet feet feet ft ft sand filter ac cf inches	E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D_{FC} = Filter course thickness	<pre>pit)</pre>

If a bioretention	n area i	is proposed:	
YES ac		Drainage Area no larger than 5 ac?	← yes
1,398 cf		V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
inch 18.0	ies	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	P107	Note what sheet in the plan set contains the filter course specification	
3.0 :1		Pond side slopes	<u>> 3</u> :1
Sheet	P-07	Note what sheet in the plan set contains the planting plans and surface cover	
If porous paven	nent is	proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
acre	es	A _{SA} = Surface area of the pervious pavement	
:1		Ratio of the contributing area to the pervious surface area	≤ 5:1
inch	nes	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet		Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: January 2019

Summary for Pond 107P: Rain Garden #107

Inflow Area =	1.295 ac, 18.49% Impervious, Inflow D	epth > 4.41" for 50Yr-24Hr event
Inflow =	4.23 cfs @ 12.16 hrs, Volume=	0.476 af
Outflow =	0.67 cfs @ 13.45 hrs, Volume=	0.423 af, Atten= 84%, Lag= 77.0 min
Primary =	0.55 cfs @ 13.45 hrs, Volume=	0.292 af
Secondary =	0.13 cfs @ 13.45 hrs, Volume=	0.131 af
Tertiary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 241.35' @ 13.45 hrs Surf.Area= 6,879 sf Storage= 8,548 cf Flood Elev= 244.00' Surf.Area= 7,350 sf Storage= 26,385 cf

Plug-Flow detention time= 181.3 min calculated for 0.423 af (89% of inflow) Center-of-Mass det. time= 130.8 min (960.6 - 829.9)

Volume	Invert Ava	ail.Storage	Storage Description	on		
#1	244.00'	990 cf	Forebay (Irregula	ar)Listed below (R	Recalc)	
#2	236.50'	917 cf	Stone (Irregular)	Listed below (Red		
			2,293 cf Overall >			
#3	237.50'	688 cf	BioMedia (Irregu		Recalc)	
			3,440 cf Overall >			
#4	239.00'	115 cf	Loam Layer (Irre		w (Recalc)	
			573 cf Overall x 2			
#5	239.25'	24,666 cf			sted below (Recald	:) -Impervious
		27,376 cf	Total Available St	orage		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
244.00	471	107.0	0	0	471	
245.00	500	112.0	485	485	611	
246.00	510	115.0	505	990	737	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
236.50	2,293	170.0	0	0	2,293	
237.50	2,293	170.0	2,293	2,293	2,463	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
237.50	2,293	170.0	0	0	2,293	
239.00	2,293	170.0	3,440	3,440	2,548	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
239.00	2,293	170.0	0	0	2,293	
239.25	2,293	170.0	573	573	2,336	

20-065 Proposed Analysis

Type III 24-hr 50Yr-24Hr Rainfall=7.01" Printed 12/8/2023

Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Elevatio	et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
239.2		2,293	170.0	0	0	2,293
240.0		2,834	189.0	1,919	1,919	2,852
242.0		5,436	328.0	8,130	10,049	8,594
244.(00	9,357	405.0	14,617	24,666	13,145
Device	Routing	Inve	rt Outlet	Devices		
#1	Primary	236.50)' 15.0 "	Round 15" HDPE I	N-12	
				0' CPP, square ed		
				Outlet Invert= 236.5		0089 '/' Cc= 0.900
			n= 0.0	12, Flow Area= 1.2	3 sf	
#2	Secondar	y 236.50		Round 6" U.D. L= 1		
				Outlet Invert= 236.5		0000 '/' Cc= 0.900
				12, Flow Area= 0.2		
#3	Device 2	236.50		ert. 1.5" Orifice En		
#4	Device 3	236.50)' 8.000	in/hr Exfiltration ov	ver Surface area	
#5	Device 1	239.50)' 4.0" V	ert. 4" Orifice C=	0.600	
#6	Device 1	243.00				weir flow at low heads
#7	Tertiary	243.50		ong x 9.0' breadth		
						0 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4.5		
						2.68 2.67 2.64 2.64
			2.64 2	2.65 2.64 2.65 2.6	5 2.66 2.67 2.69	

Primary OutFlow Max=0.55 cfs @ 13.45 hrs HW=241.35' TW=236.16' (Dynamic Tailwater) -1=15" HDPE N-12 (Passes 0.55 cfs of 12.15 cfs potential flow)

-5=4" Orifice (Orifice Controls 0.55 cfs @ 6.25 fps)

-6=4' Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.13 cfs @ 13.45 hrs HW=241.35' TW=236.16' (Dynamic Tailwater) -2=6" U.D. (Passes 0.13 cfs of 2.03 cfs potential flow)

-3=1.5" Orifice End Cap (Orifice Controls 0.13 cfs @ 10.54 fps) -4=Exfiltration (Passes 0.13 cfs of 1.27 cfs potential flow)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=236.50' TW=236.00' (Dynamic Tailwater) **7=E-Spillway** (Controls 0.00 cfs)

Stage-Area-Storage for Pond 107P: Rain Garden #107

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
236.50	2,293	0	241.80	6,879	10,712
236.60	2,293	92	241.90	6,879	11,233
236.70	2,293	183	242.00	6,879	11,769
236.80	2,293	275	242.10	6,879	12,321
236.90	2,293	367	242.20	6,879	12,890
237.00	2,200	459	242.30	6,879	13,477
237.10	2,293	550	242.40	6,879	14,082
237.20	2,293	642	242.50	6,879	14,704
237.30	2,293	734	242.60	6,879	15,345
237.30	2,293	825	242.00	6,879	16,005
237.50	4,586	917	242.80	6,879	16,683
237.60	4,586	963	242.80	6,879	17,380
237.70	4,586	1,009	243.00	6,879	18,097
237.80	4,586	1,055	243.10	6,879	18,833
237.90	4,586	1,101	243.20	6,879	19,589 20,366 WQV =
238.00	4,586	1,147	243.30	6,879	
238.10	4,586	1,192	243.40	6,879	21,162 1,017 CF
238.20	4,586	1,238	243.50	6,879	21,980
238.30	4,586	1,284	243.60	6,879	22,818
238.40	4,586	1,330	243.70	6,879	23,677
238.50	4,586	1,376	243.80	6,879	24,558
238.60	4,586	1,422	243.90	6,879	25,461
238.70	4,586	1,468	244.00	7,350	26,385
238.80	4,586	1,513	244.10	7,353	26,433
238.90	4,586	1,559	244.20	7,356	26,480
239.00	6,879	1,605	244.30	7,359	26,528
239.10	6,879	1,651	244.40	7,361	26,576
239.20	6,879	1,697	244.50	7,364	26,625
239.30	6,879	1,835	244.60	7,367	26,673 WQV Elev
239.40	6,879	2,071	244.70	7,370	26,722 = 239.34
239.50	6,879	2,315	244.80	7,373	26,771
239.60	6,879	2,565	244.90	7,376	26,821
239.70	6,879	2,822	245.00	7,379	26,871
239.80	6,879	3,087	245.10	7,380	26,921
239.90	6,879	3,359	245.20	7,381	26,971
240.00	6,879	3,639	245.30	7,382	27,021
240.10	6,879	3,928	245.40	7,383	27,072
240.20	6,879	4,228	245.50	7,384	27,122
240.30	6,879	4,539	245.60	7,385	27,173
240.40	6,879	4,862	245.70	7,386	27,223
240.50	6,879	5,197	245.80	7,387	27,274
240.60	6,879	5,543	245.90	7,388	27,325
240.70	6,879	5,902	246.00	7,389	27,376
240.80	6,879	6,273		-,	
240.90	6,879	6,657			
241.00	6,879	7,053			
241.10	6,879	7,463			
241.10	6,879	7,886			
241.30	6,879	8,322			
241.30	6,879	8,772			
241.50	6,879	9,235			
241.60	6,879	9,233			
241.00	6,879	10,205			
271.70	0,079	10,203			

Stage-Discharge for Pond 107P: Rain Garden #107

Elevation	Discharge	Drimony	Secondary	Tertiary	
(feet)	(cfs)	Primary (cfs)	(cfs)	(cfs)	
236.50	0.00	0.00	0.00	0.00	
236.70	0.02	0.00	0.02	0.00	
236.90	0.03	0.00	0.03	0.00	
237.10	0.04	0.00	0.04	0.00	
237.30	0.05	0.00	0.05	0.00	
237.50	0.06	0.00	0.06	0.00	
237.70	0.06	0.00	0.06	0.00	
237.90	0.07 0.07	0.00 0.00	0.07 0.07	0.00 0.00	
238.10 238.30	0.07	0.00	0.07	0.00	
238.50	0.08	0.00	0.08	0.00	WQV Elev
238.70	0.09	0.00	0.09	0.00	= 239.34
238.90	0.09	0.00	0.09	0.00	
239.10	0.09	0.00	0.09	0.00	WQV
239.30	0.10	0.00	0.10	0.00	Discharge
239.50	0.10	0.00	0.10	0.00	= 0.10 CFS
239.70	0.19	0.08	0.10	0.00	
239.90	0.31	0.20	0.11	0.00	
240.10	0.39	0.28	0.11	0.00	
240.30	0.45	0.33	0.11	0.00	
240.50	0.50	0.38	0.12	0.00	
240.70 240.90	0.55 0.59	0.43 0.47	0.12 0.12	0.00 0.00	
240.90	0.59	0.47	0.12	0.00	
241.10	0.03	0.50	0.13	0.00	
241.50	0.70	0.57	0.13	0.00	
241.70	0.73	0.60	0.13	0.00	
241.90	0.76	0.63	0.14	0.00	
242.10	0.79	0.66	0.14	0.00	
242.30	0.82	0.68	0.14	0.00	
242.50	0.85	0.71	0.14	0.00	
242.70	0.88	0.73	0.15	0.00	
242.90	0.90	0.76	0.15	0.00	
243.10	2.23	2.08	0.15	0.00	
243.30 243.50	7.71 15.07	7.55 14.92	0.15 0.16	0.00 0.00	
243.50	19.71	14.92	0.16	4.40	
243.90	28.44	15.38	0.16	12.90	
244.10	40.86	15.61	0.16	25.10	
244.30	54.49	15.83	0.16	38.50	
244.50	69.81	16.05	0.17	53.60	
244.70	86.89	16.26	0.17	70.46	
244.90	105.10	16.48	0.17	88.46	
245.10	123.72	16.69	0.17	106.86	
245.30	144.58	16.89	0.17	127.51	
245.50	166.62	17.10 17.30	0.18	149.34	
245.70 245.90	190.04 214.59	17.30 17.50	0.18 0.18	172.55 196.91	
240.90	214.09	17.50	0.10	190.91	

Stage-Area-Storage for Pond 107P: Rain Garden #107

	_		-			
Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
236.50	2,293	0	241.80	6,879	10,712	
236.60	2,293	92	241.90	6,879	11,233	
236.70	2,293	183	242.00	6,879	11,769	
236.80	2,293	275	242.10	6,879	12,321	
236.90	2,293	367	242.20	6,879	12,890	
237.00	2,293	459	242.30	6,879	13,477	
237.10	2,293	550	242.40	6,879	14,082	
237.20	2,293	642	242.50	6,879	14,704	
237.30	2,293	734	242.60	6,879	15,345	
237.40	2,293	825	242.70	6,879	16,005	
237.50	4,586	917	242.80	6,879	16,683	
237.60	4,586	963	242.90	6,879	17,380	
237.70	4,586	1,009	243.00	6,879	18,097	
237.80	4,586	1,055	243.10	6,879	18,833	
237.90	4,586	1,101	243.20	6,879	19,589	
238.00	4,586	1,147	243.30	6,879	20,366	
238.10	4,586	1,192	243.40	6,879	21,162	
238.20	4,586	1,238	243.50	6,879	21,980	
238.30	4,586	1,284	243.60	6,879	22,818	
238.40	4,586	1,330	243.70	6,879	23,677	
238.50	4,586	1,376	243.80	6,879	24,558	
238.60	4,586	1,422	243.90	6,879	25,461	
238.70	4,586	1,468	244.00	7,350	26,385	
238.80	4,586	1,513	244.10	7,353	26,433	
238.90	4,586	1,559	244.20	7,356	26,480	
239.00	6,879	1,605	244.30	7,359	26,528	
239.10	6,879	1,651	244.40	7,361	26,576	Lowest
239.20	6,879	1,697	244.50	7,364	26,625	outlet =
239.30	6,879	1,835	244.60	7,367	26,673	239.50
239.40	6,879	2,071	244.70	7,370	26,722	
239.50	6,879	2,315	244.80	7,373	26,771	Total
239.60	6,879	2,565	244.90	7,376	26,821	Storage =
239.70	6,879	2,822	245.00	7,379	26,871	1,398 CF
239.80	6,879	3,087	245.10	7,380	26,921	
239.90	6,879	3,359	245.20	7,381	26,971	
240.00	6,879	3,639	245.30	7,382	27,021	
240.10	6,879	3,928	245.40	7,383	27,072	
240.20	6,879	4,228	245.50	7,384	27,122	
240.30	6,879	4,539	245.60	7,385	27,173	
240.40	6,879	4,862	245.70	7,386	27,223	
240.50	6,879	5,197	245.80	7,387	27,274	
240.60	6,879	5,543	245.90	7,388	27,325	
240.70	6,879	5,902	246.00	7,389	27,376	
240.80	6,879	6,273		,		
240.90	6,879	6,657				
241.00	6,879	7,053				
241.10	6,879	7,463				
241.20	6,879	7,886				
241.30	6,879	8,322				
241.40	6,879	8,772				
241.50	6,879	9,235				
241.60	6,879	9,713				
241.70	6,879	10,205				
		I				

GRAVEL WETLAND DESIGN CRITERIA (Env-Wq 1508.05)

ype/Node Name:	Subsurface Gravel Wetland #108 (108P)			
	Enter the node name in the drainage analysis if applicable.			
1.47 ac	A = Area draining to the practice			
0.21 ac	A ₁ = Impervious area draining to the practice			
0.14 decimal	I = Percent impervious area draining to the practice, in decimal form			
0.18 unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$			
0.26 ac-in	WQV= 1" x Rv x A			
948 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")			
95 cf	10% x WQV (check calc for sediment forebay)			
427 cf	45% x WQV (check calc for gravel wetland treatment bay volume)			
869 cf	V _{SED} = Sediment forebay volume	<u>></u> 10%WQV		
1,076 cf	V_{TB1} = Volume of treatment bay 1 ¹	<u>></u> 45%WQV		
1,097 cf	V_{TB2} = Volume of treatment bay 2 ⁺	<u>></u> 45%WQV		
0.02 cfs	2Q _{avg} = 2* WQV / 24 hrs * (1hr / 3600 sec) ²			
183.91 ft	E _{wqv} = Elevation of WQV (attach stage-storage table)			
0.02 cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	< 2Q _{avg}		
26.35 hours	T_{ED} = Drawdown time of extended detention = 2WQV/Q _{WQV}	<u>></u> 24-hrs		
2 or 4 :1	Pond side slopes	<u>></u> 3:1		
188.70 ft	Elevation of SHWT			
186.70 ft	SHWT - 2 feet			
183.17 ft	Epp = Elevation of the permanent pool (elevation of lowest orifice) ³	<u><</u> Е _{знwт} - 2 ft		
31 & 30 ft	Length of the flow path between the inlet and outlet in each cell	<u>></u> 15 ft		
	What mechanism is proposed to prevent the outlet structure from clog	ging (applicable for		
Angle Grate	orifices/weirs with a dimension of <u><</u> 6")?			
185.31 ft	Peak elevation of the 50-year storm event (E_{50})			
185.50 ft	Berm elevation of the pond			
YES	$E_{50} \leq$ the berm elevation?	← yes		
Qualified profession	nal that developed the planting plan			
Name, Profession				
-	ve the wetland soil and below the high flow by-pass.			
	sized so that WQV is released at a relatively stable rate.			

3. 4" to 8" below the wetland soil. If lowest orifice is higher than (SHWT - 2 feet), and saturated hydraulic conductivity (Ksat) is greater than 0.015 in/hr, the system must be lined.

Designer's Notes: K Sat Sutton > 0.015 in/hr - system to be lined with low perm material

Summary for Pond 108P: Gravel Wetland #108

Inflow Area =	1.471 ac, 14.18% Impervious, Inflow De	epth > 3.44" for 50Yr-24Hr event
Inflow =	3.56 cfs @ 12.33 hrs, Volume=	0.422 af
Outflow =	2.11 cfs @ 12.30 hrs, Volume=	0.312 af, Atten= 41%, Lag= 0.0 min
Primary =	0.02 cfs @ 12.16 hrs, Volume=	0.006 af
Secondary =	2.39 cfs @ 12.33 hrs, Volume=	0.316 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 185.31' @ 12.68 hrs Surf.Area= 8,202 sf Storage= 6,117 cf Flood Elev= 185.50' Surf.Area= 8,518 sf Storage= 7,043 cf

Plug-Flow detention time= 139.9 min calculated for 0.312 af (74% of inflow) Center-of-Mass det. time= 51.5 min (898.0 - 846.5)

Volume	Invert	Avail.Storage	Storage Description
#1	183.50'	869 cf	Forebay (Irregular)Listed below (Recalc)
#2	183.50'	1,076 cf	Cell #1 (Irregular)Listed below (Recalc)
#3	183.50'	1,097 cf	Cell #2 (Irregular) Listed below (Recalc)
#4	184.50'	6,712 cf	Open Water Storage (Irregular)Listed below (Recalc)
#5	183.17'	6 cf	2.00'D x 1.83'H 4' Structure

9,759 cf Total Available Storage

287 499
5,173 Area <u>sq-ft)</u> 886
,107 ,351
Area <u>sq-ft)</u> 905
,126 ,367
Area <u>sq-ft)</u> 2,662 4,884 0,776

20-065 Proposed Analysis

Type III 24-hr 50Yr-24Hr Rainfall=7.01" Printed 12/7/2023

Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	183.17'	12.0" Round 12" HDPE
			L= 35.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 183.17' / 183.00' S= 0.0049 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Secondary	183.25'	12.0" Round 12" HDPE N-12
			L= 47.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 183.25' / 183.00' S= 0.0053 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#3	Device 1	183.17'	1.0" Vert. 1.0" Orifice C= 0.600
#4	Device 2	184.00'	3.0" W x 9.0" H Vert. 3"Wx6"T Slot C= 0.600
#5	Device 2	184.75'	60.0" Horiz. 5' Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.02 cfs @ 12.16 hrs HW=184.55' TW=183.93' (Dynamic Tailwater)

-1=12" HDPE (Passes 0.02 cfs of 2.96 cfs potential flow) -3=1.0" Orifice (Orifice Controls 0.02 cfs @ 3.76 fps)

Secondary OutFlow Max=1.20 cfs @ 12.33 hrs HW=184.91' TW=184.81' (Dynamic Tailwater) **2=12**" **HDPE N-12** (Inlet Controls 1.20 cfs @ 1.53 fps) -4=3"Wx6"T Slot (Passes < 0.29 cfs potential flow) -5=5' Grate (Passes < 2.92 cfs potential flow)

Stage-Area-Storage for Pond 108P: Gravel Wetland #108

ElevationStorage (cubic-feet)ElevationStorage (cubic-feet)ElevationStorage (cubic-feet)183.170184.251,811185.296,030183.210184.251,870185.316,123183.230184.291,988185.356,312183.240184.332,109185.336,217183.250184.332,109185.376,408183.270184.332,109185.376,604183.310184.372,231185.436,698183.351184.412,355185.476,894183.371184.432,448185.577,944183.431184.472,546185.557,194183.451184.512,677185.577,398183.451184.512,677185.577,398183.5122184.572,885185.637,014183.55106184.613,030185.677,812183.55106184.613,030185.677,812183.55106184.673,259185.738,238183.57149184.653,181185.778,365183.63280184.653,181185.778,455183.57144184.673,259185.738,238183.57149184.653,181185.778,455183.61<					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
183.190184.251.870185.316.123183.210184.271.929185.336.217183.230184.291.988185.356.312183.250184.312.048185.376.408183.270184.352.169185.416.600183.310184.372.231185.456.796183.351184.432.418185.496.994183.371184.432.448185.546.994183.391184.472.546185.517.094183.431184.492.611185.557.296183.431184.492.611185.557.500183.451184.552.814185.617.604183.491184.552.814185.677.918183.5122184.572.885185.637.612183.5364184.653.181185.678.024183.55106184.613.030185.678.131183.652.80184.673.259185.758.347183.652.80184.673.269185.758.347183.653.260184.673.269185.758.347183.653.25184.713.418185.778.55183.67370184.753.583185.818.675183.755.54184.753.583185.878.99 <td></td> <td>(cubic-feet)</td> <td></td> <td></td> <td></td>		(cubic-feet)			
183.210184.271.929185.336.217183.230184.291.988185.356.312183.250184.312.048185.376.408183.270184.332.109185.396.504183.310184.372.231185.456.796183.331184.392.293185.456.796183.351184.412.355185.476.894183.371184.432.442185.517.094183.391184.472.546185.557.296183.411184.472.546185.577.398183.431184.492.611185.577.398183.451184.532.745185.677.398183.451184.572.885185.637.701183.5122184.572.885185.637.781183.55106184.613.030185.677.918183.55106184.673.295185.657.812183.55106184.673.295185.738.347183.61236184.673.295185.738.347183.61236184.673.295185.738.347183.65325184.673.533185.818.675183.65325184.713.418185.778.347183.65325184.773.667185.838.942<					
183.230184.291.988185.356.312183.250184.312.048185.376.408183.270184.352.109185.396.504183.290184.352.169185.436.698183.331184.392.293185.456.796183.351184.432.418185.496.994183.371184.432.441185.496.994183.391184.452.462185.517.094183.411184.472.546185.537.194183.431184.492.611185.557.296183.431184.552.814185.597.500183.441184.552.844185.617.641183.5122184.572.885185.637.708183.5364184.592.957185.657.812183.55106184.613.030185.677.918183.55106184.613.030185.758.347183.61226184.713.4868.024183.55106184.613.030185.758.347183.61236184.673.259185.738.238183.62280184.673.259185.758.347183.65325184.713.4633.930185.899.124183.67370184.753.583185.818.675<			1,870		
183.25 0 184.31 2.048 185.37 6.408 183.27 0 184.33 2.109 185.39 6.504 183.31 0 184.37 2.231 185.43 6.609 183.33 1 184.37 2.231 185.45 6.796 183.35 1 184.43 2.442 185.51 7.094 183.39 1 184.45 2.462 185.51 7.094 183.41 1 184.47 2.546 185.57 7.398 183.43 1 184.51 2.677 185.57 7.398 183.44 1 184.55 2.814 185.61 7.604 183.51 22 184.57 2.885 185.63 7.718 183.51 22 184.57 2.885 185.67 7.938 183.51 22 184.67 3.289 185.67 7.918 183.51 22 184.67 3.259 185.67 7.918					
183.27 0 184.33 2,109 185.39 6,504 183.29 0 184.35 2,169 185.43 6,608 183.33 1 184.37 2,231 185.43 6,698 183.33 1 184.41 2,355 185.45 6,694 183.35 1 184.41 2,355 185.47 6,894 183.37 1 184.43 2,418 185.51 7,094 183.43 1 184.45 2,462 185.51 7,094 183.43 1 184.51 2,677 185.57 7,396 183.44 1 184.55 2,814 185.63 7,604 183.45 1 184.55 2,865 185.63 7,604 183.51 22 184.57 2,885 185.63 7,614 183.55 106 184.61 3,030 185.67 8,124 183.55 106 184.67 3,259 185.63 7,812 183.55 106 184.67 3,259 185.68 8,024					
183.290184.352.169185.416.600183.310184.372.231185.456.796183.351184.432.293185.456.796183.351184.412.355185.476.894183.371184.432.482185.517.094183.391184.452.482185.517.094183.411184.452.667185.557.296183.451184.512.677185.577.398183.451184.532.745185.617.604183.5122184.572.885185.637.708183.55106184.613.030185.677.918183.55106184.613.030185.677.918183.55106184.673.259185.738.238183.61236184.673.259185.738.238183.63280184.673.259185.738.238183.61236184.773.667185.838.766183.69415184.773.667185.838.786183.71461184.773.667185.838.786183.72554184.874.112185.879.010183.75554184.813.841185.879.010183.77601184.833.930185.899.124183.796.94184.994.696185.999.					
183.310184.372.231185.436.698183.331184.412.355185.476.894183.371184.442.418185.476.894183.391184.452.482185.517.094183.431184.452.482185.517.094183.431184.452.611185.557.296183.451184.512.677185.577.398183.471184.532.745185.637.708183.491184.552.814185.637.708183.5122184.572.885185.637.612183.5364184.592.957185.657.812183.55106184.613.030185.698.024183.55106184.663.181185.718.131183.63280184.673.259185.738.238183.63280184.673.503185.758.347183.65325184.713.418185.778.455183.69415184.753.583185.818.675183.69415184.773.667185.858.98183.77607184.733.500185.799.655183.69415184.773.667185.858.98183.75554184.813.841185.879.010183.77607184.733.600185.979.655<					
183.33 1 184.43 2,293 185.45 6,794 183.35 1 184.43 2,418 185.47 6,894 183.37 1 184.43 2,418 185.49 6,994 183.39 1 184.45 2,482 185.51 7,094 183.41 1 184.45 2,611 185.55 7,296 183.45 1 184.51 2,677 185.57 7,398 183.45 1 184.53 2,745 185.61 7,604 183.51 22 184.57 2,885 185.61 7,604 183.51 22 184.59 2,957 185.65 7,812 183.55 106 184.63 3,105 185.65 7,812 183.55 106 184.63 3,105 185.65 7,813 183.61 2.36 184.65 3,181 185.77 8,238 183.63 280 184.67 3,259 185.73 8,238 183.61 2.36 184.73 3,500 185.79 8,565					
183.35 1 184.41 2,355 185.47 6,894 183.37 1 184.45 2,418 185.49 6,994 183.39 1 184.45 2,448 185.51 7,094 183.41 1 184.45 2,646 185.53 7,194 183.43 1 184.51 2,677 185.55 7,296 183.45 1 184.55 2,814 185.57 7,398 183.47 1 184.55 2,814 185.63 7,708 183.51 22 184.57 2,885 185.63 7,708 183.55 106 184.61 3,030 185.67 7,918 183.55 106 184.61 3,030 185.67 7,812 183.55 106 184.61 3,030 185.67 7,813 183.61 236 184.67 3,259 185.73 8,238 183.63 280 184.69 3,338 185.75 8,347 183.63 230 184.73 3,500 185.79 8,555 <					
183.371184.432.418185.496.994183.391184.452.482185.517.094183.411184.472.546185.537.194183.431184.492.611185.557.296183.451184.512.677185.577.398183.471184.532.745185.597.500183.491184.552.814185.617.604183.5122184.572.885185.637.708183.5364184.592.957185.657.812183.55106184.613.030185.677.918183.57149184.633.105185.698.024183.59193184.653.181185.778.238183.612.36184.673.259185.738.238183.63280184.693.338185.778.565183.612.36184.713.418185.778.455183.67370184.753.583185.818.675183.69415184.753.583185.818.675183.71461184.773.667185.858.988183.75554184.813.841185.879.010183.77601184.833.930185.879.010183.79649184.854.020185.999.700183.84697184.813.641185.97 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
183.391184.452,482185.517,094183.411184.472,546185.537,194183.431184.492,611185.557,296183.451184.512,677185.577,398183.471184.552,814185.617,604183.5122184.572,885185.637,708183.5364184.592,957185.677,918183.55106184.613,030185.677,918183.57149184.633,105185.698,024183.59193184.6673,259185.738,238183.61236184.673,259185.738,238183.63280184.693,338185.758,347183.65325184.713,418185.778,455183.67370184.733,500185.798,565183.69415184.753,583185.818,675183.73507184.793,753185.858,998183.75554184.833,930185.999,124183.79649184.874,112185.979,237183.81697184.874,120185.999,467183.83745184.894,206185.959,467183.891,045185.014,789185.979,583183.91943184.974,595185.99 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
183.411184.472,546185.537,194183.431184.492,611185.557,296183.451184.512,677185.577,398183.471184.532,745185.597,500183.491184.572,885185.637,708183.5122184.572,885185.637,718183.55106184.613,030185.677,918183.55106184.613,030185.677,918183.55106184.653,181185.718,131183.57149184.653,181185.738,224183.59193184.653,181185.738,238183.63280184.693,338185.758,347183.65325184.713,418185.778,565183.69415184.753,583185.818,675183.73507184.753,583185.818,675183.74461184.773,667185.838,786183.75554184.813,841185.879,010183.77601184.833,930185.899,124183.79649184.854,020185.919,237183.81697184.874,112185.939,552183.991,045185.014,789185.999,700183.991,045185.014,789185.99		-			
183.431184.492,611185.557,296183.451184.512,677185.577,398183.471184.532,745185.597,500183.491184.552,814185.617,604183.5122184.572,885185.637,7918183.55106184.613,030185.677,918183.55106184.613,030185.677,918183.55106184.613,030185.677,918183.59193184.653,181185.718,131183.61236184.673,259185.738,238183.63280184.693,338185.758,347183.65325184.713,418185.778,565183.67370184.733,500185.798,565183.69415184.753,583185.818,675183.71461184.773,667185.838,786183.75554184.813,841185.879,010183.77601184.833,930185.999,227183.81697184.874,112185.939,352183.87WQV Elev.843184.934,301185.979,583183.9193184.954,4954,5959,467183.891,045185.014,7894,5959,563183.9193184.934,307		-			
183.451 184.51 $2,677$ 185.57 $7,398$ 183.47 1 184.53 $2,745$ 185.59 $7,500$ 183.49 1 184.55 $2,814$ 185.61 $7,604$ 183.51 22 184.57 $2,885$ 185.63 $7,708$ 183.55 106 184.63 $3,030$ 185.67 $7,918$ 183.55 106 184.61 $3,030$ 185.67 $7,918$ 183.55 106 184.63 $3,105$ 185.69 $8,024$ 183.59 193 184.65 $3,181$ 185.75 $8,347$ 183.61 236 184.67 $3,259$ 185.73 $8,238$ 183.63 280 184.69 $3,338$ 185.75 $8,347$ 183.63 280 184.73 $3,500$ 185.79 $8,565$ 183.67 370 184.73 $3,500$ 185.79 $8,565$ 183.69 415 184.77 $3,667$ 185.83 $8,786$ 183.73 507 184.79 $3,753$ 185.85 $8,998$ 183.75 554 184.81 $3,841$ 185.97 $9,352$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.89 $1,045$ 184.99 $4,696$ 185.97 $9,583$ 183.91 934 184.97 $4,595$ $9,467$ 183.91 943 184.97 $4,595$ $9,467$ 183.99 $1,045$ 185.01 $4,789$ <td></td> <td>-</td> <td></td> <td></td> <td></td>		-			
183.471184.532,745185.597,500183.491184.552,814185.617,604183.5122184.572,885185.637,708183.55106184.613,030185.677,918183.57149184.633,105185.698,024183.57149184.633,105185.698,024183.57149184.633,105185.698,024183.59193184.653,181185.718,131183.61236184.673,259185.738,238183.63280184.693,338185.758,347183.65325184.713,418185.778,455183.67370184.733,500185.798,565183.69415184.753,583185.818,675183.71461184.773,667185.838,786183.73507184.793,753185.858,898183.75554184.813,841185.879,010183.79649184.854,020185.919,237183.81697184.874,112185.959,467183.83199144.914,301185.979,583183.9194184.974,5954,495183.9394184.974,5954,495183.94943185.014,789185.999,700 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
183.491184.552,814185.617,604183.5122184.572,885185.637,708183.5364184.592,957185.657,812183.55106184.613,030185.677,918183.57149184.633,105185.698,024183.59193184.653,181185.718,131183.61236184.673,259185.738,238183.63280184.693,338185.758,347183.65325184.713,418185.778,455183.67370184.733,500185.798,565183.69415184.753,583185.818,675183.71461184.773,667185.838,786183.75554184.813,841185.879,010183.76601184.833,930185.899,124183.79649184.854,020185.919,237183.81697184.874,112185.939,352183.83745184.894,206185.959,467183.851,045185.014,7894,595183.91943184.974,595185.999,700183.93994184.934,397185.999,700183.941,4051,308185.115,218184.031,255184.071,362185.175,483 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
183.5122184.572,885185.637,708183.5364184.613,030185.657,812183.55106184.613,030185.677,918183.57149184.633,105185.698,024183.59193184.653,181185.718,131183.61236184.673,259185.738,238183.63280184.693,338185.758,347183.65325184.713,418185.798,565183.69415184.753,563185.798,565183.69415184.753,563185.798,565183.71461184.773,667185.838,786183.73507184.793,753185.858,898183.75554184.813,841185.879,010183.77601184.833,930185.899,237183.81697184.874,112185.939,352183.83745184.874,112185.999,700183.84184.914,301185.999,583183.91943184.954,495185.999,583183.921,045185.014,7894,595183.93994184.994,596185.999,700183.991,149185.075,045185.095,131184.031,225185.175,493184.934,395 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
183.5364184.592,957185.657,812183.55106184.613,030185.677,918183.57149184.633,105185.698,024183.59193184.653,181185.718,131183.61236184.673,259185.738,238183.63280184.693,338185.758,347183.65325184.713,418185.778,455183.67370184.733,500185.798,565183.69415184.753,583185.818,675183.71461184.773,667185.838,786183.73507184.793,753185.858,898183.75554184.813,841185.879,010183.77601184.833,930185.899,124183.79649184.854,020185.919,237183.81697184.874,112185.939,352183.83745184.894,206185.959,467183.89183.91943184.954,495185.999,700183.93994184.954,495185.999,700183.93994184.994,696185.999,700183.93994184.954,955185.095,131184.031,255185.095,131184.974,595184.031,265185.07 <td></td> <td></td> <td></td> <td></td> <td></td>					
183.55106 184.61 $3,030$ 185.67 $7,918$ 183.57 149 184.63 $3,105$ 185.69 $8,024$ 183.59 193 184.65 $3,181$ 185.71 $8,131$ 183.61 236 184.67 $3,259$ 185.73 $8,238$ 183.63 280 184.69 $3,338$ 185.75 $8,347$ 183.63 280 184.69 $3,338$ 185.75 $8,238$ 183.63 280 184.73 $3,500$ 185.79 $8,565$ 183.69 415 184.75 $3,583$ 185.81 $8,675$ 183.71 461 184.77 $3,667$ 185.83 $8,786$ 183.73 507 184.79 $3,753$ 185.87 $9,010$ 183.77 601 184.83 $3,930$ 185.89 $9,124$ 183.79 649 184.85 $4,020$ 185.97 $9,237$ 183.81 697 184.87 $4,112$ 185.97 $9,583$ 183.81 697 184.87 $4,112$ 185.97 $9,583$ 183.91 943 184.93 $4,397$ 185.99 $9,700$ 183.92 $1,045$ 185.05 $4,959$ $WQV = 948 CF$ 183.99 $1,149$ 185.07 $5,045$ 843 184.97 184.07 $1,62$ 185.09 $5,131$ 184.07 $1,699$ 184.03 $1,255$ 185.09 $5,131$ 184.07 $1,663$ 184.09 $1,41$					
183.57 149 184.63 $3,105$ 185.69 $8,024$ 183.59 193 184.65 $3,181$ 185.71 $8,131$ 183.61 236 184.67 $3,259$ 185.73 $8,238$ 183.63 280 184.69 $3,338$ 185.75 $8,347$ 183.65 325 184.71 $3,418$ 185.77 $8,455$ 183.67 370 184.73 $3,500$ 185.79 $8,565$ 183.69 415 184.75 $3,583$ 185.81 $8,675$ 183.73 507 184.79 $3,753$ 185.83 $8,786$ 183.73 507 184.79 $3,753$ 185.85 $8,898$ 183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.79 649 184.85 $4,020$ 185.99 $9,124$ 183.79 649 184.87 $4,112$ 185.93 $9,352$ 183.81 697 184.87 $4,112$ 185.95 $9,467$ 183.85 WQV Elev. 843 184.93 $4,397$ 185.99 $9,700$ 183.91 943 184.95 $4,495$ $4,397$ 185.99 $9,700$ 183.92 $1,045$ 185.07 $5,045$ 84.01 $1,202$ 185.07 $5,045$ 184.03 $1,255$ 185.09 $5,131$ 184.07 $1,527$ 185.19 $5,573$ 184.13 $1,527$ 185.19 $5,573$ 184.17 $5,683$ 184.17 $5,684$					
183.59 193 184.65 $3,181$ 185.71 $8,131$ 183.61 236 184.67 $3,259$ 185.73 $8,238$ 183.63 280 184.69 $3,338$ 185.75 $8,347$ 183.65 325 184.71 $3,418$ 185.75 $8,347$ 183.67 370 184.73 $3,500$ 185.79 $8,565$ 183.67 370 184.73 $3,500$ 185.79 $8,565$ 183.67 370 184.77 $3,667$ 185.83 $8,675$ 183.73 507 184.77 $3,667$ 185.83 $8,786$ 183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.77 601 184.83 $3,930$ 185.89 $9,124$ 183.79 649 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.99 $4,206$ 185.95 $9,467$ 183.85 $1,045$ 184.95 $4,495$ $4,397$ 185.99 $9,700$ 183.91 994 184.95 $4,959$ $4,959$ $8,914$ $9,4696$ 183.95 $1,045$ 185.07 $5,045$ $8,674$ $8,99$ 183.97 $1,097$ 185.13 $5,306$ 84.07 $1,308$ 184.07 $1,308$ 185.11 $5,218$ 84.07 $5,3$					
183.61 236 184.67 $3,259$ 185.73 $8,238$ 183.63 280 184.69 $3,338$ 185.75 $8,347$ 183.65 325 184.71 $3,418$ 185.77 $8,455$ 183.69 415 184.75 $3,583$ 185.79 $8,565$ 183.69 415 184.77 $3,667$ 185.79 $8,565$ 183.71 461 184.77 $3,667$ 185.83 $8,786$ 183.73 507 184.79 $3,753$ 185.85 $8,898$ 183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.77 601 184.83 $3,930$ 185.89 $9,124$ 183.79 649 184.85 $4,020$ 185.91 $9,237$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.89 $4,206$ 185.95 $9,467$ 183.85 WQV Elev.: 843 184.93 $4,397$ 185.99 $9,700$ 183.91 943 184.95 $4,495$ 4.495 183.91 943 184.97 $4,595$ $WQV = 948$ CF 183.99 $1,149$ 185.05 $4,959$ $WQV = 948$ CF 183.99 $1,149$ 185.05 $4,959$ 4.495 184.07 $1,308$ 185.11 $5,218$ $5,306$ 184.09 $4,614$ $5,573$ $5,573$ 184.11 $1,472$ 185.17 $5,483$ 184.15 <td< td=""><td></td><td></td><td></td><td></td><td>8,024</td></td<>					8,024
183.63 280 184.69 $3,338$ 185.75 $8,347$ 183.65 325 184.71 $3,418$ 185.77 $8,455$ 183.67 370 184.73 $3,500$ 185.79 $8,565$ 183.69 415 184.75 $3,583$ 185.81 $8,675$ 183.71 461 184.77 $3,667$ 185.83 $8,786$ 183.73 507 184.79 $3,753$ 185.81 $8,675$ 183.73 507 184.79 $3,753$ 185.85 $8,898$ 183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.79 649 184.85 $4,020$ 185.99 $9,124$ 183.79 649 184.87 $4,112$ 185.93 $9,352$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.85 794 184.91 $4,301$ 185.97 $9,583$ 183.91 943 184.95 $4,495$ 185.99 $9,700$ 183.93 994 184.97 $4,595$ $WQV = 948 \ CF$ 183.99 $1,045$ 185.01 $4,789$ 185.99 $9,700$ 183.99 $1,149$ 185.05 $4,959$ 184.01 $1,202$ 185.11 $5,218$ 184.05 $1,308$ 185.11 $5,218$ $5,304$ 184.11 $1,472$ 184.13 $1,527$ 185.19 $5,573$ 184.13 $1,527$ 185.23 $5,754$ 184.19 $1,696$ 185.2					
183.65 325 184.71 $3,418$ 185.77 $8,455$ 183.67 370 184.73 $3,500$ 185.79 $8,565$ 183.69 415 184.75 $3,583$ 185.81 $8,675$ 183.71 461 184.77 $3,667$ 185.83 $8,786$ 183.73 507 184.79 $3,753$ 185.85 $8,898$ 183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.77 601 184.83 $3,930$ 185.89 $9,124$ 183.79 649 184.85 $4,020$ 185.91 $9,237$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.89 $4,206$ 185.95 $9,467$ 183.83 745 184.99 $4,301$ 185.97 $9,583$ 183.91 943 184.93 $4,397$ 185.99 $9,700$ 183.93 994 184.95 $4,495$ 183.99 $9,43$ 184.97 $4,595$ $4,495$ 183.99 $9,43$ 184.97 $4,595$ 183.93 994 184.95 $4,959$ $4,696$ $WQV = 948 CF$ 183.99 $1,149$ 185.05 $4,959$ 184.01 $1,202$ 185.17 $5,483$ 184.03 $1,255$ 185.09 $5,131$ $5,673$ 184.17 $1,639$ 185.21 $5,663$ 184.13 $1,527$ 185.21 $5,663$ 184.17 $1,639$ 185.25 $5,$					
183.67 370 184.73 $3,500$ 185.79 $8,565$ 183.69 415 184.75 $3,583$ 185.81 $8,675$ 183.71 461 184.77 $3,667$ 185.83 $8,786$ 183.73 507 184.79 $3,753$ 185.85 $8,898$ 183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.77 601 184.83 $3,930$ 185.89 $9,124$ 183.79 649 184.85 $4,020$ 185.91 $9,237$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.89 $4,206$ 185.95 $9,467$ 183.85 794 184.91 $4,301$ 185.97 $9,583$ 183.91 83 184.95 $4,495$ 185.99 $9,700$ 183.93 994 184.97 $4,595$ 185.99 $9,700$ 183.93 994 184.97 $4,595$ 184.01 $1,202$ 183.97 $1,097$ 185.03 $4,874$ 183.99 $9,149$ 184.03 $1,255$ 185.09 $5,131$ 184.05 $1,308$ 184.05 $1,308$ 185.11 $5,218$ 184.07 $1,362$ 184.07 $1,362$ 185.17 $5,673$ 184.17 $1,639$ 184.11 $1,472$ 185.19 $5,573$ 184.17 $1,639$ 184.15 $1,583$ 185.21 $5,663$ 184.19 $1,696$ 184					
183.69 415 184.75 $3,583$ 185.81 $8,675$ 183.71 461 184.77 $3,667$ 185.83 $8,786$ 183.73 507 184.79 $3,753$ 185.83 $8,786$ 183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.77 601 184.83 $3,930$ 185.89 $9,124$ 183.79 649 184.85 $4,020$ 185.91 $9,237$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.87 $4,112$ 185.95 $9,467$ 183.85 794 184.91 $4,301$ 185.97 $9,583$ 183.87 WQV Elev.: 843 184.95 $4,495$ 183.91 943 184.97 $4,595$ 185.99 $9,700$ 183.93 994 184.97 $4,595$ $WQV = 948$ CF 183.93 994 184.97 $4,595$ $WQV = 948$ CF 183.93 994 184.97 $5,513$ $5,306$ 184.03 $1,202$ 185.05 $4,959$ $WQV = 948$ CF 184.05 $1,308$ 185.11 $5,218$ $5,3364$ 184.07 $1,362$ 185.13 $5,306$ 184.07 $1,362$ 185.17 $5,673$ 184.13 $1,527$ 185.19 $5,573$ 184.15 $1,583$ 185.21 $5,663$ 184.17 $1,639$ 185.25 $5,845$					
183.71 461 184.77 $3,667$ 185.83 $8,786$ 183.73 507 184.79 $3,753$ 185.85 $8,898$ 183.73 507 184.79 $3,753$ 185.85 $8,898$ 183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.77 601 184.83 $3,930$ 185.89 $9,124$ 183.79 649 184.87 $4,112$ 185.93 $9,237$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.89 $4,206$ 185.95 $9,467$ 183.83 745 184.93 $4,397$ 185.97 $9,583$ 183.87 WQV Elev. 843 184.93 $4,397$ 185.99 $9,700$ 183.91 943 184.95 $4,495$ $4,595$ $WQV = 948 \ CF$ 183.93 994 184.99 $4,696$ $WQV = 948 \ CF$ 183.99 $1,149$ 185.05 $4,959$ $WQV = 948 \ CF$ 183.99 $1,149$ 185.05 $4,959$ $WQV = 948 \ CF$ 184.01 $1,202$ 185.07 $5,045$ 843 184.03 $1,255$ 185.09 $5,131$ 184.05 $1,308$ 185.11 $5,218$ 184.07 $1,362$ 185.17 $5,483$ 184.13 $1,527$ 185.19 $5,573$ 184.15 $1,583$ 185.21 $5,663$ 184.17 $1,639$ 185.25 $5,845$					
183.73 507 184.79 $3,753$ 185.85 $8,898$ 183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.77 601 184.83 $3,930$ 185.89 $9,124$ 183.79 649 184.85 $4,020$ 185.91 $9,237$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.89 $4,206$ 185.95 $9,467$ 183.85 WQV Elev 843 184.91 $4,301$ 185.97 $9,583$ 183.91 943 184.97 $4,595$ 185.99 $9,700$ 183.91 943 184.97 $4,595$ $WQV = 948 \ CF$ 183.93 994 184.97 $4,595$ $WQV = 948 \ CF$ 183.97 $1,097$ 185.03 $4,874$ 183.99 $1,149$ 185.05 $4,959$ 184.01 $1,202$ 185.07 $5,045$ 184.03 $1,255$ 185.09 $5,131$ 184.05 $1,308$ 185.11 $5,218$ 184.07 $1,362$ 185.17 $5,394$ 184.11 $1,472$ 185.17 $5,663$ 184.15 $1,583$ 185.21 $5,663$ 184.17 $1,639$ 185.23 $5,754$ 184.19 $1,696$ 185.25 $5,845$					
183.75 554 184.81 $3,841$ 185.87 $9,010$ 183.77 601 184.83 $3,930$ 185.89 $9,124$ 183.79 649 184.85 $4,020$ 185.91 $9,237$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.89 $4,206$ 185.95 $9,467$ 183.85 794 184.91 $4,301$ 185.97 $9,583$ 183.87 WQV Elev.: 843 184.93 $4,397$ 185.99 $9,700$ 183.89 183.91 943 184.97 $4,595$ 893 184.97 $4,595$ 183.91 943 184.97 $4,595$ $WQV = 948$ CF 183.93 994 184.99 $4,696$ $WQV = 948$ CF 183.99 $1,149$ 185.05 $4,959$ 184.01 $1,202$ 185.07 $5,045$ 184.03 $1,255$ 185.09 $5,131$ 184.07 $1,362$ 185.13 $5,306$ 184.09 $1,417$ 185.15 $5,394$ 184.11 $1,472$ 185.17 $5,483$ 184.13 $1,527$ 185.23 $5,754$ 184.17 $1,639$ 185.23 $5,754$ 184.19 $1,696$ 185.25 $5,845$					
183.77 601 184.83 $3,930$ 185.89 $9,124$ 183.79 649 184.85 $4,020$ 185.91 $9,237$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.87 $4,206$ 185.95 $9,467$ 183.85 794 184.91 $4,301$ 185.97 $9,583$ 183.87 WQV Elev.: 843 184.93 $4,397$ 185.99 $9,700$ 183.89 183.91 893 184.95 $4,495$ 185.99 $9,700$ 183.91 943 184.97 $4,595$ $WQV = 948$ CF 183.93 994 184.97 $4,595$ $WQV = 948$ CF 183.95 $1,045$ 185.01 $4,789$ 183.97 $1,097$ 185.03 $4,874$ 183.99 $1,149$ 185.05 $4,959$ 184.01 $1,202$ 185.07 $5,045$ 184.03 $1,255$ 185.09 $5,131$ 184.07 $1,362$ 185.13 $5,304$ 184.09 $1,417$ 185.15 $5,394$ 184.09 $1,417$ 185.17 $5,483$ 184.11 $1,472$ 185.19 $5,573$ 184.15 $1,583$ 185.21 $5,663$ 184.17 $1,639$ 185.23 $5,754$ 184.19 $1,696$ 185.25 $5,845$					
183.79 649 184.85 $4,020$ 185.91 $9,237$ 183.81 697 184.87 $4,112$ 185.93 $9,352$ 183.83 745 184.89 $4,206$ 185.95 $9,467$ 183.85 WQV Elev 843 184.91 $4,301$ 185.97 $9,583$ 183.87 WQV Elev 843 184.93 $4,397$ 185.99 $9,700$ 183.91 943 184.95 $4,495$ 185.97 $9,583$ 183.91 943 184.97 $4,595$ $WQV = 948 CF$ 183.93 994 184.99 $4,696$ $WQV = 948 CF$ 183.95 $1,045$ 185.01 $4,789$ $WQV = 948 CF$ 183.97 $1,047$ 185.05 $4,959$ $WQV = 948 CF$ 184.01 $1,202$ 185.07 $5,045$ $5,045$ 184.03 $1,255$ 185.09 $5,131$ 184.05 $1,308$ 185.11 $5,218$ 184.09 $1,417$ 185.15 $5,394$ 184.11 $1,472$ 185.17 $5,483$ 184.13 $1,527$ 185.19 $5,573$ 184.15 $1,583$ 185.21 $5,663$ 184.17 $1,639$ 185.25 $5,845$					
183.81697184.874,112185.939,352183.83745184.894,206185.959,467183.85WQV Elev.:843184.914,301185.979,583183.87WQV Elev.:843184.934,397185.999,700183.89183.91893184.954,495185.999,700183.91943184.974,595185.999,700183.93994184.994,696WQV = 948 CF183.951,045185.014,789183.971,097185.034,874183.991,149185.054,959184.011,202185.075,045184.031,255185.095,131184.051,308185.115,218184.071,362185.135,306184.091,417185.155,394184.111,472185.175,483184.131,527185.195,573184.151,583185.215,663184.171,639185.235,754184.191,696185.255,845					
183.83745184.894,206185.959,467183.85WQV Elev.:843184.914,301185.979,583183.87183.91893184.954,495185.999,700183.93943184.974,595185.999,700183.93994184.994,696WQV = 948 CF183.951,045185.014,789183.971,097185.034,874183.991,149185.054,959184.011,202185.075,045184.031,255185.095,131184.051,308185.115,218184.091,417185.155,394184.111,472185.175,483184.131,527185.195,573184.151,583185.215,663184.171,639185.235,754184.191,696185.255,845					
183.85 183.87794 WQV Elev.: 843 183.91184.91 184.934,301 4,397 4,397 183.99185.97 9,583 185.999,700183.89184.93 183.91184.95 9434,495 184.97 4,595185.99 183.97 1,045184.97 185.01 4,7894,595 4,696183.97 183.991,045 1,045185.01 185.03 4,8744,874 4,595183.99 184.01 184.03 184.03 184.05 184.03 184.07185.05 185.09 185.11 1,3084,874 4,595184.07 184.09 184.11 184.17 185.15 184.13 184.15 184.15 184.17185.17 1,639 185.23 185.255,845					
183.87 183.91 WQV Elev.: 843 184.93 $4,397$ 183.91 185.99 $9,700$ 183.89 183.91 893 184.95 $4,495$ 183.91 943 184.97 $4,595$ 183.93 994 184.97 $4,595$ 183.95 $1,045$ 185.01 $4,789$ 183.97 $1,097$ 185.03 $4,874$ 183.99 $1,149$ 185.05 $4,959$ 184.01 $1,202$ 185.07 $5,045$ 184.03 $1,255$ 185.09 $5,131$ 184.05 $1,308$ 185.11 $5,218$ 184.07 $1,362$ 185.13 $5,306$ 184.09 $1,417$ 185.15 $5,394$ 184.11 $1,472$ 185.17 $5,483$ 184.15 $1,583$ 185.21 $5,663$ 184.17 $1,639$ 185.23 $5,754$ 184.19 $1,696$ 185.25 $5,845$					
183.89183.91893184.954,495183.91943184.974,595183.93994184.994,696183.951,045185.014,789183.971,097185.034,874183.991,149185.054,959184.011,202185.075,045184.031,255185.095,131184.051,308185.115,218184.071,362185.135,306184.091,417185.155,394184.111,472185.175,483184.131,527185.195,573184.151,583185.215,663184.171,639185.235,754184.191,696185.255,845					
183.91 943 184.97 $4,595$ 183.93 994 184.99 $4,696$ 183.95 $1,045$ 185.01 $4,789$ 183.97 $1,097$ 185.03 $4,874$ 183.99 $1,149$ 185.05 $4,959$ 184.01 $1,202$ 185.07 $5,045$ 184.03 $1,255$ 185.09 $5,131$ 184.05 $1,308$ 185.11 $5,218$ 184.07 $1,362$ 185.13 $5,306$ 184.09 $1,417$ 185.15 $5,394$ 184.11 $1,472$ 185.17 $5,483$ 184.15 $1,583$ 185.21 $5,663$ 184.17 $1,639$ 185.23 $5,754$ 184.19 $1,696$ 185.25 $5,845$				105.99	9,700
183.93 994 184.99 $4,696$ 183.95 $1,045$ 185.01 $4,789$ 183.97 $1,097$ 185.03 $4,874$ 183.99 $1,149$ 185.05 $4,959$ 184.01 $1,202$ 185.07 $5,045$ 184.03 $1,255$ 185.09 $5,131$ 184.05 $1,308$ 185.11 $5,218$ 184.07 $1,362$ 185.13 $5,306$ 184.09 $1,417$ 185.15 $5,394$ 184.11 $1,472$ 185.17 $5,483$ 184.15 $1,583$ 185.21 $5,663$ 184.17 $1,639$ 185.23 $5,754$ 184.19 $1,696$ 185.25 $5,845$	183.05	093			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				WQV =	948 CF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
184.051,308185.115,218184.071,362185.135,306184.091,417185.155,394184.111,472185.175,483184.131,527185.195,573184.151,583185.215,663184.171,639185.235,754184.191,696185.255,845					
184.071,362185.135,306184.091,417185.155,394184.111,472185.175,483184.131,527185.195,573184.151,583185.215,663184.171,639185.235,754184.191,696185.255,845					
184.091,417185.155,394184.111,472185.175,483184.131,527185.195,573184.151,583185.215,663184.171,639185.235,754184.191,696185.255,845		,			
184.111,472185.175,483184.131,527185.195,573184.151,583185.215,663184.171,639185.235,754184.191,696185.255,845					
184.131,527185.195,573184.151,583185.215,663184.171,639185.235,754184.191,696185.255,845					
184.151,583185.215,663184.171,639185.235,754184.191,696185.255,845					
184.171,639185.235,754184.191,696185.255,845					
184.19 1,696 185.25 5,845					
		,	,	l	

Stage-Discharge for Pond 108P: Gravel Wetland #108

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Elevation	Discharge	Primary		Elevation	Discharge	Primary	Secondary
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
183.270.010.010.00185.925.300.045.26183.370.010.010.00185.975.370.045.33183.420.010.010.00183.470.010.00183.470.010.010.00183.520.010.010.00183.520.020.020.000.00183.670.020.020.00183.670.020.020.000.01183.970.020.020.00183.870.020.020.00183.970.020.020.00183.970.020.020.00183.91183.910.020.00184.070.040.020.01183.910.030.06184.170.080.030.06184.470.290.030.26184.470.290.030.260.390.39184.670.470.030.16184.570.380.030.360.360.360.36184.570.380.030.35184.670.470.030.44184.720.520.030.26184.971.571.53184.870.520.030.391.531.531.531.531.531.531.53184.670.470.030.443.831.561.440.044.111.521.571.531.531.531.531.531.531.531.53<	183.17		0.00	0.00	185.82		0.04	5.12
183.320.010.010.00183.320.010.010.00183.420.010.010.00183.420.010.010.00183.570.020.020.00183.620.020.020.00183.770.020.020.00183.820.020.020.00183.830.020.020.00183.840.020.020.00183.870.020.020.00183.870.020.020.00183.970.020.020.00183.970.020.020.00184.070.040.020.00184.170.060.030.03184.170.080.030.06184.270.140.030.16184.270.140.030.16184.470.290.030.26184.520.330.300.35184.620.420.030.34184.620.420.030.34184.770.720.030.44184.720.520.030.36184.520.330.300.35184.620.420.030.34184.670.420.030.44185.073.960.043.83185.174.140.044.11185.224.720.044.88185.324.400.044.76185.57 <t< td=""><td>183.22</td><td>0.00</td><td>0.00</td><td>0.00</td><td></td><td></td><td>0.04</td><td></td></t<>	183.22	0.00	0.00	0.00			0.04	
183.370.010.010.00183.420.010.010.00183.470.010.010.00183.520.010.010.00183.620.020.020.00183.670.020.020.00183.770.020.020.00183.870.020.020.00183.970.020.020.00183.970.020.020.00184.070.040.020.01184.120.060.030.06184.220.110.030.11184.220.170.030.15184.270.140.030.16184.220.170.030.16184.470.250.030.26184.570.380.030.30184.670.470.030.44184.720.520.030.32184.670.470.030.44184.720.520.030.39184.670.470.030.44184.720.520.030.39184.670.470.033.74185.023.670.043.83185.023.670.044.83185.174.140.044.19185.224.230.044.28185.524.720.044.83185.574.800.044.76185.624.870.044.83185.67 <t< td=""><td>183.27</td><td>0.01</td><td>0.01</td><td>0.00</td><td>185.92</td><td>5.30</td><td>0.04</td><td>5.26</td></t<>	183.27	0.01	0.01	0.00	185.92	5.30	0.04	5.26
183.420.010.010.00183.470.010.010.00183.520.010.010.00183.670.020.020.00183.770.020.020.00183.820.020.020.00183.920.020.020.00183.920.020.020.00183.920.020.020.00184.070.040.020.00184.170.060.030.03184.270.140.030.15184.270.140.030.16184.280.170.030.18184.420.250.030.26184.520.330.030.35184.620.420.030.39184.670.470.030.18184.770.720.030.44184.770.720.030.49184.670.470.030.35184.620.420.030.39184.670.470.030.44184.770.720.033.74185.073.960.043.93185.124.060.044.83185.244.260.044.28185.374.480.044.42185.524.720.044.83185.524.720.044.83185.524.720.044.83185.574.800.044.66185.52 <t< td=""><td>183.32</td><td>0.01</td><td>0.01</td><td>0.00</td><td>185.97</td><td>5.37</td><td>0.04</td><td>5.33</td></t<>	183.32	0.01	0.01	0.00	185.97	5.37	0.04	5.33
183.470.010.010.00183.520.010.010.00183.570.020.020.00183.670.020.020.00183.770.020.020.00183.870.020.020.00183.870.020.020.00183.970.020.020.00183.970.020.020.00183.970.020.020.00184.020.030.020.01184.120.060.030.03184.170.080.030.06184.220.110.030.08184.230.210.030.15184.370.210.030.16184.520.330.30184.570.380.30184.570.380.30184.570.330.30184.570.330.30184.570.330.30184.570.330.30184.570.330.30184.570.440.33185.073.96184.872.790.03185.174.140.044.36185.274.32185.174.48185.244.56185.574.80185.574.80185.674.96185.674.96185.674.95185.674.95185.674.95185.674.95185.6	183.37	0.01	0.01	0.00				
183.470.010.010.00183.520.010.010.00183.570.020.020.00183.670.020.020.00183.770.020.020.00183.870.020.020.00183.870.020.020.00183.970.020.020.00183.970.020.020.00183.970.020.020.00184.020.030.020.01184.120.060.030.03184.170.080.030.06184.220.110.030.08184.230.210.030.15184.370.210.030.16184.520.330.30184.570.380.30184.570.380.30184.570.330.30184.570.330.30184.570.330.30184.570.330.30184.570.330.30184.570.440.33185.073.96184.872.790.03185.174.140.044.36185.274.32185.174.48185.244.56185.574.80185.574.80185.674.96185.674.96185.674.95185.674.95185.674.95185.674.95185.6	183.42	0.01	0.01	0.00				
183.520.010.010.00183.570.020.020.00183.620.020.020.00183.770.020.020.00183.870.020.020.00183.970.020.020.00183.970.020.020.00183.970.020.020.00184.070.040.020.00184.170.060.030.03184.220.110.030.06184.270.140.030.15184.420.210.030.26184.420.240.030.30184.570.380.030.35184.620.420.030.39184.670.470.030.15184.670.420.030.39184.670.470.030.44184.770.720.030.55184.620.420.030.39184.670.470.030.51184.872.790.032.75184.923.670.033.64185.124.050.044.02185.174.180.044.11185.224.720.044.83185.524.720.044.83185.624.870.044.83185.624.870.044.83185.674.950.044.98			0.01					
183.57 0.02 0.02 0.00 183.62 0.02 0.02 0.00 183.72 0.02 0.02 0.00 183.77 0.02 0.02 0.00 183.87 0.02 0.02 0.00 183.92 0.02 0.02 0.00 183.97 0.02 0.02 0.00 184.07 0.04 0.02 0.01 184.12 0.06 0.03 0.03 184.17 0.08 0.03 0.03 184.22 0.11 0.03 0.16 184.22 0.17 0.03 0.15 184.37 0.25 0.03 0.22 184.47 0.25 0.03 0.26 184.57 0.38 0.03 0.36 184.57 0.38 0.03 0.35 184.57 0.38 0.03 0.35 184.57 0.38 0.03 0.35 184.62 0.47 0.03 0.44 184.72 0.52 0.03 0.35 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 185.07 3.96 0.04 4.28 185.12 4.06 0.04 4.28 185.37 4.48 0.04 4.68 185.52 4.72 0.04 4.83 185.67 4.36 0.04 4.98 185.67 4.86 0.04 4.98								
183.62 0.02 0.02 0.00 183.67 0.02 0.02 0.00 183.77 0.02 0.02 0.00 183.87 0.02 0.02 0.00 183.92 0.02 0.02 0.00 183.97 0.02 0.02 0.00 183.97 0.02 0.02 0.00 184.07 0.04 0.02 0.00 184.17 0.06 0.03 0.03 184.17 0.06 0.03 0.03 184.17 0.06 0.03 0.03 184.27 0.14 0.03 0.16 184.28 0.11 0.03 0.16 184.29 0.11 0.03 0.16 184.29 0.17 0.03 0.16 184.29 0.17 0.03 0.16 184.52 0.33 0.03 0.30 184.67 0.47 0.03 0.44 184.72 0.52 0.03 0.49 184.74 0.52 0.03 0.49 184.75 0.33 0.03 0.30 184.67 0.47 0.03 0.44 184.72 0.52 0.03 0.49 184.75 3.37 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.00 0.44 185.22 4.23 0.04 4.28 185.37 4.48 0.04 4.68 185.57 4.30 0.04 4.52 185.57 4.36 0.04 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
183.67 0.02 0.02 0.00 183.72 0.02 0.02 0.00 183.82 0.02 0.02 0.00 183.82 0.02 0.02 0.00 183.97 0.02 0.02 0.00 183.97 0.02 0.02 0.00 184.07 0.04 0.02 0.01 184.17 0.06 0.03 0.03 184.22 0.11 0.03 0.06 184.22 0.14 0.03 0.16 184.22 0.14 0.03 0.16 184.22 0.14 0.03 0.16 184.37 0.25 0.03 0.22 184.47 0.25 0.03 0.22 184.47 0.25 0.03 0.22 184.47 0.25 0.03 0.30 184.57 0.38 0.03 0.36 184.57 0.38 0.03 0.36 184.57 0.38 0.03 0.35 184.62 0.47 0.03 0.44 184.72 0.52 0.03 0.49 184.87 2.79 0.03 2.75 184.92 3.67 0.04 3.93 185.12 4.06 0.04 4.02 185.17 4.14 0.04 4.02 185.17 4.48 0.04 4.28 185.27 4.32 0.04 4.36 185.52 4.72 0.04 4.83 185.57 4.80 0.04 4.83 185.57 4.80 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
183.72 0.02 0.02 0.00 183.87 0.02 0.02 0.00 183.82 0.02 0.02 0.00 183.97 0.02 0.02 0.00 184.02 0.03 0.02 0.00 184.07 0.04 0.02 0.00 184.17 0.06 0.03 0.03 184.22 0.11 0.03 0.06 184.37 0.21 0.03 0.11 184.42 0.11 0.03 0.16 184.47 0.29 0.33 0.16 184.47 0.29 0.33 0.26 184.47 0.29 0.33 0.26 184.47 0.29 0.33 0.30 184.47 0.29 0.33 0.30 184.47 0.29 0.33 0.30 184.47 0.47 0.03 0.44 184.52 0.33 0.03 0.30 184.67 0.47 0.03 0.44 184.77 0.72 0.03 0.49 184.77 0.77 0.03 3.64 184.82 1.57 0.03 3.64 184.97 3.77 0.03 3.74 185.07 3.96 0.04 3.93 185.12 4.00 4.41 185.22 4.23 0.04 4.28 185.37 4.48 0.04 4.76 185.52 4.72 0.04 4.83 185.67 4.96 0.04 4.83 185.67 4.96 0.04 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
183.77 0.02 0.02 0.00 183.82 0.02 0.02 0.00 183.92 0.02 0.02 0.00 183.92 0.02 0.02 0.00 184.02 0.03 0.02 0.00 184.07 0.04 0.02 0.01 184.17 0.06 0.03 0.03 184.22 0.11 0.03 0.06 184.22 0.11 0.03 0.16 184.37 0.21 0.03 0.16 184.47 0.29 0.03 0.22 184.47 0.29 0.03 0.22 184.47 0.29 0.03 0.22 184.47 0.29 0.03 0.26 184.52 0.33 0.03 0.35 184.62 0.42 0.03 0.35 184.62 0.42 0.03 0.35 184.62 0.42 0.03 0.39 184.77 0.72 0.03 0.49 184.77 0.72 0.03 0.49 184.77 0.72 0.03 1.53 184.87 2.79 0.03 3.74 185.02 3.67 0.04 3.83 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.37 4.86 0.04 4.52 185.47 4.64 0.04 4.60 185.57 4.80 0.04 4.83 185.67 4.95 0.04 4.83 185.57 4.80 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
183.82 0.02 0.02 0.00 183.87 0.02 0.02 0.00 183.97 0.02 0.02 0.00 184.07 0.04 0.02 0.00 184.07 0.04 0.02 0.01 184.12 0.06 0.03 0.03 184.17 0.04 0.02 0.01 184.22 0.11 0.03 0.08 184.27 0.14 0.03 0.16 184.37 0.21 0.03 0.16 184.47 0.29 0.03 0.26 184.47 0.29 0.03 0.26 184.52 0.33 0.03 0.39 184.67 0.47 0.03 0.15 184.62 0.42 0.03 0.39 184.67 0.47 0.03 0.39 184.67 0.47 0.03 0.39 184.67 0.47 0.03 0.51 184.92 3.67 0.03 3.64 184.92 3.67 0.03 3.64 185.12 4.06 0.04 4.91 185.22 4.32 0.04 4.36 185.37 4.48 0.04 4.42 185.37 4.48 0.04 4.60 185.52 4.72 0.04 4.83 185.67 4.96 0.04 4.83 185.67 4.95 0.04 4.98								
183.87 0.02 0.02 0.00 WQV Elev.: 183.91 183.97 0.02 0.02 0.00 184.02 0.03 0.02 0.00 184.07 0.04 0.02 0.01 184.12 0.06 0.03 0.03 184.17 0.06 0.03 0.06 184.22 0.11 0.03 0.06 184.27 0.14 0.03 0.11 184.37 0.21 0.03 0.16 184.42 0.25 0.03 0.22 184.47 0.29 0.03 0.22 184.47 0.29 0.03 0.22 184.47 0.29 0.03 0.22 184.57 0.38 0.03 0.36 184.52 0.33 0.30 0.36 184.62 0.42 0.03 0.49 184.62 0.42 0.03 0.49 184.62 0.42 0.03 0.49 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 185.02 3.87 0.04 3.83 185.02 3.87 0.04 3.93 185.12 4.05 0.44 185.32 4.40 0.04 185.37 4.48 0.04 4.68 185.57 4.80 185.57 4.80 185.57 4.95 185.67 4.95 185.77 5.02 0.04 4.98								
183.92 0.02 0.02 0.02 0.00 184.02 0.03 0.02 0.00 184.07 0.04 0.02 0.01 184.17 0.06 0.03 0.03 184.17 0.06 0.03 0.06 184.22 0.11 0.03 0.06 184.22 0.11 0.03 0.16 184.22 0.11 0.03 0.16 184.37 0.21 0.03 0.15 184.37 0.21 0.03 0.15 184.42 0.25 0.03 0.22 184.47 0.29 0.3 0.26 184.52 0.33 0.03 0.30 184.67 0.47 0.03 0.39 184.67 0.47 0.03 0.44 184.77 0.72 0.03 0.69 184.82 1.57 0.03 1.53 184.82 1.57 0.03 3.64 184.97 3.77 0.3 3.74 185.02 3.87 0.04 3.83 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.32 4.40 0.44 4.28 185.57 4.80 0.44 4.83 185.67 4.95 0.04 4.98 185.77 5.02 0.04 4.98					WQV Elev.:			
183.97 0.02 0.02 0.00 184.07 0.04 0.02 0.00 184.07 0.04 0.02 0.01 184.17 0.06 0.03 0.03 184.17 0.08 0.03 0.06 184.22 0.11 0.03 0.06 184.27 0.14 0.03 0.11 184.32 0.17 0.03 0.15 184.37 0.21 0.03 0.16 184.47 0.29 0.03 0.22 184.47 0.29 0.03 0.22 184.52 0.33 0.30 184.52 0.33 0.30 184.52 0.33 0.30 184.52 0.33 0.30 184.67 0.42 0.03 0.44 184.77 0.72 0.33 0.44 184.77 0.72 0.03 0.42 0.33 0.49 184.77 0.72 0.33 184.77 0.72 0.33 184.87 2.79 184.87 2.79 0.33 2.65 184.97 3.77 0.33 0.44 184.97 3.77 0.33 0.44 184.97 3.77 0.33 0.44 185.12 4.05 4.14 0.04 4.19 185.27 4.32 185.37 4.48 0.04 4.60 185.57 4.60 185.57 4.60 <					183.91			
184.02 0.03 0.02 0.00 WQV Discharge = 0.02 CFS 184.07 0.04 0.02 0.01 $= 0.02$ CFS 184.17 0.08 0.03 0.06 184.22 0.11 0.03 0.08 184.27 0.14 0.03 0.11 184.37 0.21 0.03 0.15 184.37 0.21 0.03 0.15 184.37 0.21 0.03 0.12 184.47 0.29 0.03 0.22 184.47 0.29 0.03 0.26 184.57 0.38 0.03 0.39 184.62 0.42 0.03 0.49 184.77 0.72 0.03 0.49 184.77 0.72 0.03 0.49 184.82 1.57 0.03 1.53 184.82 1.57 0.03 3.64 184.92 3.67 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.27 4.32 0.04 4.28 185.22 4.23 0.04 4.28 185.32 4.40 0.04 4.52 185.47 4.64 0.04 4.52 185.47 4.64 0.04 4.68 185.57 4.80 0.04 4.83 185.67 4.95 0.04 4.98 185.77 5.02 0.04 4.98								
184.07 0.04 0.02 0.01 $= 0.02 CFS$ 184.12 0.06 0.03 0.03 0.06 184.22 0.11 0.03 0.06 184.27 0.14 0.03 0.16 184.27 0.14 0.03 0.11 184.37 0.21 0.03 0.15 184.37 0.21 0.03 0.22 184.47 0.29 0.03 0.22 184.47 0.29 0.03 0.26 184.52 0.33 0.03 0.30 184.57 0.38 0.03 0.35 184.62 0.47 0.03 0.44 184.77 0.72 0.03 0.49 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 184.92 3.67 0.03 3.64 184.92 3.67 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.28 185.27 4.32 0.04 4.28 185.37 4.40 0.04 4.36 185.57 4.80 0.04 4.52 185.57 4.80 0.04 4.52 185.67 4.95 0.04 4.83 185.67 4.95 0.04 4.83 185.67 4.95 0.04 4.98 185.72 5.02 0.04 4.98					WQV Disc	harge		
184.12 0.06 0.03 0.03 184.17 0.08 0.03 0.06 184.22 0.11 0.03 0.16 184.27 0.14 0.03 0.11 184.32 0.17 0.03 0.15 184.37 0.21 0.03 0.15 184.37 0.21 0.03 0.12 184.47 0.29 0.03 0.22 184.47 0.29 0.03 0.26 184.57 0.38 0.03 0.30 184.57 0.38 0.03 0.39 184.62 0.42 0.03 0.44 184.77 0.72 0.03 0.49 184.77 0.72 0.03 0.69 184.82 1.57 0.03 1.53 184.87 2.79 0.03 2.75 184.97 3.77 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.32 4.40 0.04 4.28 185.32 4.40 0.04 4.52 185.47 4.64 0.04 4.68 185.57 4.80 0.04 4.76 185.67 4.95 0.04 4.83 185.67 4.95 0.04 4.98 185.72 5.02 0.04 <td></td> <td></td> <td></td> <td></td> <td>= 0.02</td> <td>2 CFS</td> <td></td> <td></td>					= 0.02	2 CFS		
184.17 0.08 0.03 0.06 184.22 0.11 0.03 0.08 184.27 0.14 0.03 0.11 184.32 0.17 0.03 0.15 184.37 0.21 0.03 0.18 184.42 0.25 0.03 0.22 184.47 0.29 0.03 0.26 184.52 0.33 0.03 0.30 184.57 0.38 0.03 0.39 184.67 0.42 0.03 0.39 184.67 0.42 0.03 0.44 184.77 0.72 0.03 0.49 184.77 0.72 0.03 0.49 184.82 1.57 0.03 2.75 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.17 4.14 0.04 4.11 185.27 4.32 0.04 4.28 185.37 4.40 0.04 4.28 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.68 185.57 4.80 0.04 4.76 185.67 4.96 0.04 4.83 185.67 4.95 0.04 4.98					L			
184.220.110.030.08 184.27 0.140.030.11 184.32 0.170.030.15 184.37 0.210.030.18 184.42 0.250.030.22 184.47 0.290.030.26 184.57 0.380.030.30 184.57 0.380.030.35 184.67 0.470.030.44 184.72 0.520.030.69 184.82 1.570.030.49 184.87 2.790.032.75 184.87 2.790.033.64 184.97 3.670.033.74 185.02 3.870.043.83 185.12 4.050.044.02 185.17 4.140.044.11 185.22 4.230.044.28 185.37 4.480.044.44 185.42 4.560.044.36 185.57 4.800.044.68 185.57 4.800.044.68 185.57 4.800.044.76 185.67 4.950.044.93								
184.27 0.14 0.03 0.11 184.32 0.17 0.03 0.15 184.37 0.21 0.03 0.18 184.42 0.25 0.03 0.22 184.47 0.29 0.03 0.26 184.52 0.33 0.03 0.30 184.57 0.38 0.03 0.35 184.62 0.42 0.03 0.39 184.67 0.47 0.03 0.44 184.72 0.52 0.03 0.44 184.77 0.72 0.03 0.69 184.82 1.57 0.03 1.53 184.82 1.57 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.27 4.32 0.04 4.28 185.37 4.48 0.04 4.44 185.52 4.72 0.04 4.83 185.57 4.80 0.04 4.68 185.57 4.80 0.04 4.76 185.67 4.95 0.04 4.98								
184.32 0.17 0.03 0.15 184.37 0.21 0.03 0.18 184.42 0.25 0.03 0.22 184.47 0.29 0.03 0.26 184.52 0.33 0.03 0.30 184.57 0.38 0.03 0.35 184.67 0.42 0.03 0.34 184.67 0.47 0.03 0.44 184.72 0.52 0.03 0.49 184.77 0.72 0.03 0.69 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.32 4.40 0.04 4.28 185.37 4.48 0.04 4.44 185.47 4.64 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.67 4.80 0.04 4.76 185.67 4.80 0.04 4.91 185.72 5.02 0.04 4.98								
184.37 0.21 0.03 0.18 184.42 0.25 0.03 0.22 184.47 0.29 0.03 0.26 184.52 0.33 0.03 0.30 184.57 0.38 0.03 0.35 184.62 0.42 0.03 0.39 184.67 0.47 0.03 0.44 184.77 0.52 0.03 0.69 184.87 2.79 0.03 2.75 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.02 3.87 0.04 3.83 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.37 4.48 0.04 4.44 185.47 4.64 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
184.42 0.25 0.03 0.22 184.47 0.29 0.03 0.26 184.52 0.33 0.03 0.30 184.57 0.38 0.03 0.35 184.62 0.42 0.03 0.39 184.67 0.47 0.03 0.44 184.72 0.52 0.03 0.49 184.77 0.72 0.03 0.69 184.82 1.57 0.03 1.53 184.82 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.40 0.04 4.28 185.32 4.40 0.04 4.28 185.37 4.48 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.83 185.67 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
184.47 0.29 0.03 0.26 184.52 0.33 0.03 0.30 184.57 0.38 0.03 0.35 184.62 0.42 0.03 0.39 184.67 0.47 0.03 0.44 184.72 0.52 0.03 0.49 184.77 0.72 0.03 0.69 184.82 1.57 0.03 1.53 184.82 1.57 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.37 4.48 0.04 4.28 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.83 185.67 4.80 0.04 4.83 185.67 4.80 0.04 4.83 185.67 4.80 0.04 4.83 185.72 5.02 0.04 4.98								
184.52 0.33 0.03 0.30 184.57 0.38 0.03 0.35 184.62 0.42 0.03 0.39 184.67 0.47 0.03 0.44 184.72 0.52 0.03 0.49 184.77 0.72 0.03 0.69 184.82 1.57 0.03 1.53 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.37 4.48 0.04 4.36 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.83 185.67 4.80 0.04 4.76 185.67 4.80 0.04 4.83 185.67 4.80 0.04 4.83 185.67 4.95 0.04 4.98								
184.57 0.38 0.03 0.35 184.62 0.42 0.03 0.39 184.67 0.47 0.03 0.44 184.72 0.52 0.03 0.49 184.77 0.72 0.03 0.69 184.82 1.57 0.03 1.53 184.82 1.57 0.03 2.75 184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.12 4.05 0.04 4.93 185.12 4.05 0.04 4.11 185.22 4.23 0.04 4.28 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.36 185.57 4.80 0.04 4.52 185.47 4.64 0.04 4.68 185.57 4.80 0.04 4.83 185.67 4.87 0.04 4.83 185.67 4.87 0.04 4.83 185.67 4.87 0.04 4.83 185.67 4.87 0.04 4.83 185.67 4.95 0.04 4.98								
184.62 0.42 0.03 0.39 184.67 0.47 0.03 0.44 184.72 0.52 0.03 0.49 184.77 0.72 0.03 0.69 184.82 1.57 0.03 2.75 184.92 3.67 0.03 3.64 184.92 3.67 0.03 3.74 185.02 3.87 0.04 3.83 185.02 3.87 0.04 3.83 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.27 4.32 0.04 4.28 185.37 4.48 0.04 4.28 185.37 4.48 0.04 4.44 185.47 4.64 0.04 4.68 185.57 4.80 0.04 4.83 185.57 4.80 0.04 4.76 185.67 4.95 0.04 4.98 185.77 5.02 0.04 4.98								
184.67 0.47 0.03 0.44 184.72 0.52 0.03 0.49 184.77 0.72 0.03 0.69 184.82 1.57 0.03 1.53 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.19 185.27 4.32 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.52 185.47 4.64 0.04 4.60 185.57 4.80 0.04 4.68 185.57 4.80 0.04 4.76 185.67 4.95 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
184.72 0.52 0.03 0.49 184.77 0.72 0.03 0.69 184.82 1.57 0.03 1.53 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.37 4.48 0.04 4.28 185.37 4.48 0.04 4.52 185.47 4.64 0.04 4.52 185.57 4.80 0.04 4.60 185.52 4.72 0.04 4.83 185.67 4.95 0.04 4.98 185.67 4.95 0.04 4.98								
184.77 0.72 0.03 0.69 184.82 1.57 0.03 1.53 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.44 185.47 4.64 0.04 4.68 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
184.82 1.57 0.03 1.53 184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.37 4.32 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.98 185.72 5.02 0.04 4.98								
184.87 2.79 0.03 2.75 184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.37 4.32 0.04 4.28 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
184.92 3.67 0.03 3.64 184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.28 185.27 4.32 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
184.97 3.77 0.03 3.74 185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.19 185.27 4.32 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.98								
185.02 3.87 0.04 3.83 185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.19 185.27 4.32 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
185.07 3.96 0.04 3.93 185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.19 185.27 4.32 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
185.12 4.05 0.04 4.02 185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.19 185.27 4.32 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
185.17 4.14 0.04 4.11 185.22 4.23 0.04 4.19 185.27 4.32 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
185.22 4.23 0.04 4.19 185.27 4.32 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
185.27 4.32 0.04 4.28 185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
185.32 4.40 0.04 4.36 185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
185.37 4.48 0.04 4.44 185.42 4.56 0.04 4.52 185.47 4.64 0.04 4.60 185.52 4.72 0.04 4.68 185.57 4.80 0.04 4.76 185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
185.524.720.044.68185.574.800.044.76185.624.870.044.83185.674.950.044.91185.725.020.044.98								
185.574.800.044.76185.624.870.044.83185.674.950.044.91185.725.020.044.98								
185.62 4.87 0.04 4.83 185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
185.67 4.95 0.04 4.91 185.72 5.02 0.04 4.98								
185.72 5.02 0.04 4.98		-						
					I			

TREATMENT SWALE DESIGN CRITERIA (Env-Wq 1508.08)

Node Name: Treatment Swale #1 Reach 33

Enter the node name in the drainage analysis (e.g., reach TS 5), if applicable.yesYes/NoHave you reviewed the restrictions on unlined swales outlined in Env-Wq 1508.08(a)?YESYes/NoIs the system lined? (required if not treated or if above SHWT)0.39acA = Area draining to the practice0.15acA ₁ = Impervious area draining to the practice6.0minutesT _c = Time of Concentration0.38decimalI = Percent impervious area draining to the practice, in decimal form	
0.39acA = Area draining to the practice 0.15 acA ₁ = Impervious area draining to the practice 6.0 minutesT _c = Time of Concentration	
0.15ac A_1 = Impervious area draining to the practice6.0minutes T_c = Time of Concentration	
6.0 minutes T_c = Time of Concentration	
0.38 decimal I = Percent impervious area draining to the practice, in decimal form	
0.39 unitless Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.15 ac-in WQV= 1" x Rv x A	
550 cf WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
<u>1</u> inches P = Amount of rainfall. For WQF in NH, P = 1".	
0.39 inches D_{WQ} = Water quality depth. D_{WQ} = WQV/A	
92 unitless CN = Unit peak discharge curve number. CN = $1000/(10+5P+10Q-10*[Q^2+1.25*Q*P]^{0.5})$	
0.90 inches S = Potential maximum retention. S = (1000/CN) - 10	
0.181 inches Ia = initial abstraction. Ia = 0.2S	
$645 \text{ cfs/mi}^2/\text{in } q_u = Unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III$	
0.15 cfs WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 mi^2/640 ac$	
<u>135.00</u> feet $L = Swale length 1 \geq 100'$	
8.00 feet $w = Bottom of the swale width^2$ 0 - 8 feet	
182.00 feet E_{SHWT} = Elevation of SHWT. If none found, use the lowest elev. of test pit.	
184.00 feet E_{BTM} = Elevation of the bottom of the practice $\geq E_{SHWT}$	
6.00 :1 SS_{RIGHT} = Right side slope \geq 3:1	
6.00 :1 SS_{LEFT} = Left side slope \geq 3:1	
0.01 ft/ft S = Slope of swale in decimal form ³ 0.00505	
1.14 inches d = Flow depth in swale at WQF (attach stage-discharge table) <a> <a>	
0.15 unitless d must be < 4", therefore Manning's n = 0.15	
0.81 ft ² Cross-sectional area check (assume trapezoidal channel)	
9.16 feet Check wetted perimeter	
0.14 cfs WQF _{check} . ⁴ WQF _{check} = WQI	?
-10% Percent difference between WQF _{check} and WQF ⁴ +/- 10%	
12 minutesHRT = hydraulic residence time during the WQF> 10 min	
185.18 ft Peak elevation of the 10-year storm event ⁵	
186.00 ft Elevation of the top of the swale	
YESYes/No10 peak elevation \leq the top of swale \leftarrow yes	

1. Any portion of the swale that is in a roadside ditch shall not count towards the swale length.

2. Widths up to 16' allowed if a dividing berm or structure is used such that neither width is more than 8'.

3. If > 0.02 (2%) then check dams are required. No additional detention time is credited for check dams.

4. The WQF_{check} & WQF should be near equal (within 10%) if you have selected the correct depth off the stage-

5. If the swale does not discharge the 50-year storm without overtopping, hydrologic routing of secondary discharge

Designer's Notes: Forebay CF size is 217 CF at elevation 185.0 10% WQV = 55 CF Pre-Treatment Req.

provided

GENERAL CALCULATIONS - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP **that does not fit into one of the specific worksheets already provided** (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)

Water Quality Volume (WQV)

0.39 ac	A = Area draining to the practice
0.15 ac	A _I = Impervious area draining to the practice
0.38 decimal	I = Percent impervious area draining to the practice, in decimal form
0.39 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)
0.15 ac-in	WQV= 1" x Rv x A
550 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1 inches	P = Amount of rainfall. For WQF in NH, $P = 1$ ".
0.39 inches	Q = Water quality depth. Q = WQV/A
92 unitless	CN = Unit peak discharge curve number. CN = $1000/(10+5P+10Q-10*[Q^2 + 1.25*Q*P]^{0.5})$
0.9 inches	S = Potential maximum retention. S = (1000/CN) - 10
0.181 inches	Ia = Initial abstraction. Ia = 0.2S
6.0 minutes	T _c = Time of Concentration
645.0 cfs/mi ² /ir	q _u is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III.
0.153 cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 mi^2/640 ac$.

Designer's Notes:

Summary for Reach 33R: Reach #33 Treatment Swale

 Inflow Area =
 0.389 ac, 37.71% Impervious, Inflow Depth >
 1.36" for 10Yr-24Hr event

 Inflow =
 0.63 cfs @
 12.14 hrs, Volume=
 0.044 af

 Outflow =
 0.44 cfs @
 12.26 hrs, Volume=
 0.044 af, Atten= 29%, Lag= 7.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 0.27 fps, Min. Travel Time= 8.3 min Avg. Velocity = 0.10 fps, Avg. Travel Time= 22.4 min

Peak Storage= 222 cf @ 12.26 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 1.00' Flow Area= 14.0 sf, Capacity= 10.03 cfs

8.00' x 1.00' deep channel, n= 0.140 Side Slope Z-value= 6.0 '/' Top Width= 20.00' Length= 135.0' Slope= 0.0074 '/' Inlet Invert= 185.00', Outlet Invert= 184.00'

‡

Stage-Discharge for Reach 33R: Reach #33 Treatment Swale

	elocity	Discharge	Elevation		Discharge	
	ft/sec)	(cfs)	(feet)	(ft/sec)	(cfs)	
185.00	0.00	0.00	185.53	0.50	2.99	
185.01 185.02	0.04 0.07	0.00 0.01	185.54 185.55	0.51 0.51	3.09 3.20	
185.02	0.07	0.01	185.56	0.51	3.20	
185.04	0.03	0.02	185.57	0.52	3.42	
185.05	0.12	0.05	185.58	0.53	3.53	
185.06	0.14	0.07	185.59	0.54	3.64	
185.07	0.15	0.09	185.60	0.54	3.76	
185.08	0.16	0.11	185.61	0.55	3.88	
185.09	0.18	0.14	185.62	0.55	4.00	WQF =
185.10	0.19	0.16	185.63	0.56	4.12	0.15 CFS
185.11	0.20	0.19	185.64	0.56	4.24	
185.12	0.21	0.22	185.65	0.56	4.37	WQF Flow
185.13	0.22	0.25	185.66	0.57	4.50	depth =
185.14	0.23	0.29	185.67	0.57	4.63	185.095
185.15	0.24	0.32	185.68	0.58	4.76	(1.14 in)
185.16 185.17	0.25	0.36 0.40	185.69 185.70	0.58	4.89	()
185.18	0.26 0.27	0.40	185.70	0.59 0.59	5.03 5.16	
185.19	0.27	0.44	185.72	0.60	5.30	
185.20	0.20	0.53	185.73	0.60	5.44	
185.21	0.30	0.58	185.74	0.61	5.59	
185.22	0.30	0.62	185.75	0.61	5.73	
185.23	0.31	0.67	185.76	0.62	5.88	
185.24	0.32	0.73	185.77	0.62	6.03	
185.25	0.33	0.78	185.78	0.62	6.18	
185.26	0.34	0.83	185.79	0.63	6.33	
185.27	0.34	0.89	185.80	0.63	6.49	
185.28	0.35	0.95	185.81	0.64	6.64	
185.29	0.36	1.01	185.82	0.64	6.80	
185.30	0.36	1.07	185.83	0.65	6.96	
185.31	0.37	1.14	185.84	0.65	7.13 7.29	
185.32 185.33	0.38 0.39	1.20 1.27	185.85 185.86	0.65 0.66	7.29	
185.34	0.39	1.34	185.87	0.66	7.63	
185.35	0.40	1.41	185.88	0.67	7.80	
185.36	0.41	1.48	185.89	0.67	7.98	
185.37	0.41	1.56	185.90	0.68	8.15	
185.38	0.42	1.63	185.91	0.68	8.33	
185.39	0.42	1.71	185.92	0.68	8.51	
185.40	0.43	1.79	185.93	0.69	8.69	
185.41	0.44	1.87	185.94	0.69	8.88	
185.42	0.44	1.95	185.95	0.70	9.06	
185.43	0.45	2.04	185.96	0.70	9.25	
185.44	0.45	2.13	185.97	0.70	9.44	
185.45 185.46	0.46 0.47	2.22 2.31	185.98 185.99	0.71 0.71	9.64 9.83	
185.46	0.47	2.31	185.99	0.71 0.72	9.83 10.03	
185.48	0.47	2.40	100.00	0.72	10.03	
185.49	0.48	2.59				
185.50	0.49	2.68				
185.51	0.49	2.78				
185.52	0.50	2.89				
			l			

Туре

BUFFER DESIGN CRITERIA (Env-Wq 1508.09)

Roadway Buffer Frederick Lane RT 0+00-2+00

Enter the type of buffer (e.g., residential buffer) and the node name in the drainage analysis, if applicable.

Yes		Yes/No	Is the buffer adjacent to the area that you are treating?	← yes
Yes		Yes/No	Does the runoff enter the buffer as sheet flow (naturally or w	ith a level spreader?)
No		Yes/No	Has a level spreader been provided?	
	100.0	%F	% Forest (F) cover in the buffer (remaining assumed to be me	adow (M))
	-	%M	% Meadow cover in the buffer	
	-	%A	Hydrologic soil group (HSG) <u>in buffer</u> (%A, %B, %C). Remaining assu	umed to be D soil
	100.0	%В		
	-	%C		
	-	%D		
	6.0	%	Buffer slope	<u><</u> 15%

If a Residential or Small Pervious Area Buffer is Proposed:

	Yes/No	Is the runoff from a single family or duplex residential lot?	← yes
		L _{FP} = Maximum flow path to the buffer	
	ас	A = Area draining to the buffer	
	ac	A _{IMP} = Impervious area draining to the buffer	
-	%	I = Percent impervious area draining to the buffer	<u><</u> 10%
FALSE		Option A check: $A_{IMP} \leq 1$ ac & $L_{FP} \leq 100'$	← yes for
ALSE		Option B check: I $\leq 10\%$ & L _{FP} $\leq 150'$	A or B
No		Level Spreader proposed? (Sheet flow without the aid of a LS)	← no
Good		Slope check	<u><</u> 15%
Z	15 feet	Buffer base length due to soil type (weighted based on HSG)	
1	L2 feet	Buffer length adjustment due to steepness of buffer	
-	feet	Buffer length adjustment due to percent of meadow in buffer	
5	7 feet	Minimum buffer length required ¹	

If a Developed Area Buffer with a Level Spreader is Proposed:

No		Is a level spreader proposed?	← yes
	ac	A = Area draining to the buffer 2	
	ac	A _I = Impervious area draining to the buffer ²	
-	%	Percent impervious of the area that is draining to the buffer	
Good		Slope check	<u><</u> 15%
-	sf	Buffer base area due to soil type in the buffer (weighted base	ed on HSG)
-	sf	Buffer area adjustment due to impervious cover draining to b	ouffer
-	sf	Buffer area adjustment due to steepness of buffer	
-	sf	Buffer area adjustment due to percent of meadow in buffer	
-	sf	A _{MIN} = Minimum buffer area required	
	ft	L _{LS} = Total length of level spreader(s) provided ³	
	ft	$L_B = Buffer length^4$	
-	sf	A _B = Buffer area provided	<u>≥</u> A _{MIN}

If a Roadway Buffer is Proposed:

No		Yes/No	LS proposed? Roadway/shoulder must sheet directly to the buffer.	← no
No		Yes/No	Do any other areas drain to the buffer (other than roadway & shoul	der)? 🗲 no
Yes		Yes/No	Is the road parallel to the contours of the buffer slope?	← yes
Good			Natural slope check ⁵	<u><</u> 20%
	-	feet	How much embankment slope counts toward the buffer? ⁶	0 - 20 feet
	1.0	Lane(s)	Number of travel lanes draining to the buffer	
	50.0		Minimum buffer flow path (L _{MIN})	
	50.0	feet	Buffer flow path	<u>≥</u> L _{MIN}

If a Ditch Turn Out Buffer is Proposed:

No		Level spreader proposed?	← yes
	feet	Level spreader length ⁷	
	Yes/No	Do any other areas drain to the buffer (other than roadway & shou	lder)? 🗲 no
	sf	Drainage area to the ditch	<u><</u> 6000 sf
Good		Slope check	<u><</u> 15%
-	feet	Buffer base length due to soil type (weighted based on HSG)	
12	2 feet	Buffer length adjustment due to steepness of buffer	
-	feet	Buffer length adjustment due to percent of meadow in buffer	
50) feet	Minimum buffer length required ⁸	

1. Minimum buffer length is the total of the above three cells OR 45', whichever is greater.

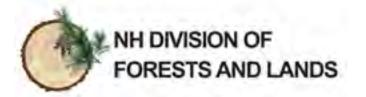
2. If a detention structure is used upstream of the level spreader, the drainage area draining to the buffer shall considered equal to 1 acre of impervious area for every 1 cfs of peak 2-year, 24-hr outflow from the detention structure.

3. Minimum level spreader length is 20 feet and maximum is 50 feet. You may use multiple level spreaders if the stormwater is evenly distributed to them.

Example: $A_{MIN} = 6,000$ sf with a 100' buffer available. Therefore the LS lengths must total 60 feet (6,000 sf/ 100'); however LS lengths must be between 20' and 50' so one 60' long level spreader is not permitted. The design would have two LS, each 30'. As long as a collection basin is provided to evenly distribute the flow to the two level spreaders.

4. Minimum buffer length 50 feet.

5. If the slope is man-made, it must be 15% or flatter.


6. 20' (max) of the roadway embankment slope may count towards the buffer length if it is 3:1 or flatter.

7. Minimum level spreader length is 20 feet and maximum is 50 feet. You may use multiple level spreaders if the stormwater is evenly distributed to them. For example, you may have a total length of 100 feet for the level spreaders as long as you have two 50' level spreaders.

8. Minimum buffer length is the total of the above three cells OR 50', whichever is greater.

Designer's Notes:

Embankment is 2:1, does not count towards buffer length

Request for NHB Review of Potential Impacts from the NHB DataCheck Tool

NHB ID # NHB23-0799

Applicant: Kenneth Berry Berry Surveying & Engineering 335 Second Crown Point Road Barrington NH 03825

Project Location: Tax Map: 23 Tax Lot#: 11 Address: Smoke Street Town: Nottingham Date Submitted: 03/13/2023

Landowner: Fredrick Fernald Po Box 1805 Wolfeboro NH 03290

Payment Information. These fields MUST be filled out.

Account Name:

(As printed on the check, money order or voucher)

Enclose this completed form with a check, money order or voucher for \$25.00, made out to "Treasurer, State of NH".

Send the check, money order or voucher and the completed form to the following address:

Dept. of Natural and Cultural Resources Attn: NHB Reviews 172 Pembroke Road Concord, NH 03301

NHB reviews will be completed 5-20 working days from payment, depending on permit type.

IMPORTANT: your submission is considered complete if all of the following is included/filled out:

- 1. This completed form;
- 2. A \$25 check that is completely filled out (including a signature, date, payable to Treasurer of NH, and the NHB ID # in the memo); and
- 3. The envelope is addressed Attn: NHB Reviews.

NHB is unable to process incomplete submissions.

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Rockingham County, New Hampshire

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	
Map Unit Legend	
Map Unit Descriptions	. 12
Rockingham County, New Hampshire	
12A—Hinckley loamy sand, 0 to 3 percent slopes	. 14
12B—Hinckley loamy sand, 3 to 8 percent slopes	
12C—Hinckley loamy sand, 8 to 15 percent slopes	17
30B—Unadilla very fine sandy loam, 3 to 8 percent slopes	. 19
38B—Eldridge fine sandy loam, 3 to 8 percent slopes	
43C—Canton fine sandy loam, 8 to 15 percent slopes, very stony	
43D—Canton fine sandy loam, 15 to 25 percent slopes, very stony	23
45C—Montauk fine sandy loam, 8 to 15 percent slopes, very stony	. 24
67B—Paxton fine sandy loam, 0 to 8 percent slopes, very stony	. 26
67C—Paxton fine sandy loam, 8 to 15 percent slopes, very stony	
67D—Paxton fine sandy loam, 15 to 25 percent slopes, very stony	. 29
97—Freetown and Natchaug mucky peats, ponded, 0 to 2 percent	
slopes	
129B—Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	
140B—Chatfield-Hollis-Canton complex, 0 to 8 percent slopes, rocky	
140C—Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, rocky	
140D—Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, rocky	
295—Freetown mucky peat, 0 to 2 percent slopes	
298—Pits, sand and gravel	
299—Udorthents, smoothed	
313A—Deerfield loamy fine sand, 0 to 3 percent slopes	
313B—Deerfield loamy fine sand, 3 to 8 percent slopes	
395—Swansea mucky peat, 0 to 2 percent slopes	
447B—Scituate-Newfields complex, 3 to 8 percent slopes, very stony	
495—Natchaug mucky peat, 0 to 2 percent slopes	
538A—Squamscott fine sandy loam, 0 to 5 percent slopes	
547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony	
657B—Ridgebury fine sandy loam, 3 to 8 percent slopes, very stony	
W—Water	
References	59

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

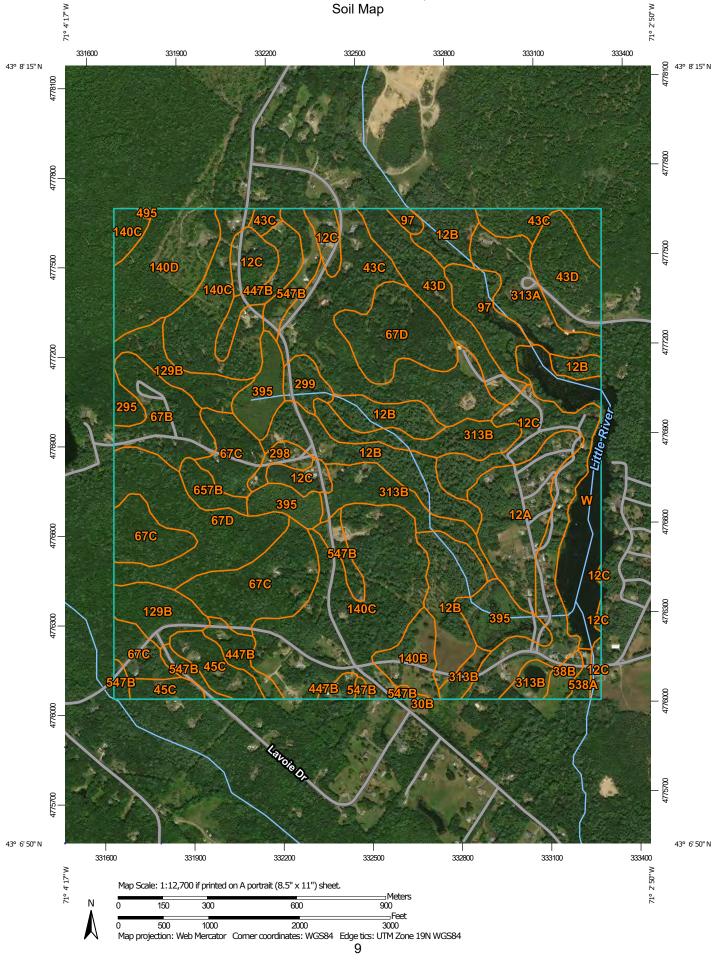
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

MAP LEGEND				MAP INFORMATION		
	erest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.		
Soils	Soil Map Unit Polygons Soil Map Unit Lines	© ∜	Very Stony Spot Wet Spot	Please rely on the bar scale on each map sheet for map measurements.		
Special	Soil Map Unit Points Point Features		Other Special Line Features	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)		
0	Blowout Borrow Pit	Water Fea	Streams and Canals	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the		
× ◇ ✓	Clay Spot Closed Depression Gravel Pit	***	Rails Interstate Highways	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.		
 	Gravelly Spot	~	US Routes Major Roads Local Roads	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.		
<u>م</u>	Lava Flow Marsh or swamp	Backgrou		Soil Survey Area: Rockingham County, New Hampshire Survey Area Data: Version 24, Aug 31, 2021 Soil map units are labeled (as space allows) for map scales		
☆ ©	Mine or Quarry Miscellaneous Water			1:50,000 or larger. Date(s) aerial images were photographed: Aug 28, 2015—May		
0 ~	Perennial Water Rock Outcrop			15, 2017 The orthophoto or other base map on which the soil lines were		
+	Saline Spot Sandy Spot Severely Eroded Spot			compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		
¢ >	Sinkhole Slide or Slip					
ø	Sodic Spot					

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
12A	Hinckley loamy sand, 0 to 3 percent slopes	26.6	4.0%
12B	Hinckley loamy sand, 3 to 8 percent slopes	55.9	8.4%
12C	Hinckley loamy sand, 8 to 15 percent slopes	54.9	8.2%
30B	Unadilla very fine sandy loam, 3 to 8 percent slopes	0.2	0.0%
38B	Eldridge fine sandy loam, 3 to 8 percent slopes	2.9	0.4%
43C	Canton fine sandy loam, 8 to 15 percent slopes, very stony	54.1	8.1%
43D	Canton fine sandy loam, 15 to 25 percent slopes, very stony	34.3	5.1%
45C	Montauk fine sandy loam, 8 to 15 percent slopes, very stony	12.3	1.8%
67B	Paxton fine sandy loam, 0 to 8 percent slopes, very stony	17.9	2.7%
67C	Paxton fine sandy loam, 8 to 15 percent slopes, very stony	49.9	7.5%
67D	Paxton fine sandy loam, 15 to 25 percent slopes, very stony	51.1	7.6%
97	Freetown and Natchaug mucky peats, ponded, 0 to 2 percent slopes	13.8	2.1%
129B	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	21.6	3.2%
140B	Chatfield-Hollis-Canton complex, 0 to 8 percent slopes, rocky	9.5	1.4%
140C	Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, rocky	83.5	12.5%
140D	Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, rocky	25.3	3.8%
295	Freetown mucky peat, 0 to 2 percent slopes	2.9	0.4%
298	Pits, sand and gravel	3.6	0.5%
299	Udorthents, smoothed	5.2	0.8%
313A	Deerfield loamy fine sand, 0 to 3 percent slopes	18.0	2.7%
313B	Deerfield loamy fine sand, 3 to 8 percent slopes	33.4	5.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
395	Swansea mucky peat, 0 to 2 percent slopes	25.1	3.7%
447B	Scituate-Newfields complex, 3 to 8 percent slopes, very stony	15.9	2.4%
495	Natchaug mucky peat, 0 to 2 percent slopes	0.3	0.1%
538A	Squamscott fine sandy loam, 0 to 5 percent slopes	2.0	0.3%
547B	Walpole very fine sandy loam, 3 to 8 percent slopes, very stony	16.8	2.5%
657B	Ridgebury fine sandy loam, 3 to 8 percent slopes, very stony	5.0	0.7%
W	Water	26.1	3.9%
Totals for Area of Interest		668.1	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Rockingham County, New Hampshire

12A—Hinckley loamy sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2svm7 Elevation: 0 to 1,420 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hinckley

Setting

Landform: Outwash terraces, outwash plains, kame terraces, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material *A - 1 to 8 inches:* loamy sand *Bw1 - 8 to 11 inches:* gravelly loamy sand *Bw2 - 11 to 16 inches:* gravelly loamy sand *BC - 16 to 19 inches:* very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 5 percent Landform: Outwash deltas, outwash terraces, kame terraces Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent Landform: Outwash deltas, outwash terraces, kame terraces Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Hydric soil rating: No

Windsor

Percent of map unit: 5 percent Landform: Outwash deltas, kame terraces, outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Hydric soil rating: No

12B—Hinckley loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svm8 Elevation: 0 to 1,430 feet Mean annual precipitation: 36 to 53 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hinckley

Setting

Landform: Outwash deltas, outwash terraces, kames, kame terraces, moraines, eskers, outwash plains

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread

Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material *A - 1 to 8 inches:* loamy sand *Bw1 - 8 to 11 inches:* gravelly loamy sand *Bw2 - 11 to 16 inches:* gravelly loamy sand *BC - 16 to 19 inches:* very gravelly loamy sand *C - 19 to 65 inches:* very gravelly sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 8 percent Landform: Outwash deltas, outwash terraces, moraines, eskers, kames, outwash plains, kame terraces Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread

Down-slope shape: Concave, convex, linear *Across-slope shape:* Convex, linear, concave

Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent

Landform: Outwash deltas, outwash terraces, moraines, outwash plains, kame terraces

Landform position (two-dimensional): Backslope, footslope

Landform position (three-dimensional): Head slope, side slope, base slope, tread *Down-slope shape:* Concave, linear *Across-slope shape:* Concave, linear

Hydric soil rating: No

Agawam

Percent of map unit: 2 percent

Custom Soil Resource Report

Landform: Moraines, eskers, kames, outwash plains, kame terraces, outwash deltas, outwash terraces
 Landform position (two-dimensional): Summit, shoulder, backslope, footslope
 Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread
 Down-slope shape: Concave, convex, linear
 Across-slope shape: Convex, linear, concave
 Hydric soil rating: No

12C—Hinckley loamy sand, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2svm9 Elevation: 0 to 1,480 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hinckley

Setting

- *Landform:* Outwash deltas, outwash terraces, moraines, eskers, kames, outwash plains, kame terraces
- Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope

Landform position (three-dimensional): Head slope, nose slope, side slope, crest, riser

Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand

Bw2 - 11 to 16 inches: gravelly loamy sand

BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 8 to 15 percent Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Runoff class: Very low

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm) Available water supply, 0 to 60 inches: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 5 percent
Landform: Moraines, eskers, kames, outwash deltas, outwash terraces, outwash plains, kame terraces
Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, crest, riser
Down-slope shape: Concave, convex, linear
Across-slope shape: Convex, linear, concave
Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent
 Landform: Outwash deltas, moraines, outwash plains, kame terraces, outwash terraces
 Landform position (two-dimensional): Backslope, footslope
 Landform position (three-dimensional): Base slope, tread
 Down-slope shape: Concave, linear

Across-slope shape: Concave, linear

Hydric soil rating: No

Merrimac

Percent of map unit: 5 percent

Landform: Kames, outwash plains, outwash terraces, moraines, eskers Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Head slope, nose slope, side slope, crest, riser Down-slope shape: Convex

Across-slope shape: Convex Hydric soil rating: No

30B—Unadilla very fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9cmz Elevation: 90 to 1,800 feet Mean annual precipitation: 28 to 55 inches Mean annual air temperature: 45 to 54 degrees F Frost-free period: 110 to 180 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Unadilla and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Unadilla

Typical profile

H1 - 0 to 4 inches: very fine sandy loam *H2 - 4 to 30 inches:* very fine sandy loam *H3 - 30 to 60 inches:* very fine sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Ecological site: F144AY024NY - Well Drained Eolian Outwash Hydric soil rating: No

Minor Components

Slope inclusion

Percent of map unit: 5 percent Hydric soil rating: No

Scio

Percent of map unit: 5 percent Hydric soil rating: No Eldridge

Percent of map unit: 5 percent Hydric soil rating: No

38B—Eldridge fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9cnb Elevation: 90 to 1,000 feet Mean annual precipitation: 30 to 55 inches Mean annual air temperature: 45 to 54 degrees F Frost-free period: 120 to 180 days Farmland classification: All areas are prime farmland

Map Unit Composition

Eldridge and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Eldridge

Setting

Parent material: Outwash over glaciolacustrine

Typical profile

H1 - 0 to 8 inches: fine sandy loam
H2 - 8 to 23 inches: loamy fine sand
H3 - 23 to 62 inches: loamy very fine sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)
Depth to water table: About 12 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: C/D Ecological site: F144AY027MA - Moist Sandy Outwash Hydric soil rating: No

Minor Components

Boxford

Percent of map unit: 5 percent Hydric soil rating: No

Well drained inclusion

Percent of map unit: 5 percent Hydric soil rating: No

Scitico

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

Squamscott

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

43C—Canton fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w814 Elevation: 0 to 1,160 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Canton, very stony, and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Canton, Very Stony

Setting

Landform: Moraines, ridges, hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 5 inches:* fine sandy loam *Bw1 - 5 to 16 inches:* fine sandy loam *Bw2 - 16 to 22 inches:* gravelly fine sandy loam

2C - 22 to 67 inches: gravelly loamy sand

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural stratification
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Montauk, very stony

Percent of map unit: 6 percent Landform: Recessionial moraines, ground moraines, hills, drumlins Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Scituate, very stony

Percent of map unit: 5 percent Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Chatfield, very stony

Percent of map unit: 3 percent Landform: Hills, ridges Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Swansea

Percent of map unit: 1 percent *Landform:* Marshes, depressions, bogs, swamps, kettles *Down-slope shape:* Concave Across-slope shape: Concave Hydric soil rating: Yes

43D—Canton fine sandy loam, 15 to 25 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w81h Elevation: 70 to 1,120 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Canton, very stony, and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Canton, Very Stony

Setting

Landform: Moraines, hills, ridges Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 5 inches:* fine sandy loam *Bw1 - 5 to 16 inches:* fine sandy loam *Bw2 - 16 to 22 inches:* gravelly fine sandy loam *2C - 22 to 67 inches:* gravelly loamy sand

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural stratification
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Chatfield, very stony

Percent of map unit: 6 percent Landform: Ridges, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Montauk, very stony

Percent of map unit: 5 percent Landform: Hills, drumlins, recessionial moraines, ground moraines Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Newfields, very stony

Percent of map unit: 4 percent Landform: Ground moraines, hills, moraines Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

45C—Montauk fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w80w Elevation: 0 to 1,120 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Montauk, very stony, and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Montauk, Very Stony

Setting

Landform: Hills, recessionial moraines, ground moraines, drumlins Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex, linear

Across-slope shape: Convex

Parent material: Coarse-loamy over sandy lodgment till derived from gneiss, granite, and/or schist

granito, ana/

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material

A - 2 to 6 inches: fine sandy loam

Bw1 - 6 to 28 inches: fine sandy loam

Bw2 - 28 to 36 inches: sandy loam

2Cd - 36 to 74 inches: gravelly loamy sand

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 43 inches to densic material
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 1.42 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: F144AY007CT - Well Drained Dense Till Uplands Hydric soil rating: No

Minor Components

Scituate, very stony

Percent of map unit: 6 percent Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Canton, very stony

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Ridgebury, very stony

Percent of map unit: 4 percent Landform: Depressions, ground moraines, hills, drainageways Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

67B—Paxton fine sandy loam, 0 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w673 Elevation: 0 to 1,340 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of local importance

Map Unit Composition

Paxton, very stony, and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Paxton, Very Stony

Setting

Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Linear, convex Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material *A - 2 to 10 inches:* fine sandy loam *Bw1 - 10 to 17 inches:* fine sandy loam *Bw2 - 17 to 28 inches:* fine sandy loam *Cd - 28 to 67 inches:* gravelly fine sandy loam

Properties and qualities

Slope: 0 to 8 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 20 to 43 inches to densic material Drainage class: Well drained Runoff class: Medium

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: F144AY007CT - Well Drained Dense Till Uplands Hydric soil rating: No

Minor Components

Woodbridge, very stony

Percent of map unit: 8 percent Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Summit, backslope, footslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Ridgebury, very stony

Percent of map unit: 4 percent Landform: Drumlins, drainageways, depressions, hills, ground moraines Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Charlton, very stony

Percent of map unit: 3 percent Landform: Hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

67C—Paxton fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w677 Elevation: 0 to 1,330 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F *Frost-free period:* 140 to 240 days *Farmland classification:* Not prime farmland

Map Unit Composition

Paxton, very stony, and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Paxton, Very Stony

Setting

Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Linear, convex Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material *A - 2 to 10 inches:* fine sandy loam *Bw1 - 10 to 17 inches:* fine sandy loam *Bw2 - 17 to 28 inches:* fine sandy loam *Cd - 28 to 67 inches:* gravelly fine sandy loam

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 43 inches to densic material
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: F144AY007CT - Well Drained Dense Till Uplands Hydric soil rating: No

Minor Components

Woodbridge, very stony

Percent of map unit: 8 percent Landform: Hills, drumlins, ground moraines Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Charlton, very stony

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Ridgebury, very stony

Percent of map unit: 2 percent Landform: Drumlins, depressions, ground moraines, hills, drainageways Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

67D—Paxton fine sandy loam, 15 to 25 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w67h Elevation: 0 to 1,400 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Paxton, very stony, and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Paxton, Very Stony

Setting

Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Linear, convex Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material *A - 2 to 10 inches:* fine sandy loam *Bw1 - 10 to 17 inches:* fine sandy loam *Bw2 - 17 to 28 inches:* fine sandy loam *Cd - 28 to 67 inches:* gravelly fine sandy loam

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 43 inches to densic material
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: F144AY007CT - Well Drained Dense Till Uplands Hydric soil rating: No

Minor Components

Woodbridge, very stony

Percent of map unit: 5 percent Landform: Hills, drumlins, ground moraines Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Charlton, very stony

Percent of map unit: 4 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Ridgebury, very stony

Percent of map unit: 1 percent Landform: Drumlins, depressions, ground moraines, hills, drainageways Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

97—Freetown and Natchaug mucky peats, ponded, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2w690 Elevation: 10 to 930 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Freetown, ponded, and similar soils: 38 percent *Natchaug, ponded, and similar soils:* 37 percent *Minor components:* 25 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Freetown, Ponded

Setting

Landform: Depressions, kettles, marshes, bogs, swamps Down-slope shape: Concave Across-slope shape: Concave Parent material: Moderately decomposed organic material

Typical profile

Oe1 - 0 to 2 inches: mucky peat *Oe2 - 2 to 79 inches:* mucky peat

Properties and qualities

Slope: 0 to 2 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: Very high (about 20.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: B/D Ecological site: F144AY043MA - Acidic Organic Wetlands Hydric soil rating: Yes

Description of Natchaug, Ponded

Setting

Landform: Depressions, depressions, depressions Down-slope shape: Concave Across-slope shape: Concave Parent material: Moderately decomposed organic material over loamy glaciofluvial deposits and/or loamy glaciolacustrine deposits and/or loamy till

Typical profile

Oe1 - 0 to 12 inches: mucky peat Oe2 - 12 to 31 inches: mucky peat 2Cg1 - 31 to 39 inches: silt loam 2Cg2 - 39 to 79 inches: fine sandy loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.01 to 14.17 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 25 percent
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Very high (about 14.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: B/D Ecological site: F144AY042NY - Semi-Rich Organic Wetlands Hydric soil rating: Yes

Minor Components

Scarboro, ponded

Percent of map unit: 9 percent Landform: Depressions, outwash terraces, drainageways, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Maybid, ponded

Percent of map unit: 8 percent Landform: Depressions, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scitico

Percent of map unit: 4 percent Landform: Depressions, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Ridgebury, very stony

Percent of map unit: 4 percent Landform: Drumlins, depressions, ground moraines, hills, drainageways Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

129B—Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2t2qr Elevation: 0 to 1,440 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Woodbridge, very stony, and similar soils: 82 percent Minor components: 18 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Woodbridge, Very Stony

Setting

Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Summit, backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material *A - 2 to 9 inches:* fine sandy loam *Bw1 - 9 to 20 inches:* fine sandy loam *Bw2 - 20 to 32 inches:* fine sandy loam *Cd - 32 to 67 inches:* gravelly fine sandy loam

Properties and qualities

Slope: 0 to 8 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 20 to 43 inches to densic material Drainage class: Moderately well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr) Depth to water table: About 19 to 27 inches Frequency of flooding: None Frequency of ponding: None Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm) Available water supply, 0 to 60 inches: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C/D Ecological site: F144AY037MA - Moist Dense Till Uplands Hydric soil rating: No

Minor Components

Paxton, very stony

Percent of map unit: 10 percent Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Linear, convex Hydric soil rating: No

Ridgebury, very stony

Percent of map unit: 8 percent Landform: Hills, drainageways, drumlins, depressions, ground moraines Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

140B—Chatfield-Hollis-Canton complex, 0 to 8 percent slopes, rocky

Map Unit Setting

National map unit symbol: 2w82m Elevation: 380 to 1,070 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Chatfield, very stony, and similar soils: 35 percent *Hollis, very stony, and similar soils:* 25 percent *Canton, very stony, and similar soils:* 25 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chatfield, Very Stony

Setting

Landform: Ridges, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

- A 1 to 2 inches: fine sandy loam
- Bw 2 to 30 inches: gravelly fine sandy loam

2R - 30 to 40 inches: bedrock

Properties and qualities

Slope: 0 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 41 inches to lithic bedrock
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Description of Hollis, Very Stony

Setting

Landform: Ridges, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 7 inches:* gravelly fine sandy loam *Bw - 7 to 16 inches:* gravelly fine sandy loam *2R - 16 to 26 inches:* bedrock

Properties and qualities

Slope: 0 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 8 to 23 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: F144AY033MA - Shallow Dry Till Uplands Hydric soil rating: No

Description of Canton, Very Stony

Setting

Landform: Moraines, hills, ridges Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 5 inches:* fine sandy loam *Bw1 - 5 to 16 inches:* fine sandy loam *Bw2 - 16 to 22 inches:* gravelly fine sandy loam *2C - 22 to 67 inches:* gravelly loamy sand

Properties and qualities

Slope: 0 to 8 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural stratification Drainage class: Well drained Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Newfields, very stony

Percent of map unit: 5 percent Landform: Ground moraines, hills, moraines Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

Freetown

Percent of map unit: 5 percent Landform: Marshes, depressions, bogs, kettles, swamps Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Walpole, very stony

Percent of map unit: 3 percent Landform: Deltas, depressions, outwash plains, depressions, outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Rock outcrop

Percent of map unit: 2 percent Landform: Ridges, hills Hydric soil rating: Unranked

140C—Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, rocky

Map Unit Setting

National map unit symbol: 2w82s Elevation: 0 to 980 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Chatfield, very stony, and similar soils: 35 percent

Hollis, very stony, and similar soils: 25 percent *Canton, very stony, and similar soils:* 25 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Chatfield, Very Stony

Setting

Landform: Ridges, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material *A - 1 to 2 inches:* fine sandy loam *Bw - 2 to 30 inches:* gravelly fine sandy loam *2R - 30 to 40 inches:* bedrock

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 41 inches to lithic bedrock
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Description of Hollis, Very Stony

Setting

Landform: Ridges, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material

A - 2 to 7 inches: gravelly fine sandy loam

- *Bw 7 to 16 inches:* gravelly fine sandy loam
- 2R 16 to 26 inches: bedrock

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 8 to 23 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: F144AY033MA - Shallow Dry Till Uplands Hydric soil rating: No

Description of Canton, Very Stony

Setting

Landform: Moraines, hills, ridges Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material

A - 2 to 5 inches: fine sandy loam

Bw1 - 5 to 16 inches: fine sandy loam

Bw2 - 16 to 22 inches: gravelly fine sandy loam

2C - 22 to 67 inches: gravelly loamy sand

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural stratification
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Freetown

Percent of map unit: 5 percent Landform: Marshes, depressions, bogs, kettles, swamps Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Newfields, very stony

Percent of map unit: 5 percent Landform: Moraines, ground moraines, hills Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

Scarboro, very stony

Percent of map unit: 3 percent Landform: Depressions, outwash terraces, drainageways, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave, linear Hydric soil rating: Yes

Rock outcrop

Percent of map unit: 2 percent Landform: Ridges, hills Hydric soil rating: Unranked

140D—Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, rocky

Map Unit Setting

National map unit symbol: 2w82p Elevation: 0 to 1,340 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Chatfield, very stony, and similar soils: 35 percent Hollis, very stony, and similar soils: 25 percent Canton, very stony, and similar soils: 25 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chatfield, Very Stony

Setting

Landform: Ridges, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist **Typical profile**

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 2 inches: fine sandy loam

Bw - 2 to 30 inches: gravelly fine sandy loam

2R - 30 to 40 inches: bedrock

Properties and qualities

Slope: 15 to 35 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 41 inches to lithic bedrock
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Description of Hollis, Very Stony

Setting

Landform: Ridges, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 7 inches:* gravelly fine sandy loam *Bw - 7 to 16 inches:* gravelly fine sandy loam *2R - 16 to 26 inches:* bedrock

Properties and qualities

Slope: 15 to 35 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 8 to 23 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: F144AY033MA - Shallow Dry Till Uplands Hydric soil rating: No

Description of Canton, Very Stony

Setting

Landform: Moraines, hills, ridges Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 5 inches:* fine sandy loam *Bw1 - 5 to 16 inches:* fine sandy loam *Bw2 - 16 to 22 inches:* gravelly fine sandy loam *2C - 22 to 67 inches:* gravelly loamy sand

Properties and qualities

Slope: 15 to 35 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural stratification
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None

Frequency of ponding: None *Maximum salinity:* Nonsaline (0.0 to 1.9 mmhos/cm) *Available water supply, 0 to 60 inches:* Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Montauk, very stony

Percent of map unit: 7 percent Landform: Recessionial moraines, ground moraines, hills, drumlins Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Scarboro, very stony

Percent of map unit: 6 percent Landform: Depressions, outwash terraces, drainageways, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave, linear Hydric soil rating: Yes

Rock outcrop

Percent of map unit: 2 percent Landform: Ridges, hills Hydric soil rating: Unranked

295—Freetown mucky peat, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2w68v Elevation: 0 to 860 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Freetown and similar soils: 82 percent *Minor components:* 18 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Freetown

Setting

Landform: Depressions, kettles, marshes, bogs, swamps Down-slope shape: Concave Across-slope shape: Concave Parent material: Moderately decomposed organic material

Typical profile

Oe1 - 0 to 2 inches: mucky peat *Oe2 - 2 to 79 inches:* mucky peat

Properties and qualities

Slope: 0 to 1 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: Very high (about 20.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: B/D Ecological site: F144AY043MA - Acidic Organic Wetlands Hydric soil rating: Yes

Minor Components

Swansea

Percent of map unit: 8 percent Landform: Marshes, depressions, bogs, swamps, kettles Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Natchaug

Percent of map unit: 6 percent Landform: Depressions, depressions, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scarboro

Percent of map unit: 3 percent Landform: Outwash terraces, outwash deltas, depressions, drainageways Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Whitman

Percent of map unit: 1 percent Landform: Depressions, hills Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

298—Pits, sand and gravel

Map Unit Composition

Pits: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

299—Udorthents, smoothed

Map Unit Setting

National map unit symbol: 9cmt Elevation: 0 to 840 feet Mean annual precipitation: 44 to 49 inches Mean annual air temperature: 48 degrees F Frost-free period: 155 to 165 days Farmland classification: Not prime farmland

Map Unit Composition

Udorthents and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents

Properties and qualities

Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None

313A—Deerfield loamy fine sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2xfg8 *Elevation:* 0 to 1,100 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Farmland of local importance

Map Unit Composition

Deerfield and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Deerfield

Setting

Landform: Outwash terraces, outwash deltas, outwash plains, kame terraces Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Parent material: Sandy outwash derived from granite, gneiss, and/or quartzite

Typical profile

Ap - 0 to 9 inches: loamy fine sand Bw - 9 to 25 inches: loamy fine sand BC - 25 to 33 inches: fine sand Cg - 33 to 60 inches: sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: About 15 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Sodium adsorption ratio, maximum: 11.0
Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: A Ecological site: F144AY027MA - Moist Sandy Outwash Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 7 percent Landform: Outwash terraces, kame terraces, outwash deltas, outwash plains Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Hydric soil rating: No

Wareham

Percent of map unit: 5 percent Landform: Drainageways, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Sudbury

Percent of map unit: 2 percent Landform: Outwash plains, kame terraces, outwash deltas, outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Hydric soil rating: No

Ninigret

Percent of map unit: 1 percent Landform: Kame terraces, outwash plains, outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Convex, linear Across-slope shape: Convex, concave Hydric soil rating: No

313B—Deerfield loamy fine sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2xfg9 Elevation: 0 to 1,190 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Deerfield and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Deerfield

Setting

Landform: Outwash deltas, outwash terraces, outwash plains, kame terraces Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Parent material: Sandy outwash derived from granite, gneiss, and/or quartzite

Typical profile

Ap - 0 to 9 inches: loamy fine sand *Bw - 9 to 25 inches:* loamy fine sand

BC - 25 to 33 inches: fine sand *Cg - 33 to 60 inches:* sand

cg - 55 to 60 menes. sa

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: About 15 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Sodium adsorption ratio, maximum: 11.0
Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: A Ecological site: F144AY027MA - Moist Sandy Outwash Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 7 percent Landform: Outwash terraces, outwash plains, kame terraces, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Hydric soil rating: No

Wareham

Percent of map unit: 5 percent Landform: Drainageways, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Sudbury

Percent of map unit: 2 percent Landform: Kame terraces, outwash deltas, outwash terraces, outwash plains Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Hydric soil rating: No

Ninigret

Percent of map unit: 1 percent Landform: Outwash plains, outwash terraces, kame terraces Landform position (three-dimensional): Tread Down-slope shape: Convex, linear Across-slope shape: Convex, concave Hydric soil rating: No

395—Swansea mucky peat, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2w68x Elevation: 0 to 950 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Swansea and similar soils: 83 percent Minor components: 17 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Swansea

Setting

Landform: Marshes, depressions, kettles, bogs, swamps Down-slope shape: Concave Across-slope shape: Concave Parent material: Moderately decomposed organic material over sandy and gravelly glaciofluvial deposits

Typical profile

Oe1 - 0 to 12 inches: mucky peat *Oe2 - 12 to 25 inches:* mucky peat *Cg - 25 to 79 inches:* sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: High (about 11.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: B/D Ecological site: F144AY043MA - Acidic Organic Wetlands Hydric soil rating: Yes

Minor Components

Freetown

Percent of map unit: 7 percent Landform: Depressions, kettles, marshes, bogs, swamps Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scarboro

Percent of map unit: 5 percent Landform: Outwash deltas, depressions, outwash terraces, drainageways Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Walpole

Percent of map unit: 5 percent Landform: Depressions, outwash terraces, drainageways, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

447B—Scituate-Newfields complex, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9cnr Elevation: 0 to 1,000 feet Mean annual precipitation: 35 to 56 inches Mean annual air temperature: 45 to 52 degrees F Frost-free period: 120 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Scituate and similar soils: 50 percent Newfields and similar soils: 25 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Scituate

Typical profile

H1 - 0 to 8 inches: fine sandy loam

H2 - 8 to 32 inches: cobbly fine sandy loam

H3 - 32 to 60 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Runoff class: High Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table: About 18 to 36 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: F144AY037MA - Moist Dense Till Uplands Hydric soil rating: No

Description of Newfields

Setting

Parent material: Till

Typical profile

H1 - 0 to 9 inches: fine sandy loam *H2 - 9 to 35 inches:* fine sandy loam

H3 - 35 to 64 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 24 to 48 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: F144AY008CT - Moist Till Uplands Hydric soil rating: No

Minor Components

Walpole

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Ridgebury

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Canton

Percent of map unit: 5 percent Hydric soil rating: No

Montauk

Percent of map unit: 5 percent Hydric soil rating: No

Not named

Percent of map unit: 5 percent Hydric soil rating: No

495—Natchaug mucky peat, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2w691 Elevation: 0 to 910 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Natchaug and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Natchaug

Setting

Landform: Depressions, depressions, depressions Down-slope shape: Concave Across-slope shape: Concave Parent material: Moderately decomposed organic material over loamy glaciofluvial deposits and/or loamy glaciolacustrine deposits and/or loamy till

Typical profile

Oe1 - 0 to 12 inches: mucky peat *Oe2 - 12 to 31 inches:* mucky peat *2Cg1 - 31 to 39 inches:* silt loam *2Cg2 - 39 to 79 inches:* fine sandy loam

Properties and qualities

Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Drainage class: Very poorly drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.01 to 14.17 in/hr) Depth to water table: About 0 inches Frequency of flooding: None Frequency of ponding: Frequent Calcium carbonate, maximum content: 25 percent Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm) Available water supply, 0 to 60 inches: Very high (about 14.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: B/D Ecological site: F144AY042NY - Semi-Rich Organic Wetlands Hydric soil rating: Yes

Minor Components

Scarboro

Percent of map unit: 4 percent Landform: Depressions, outwash terraces, drainageways, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Walpole

Percent of map unit: 4 percent Landform: Deltas, depressions, outwash plains, depressions, outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Maybid

Percent of map unit: 2 percent Landform: Depressions, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

538A—Squamscott fine sandy loam, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 9cp9 Elevation: 0 to 1,000 feet Mean annual precipitation: 30 to 55 inches Mean annual air temperature: 45 to 54 degrees F Frost-free period: 120 to 180 days Farmland classification: Farmland of local importance

Map Unit Composition

Squamscott and similar soils: 85 percent

Minor components: 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Squamscott

Setting

Landform: Marine terraces

Typical profile

H1 - 0 to 4 inches: fine sandy loam H2 - 4 to 12 inches: loamy sand H3 - 12 to 19 inches: fine sand H4 - 19 to 65 inches: silt loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: C/D Ecological site: F144AY019NH - Wet Lake Plain Hydric soil rating: Yes

Minor Components

Eldridge

Percent of map unit: 5 percent Hydric soil rating: No

Maybid

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

Scitico

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9cpd Elevation: 0 to 2,100 feet Mean annual precipitation: 28 to 48 inches Mean annual air temperature: 46 to 52 degrees F Frost-free period: 100 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Walpole and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Walpole

Setting

Landform: Depressions

Typical profile

H1 - 0 to 7 inches: very fine sandy loam *H2 - 7 to 16 inches:* sandy loam *H3 - 16 to 60 inches:* gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 0.1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A/D Ecological site: F144AY028MA - Wet Outwash Hydric soil rating: Yes

Minor Components

Scarboro

Percent of map unit: 10 percent Landform: Depressions

Hydric soil rating: Yes

Newfields

Percent of map unit: 5 percent Hydric soil rating: No

Squamscott

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

657B—Ridgebury fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2xffx Elevation: 40 to 1,320 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Ridgebury, very stony, and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ridgebury, Very Stony

Setting

Landform: Drumlins, depressions, ground moraines, hills, drainageways Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 6 inches: fine sandy loam

- Bw 6 to 10 inches: sandy loam
- Bg 10 to 19 inches: gravelly sandy loam
- Cd 19 to 66 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 15 to 35 inches to densic material Drainage class: Poorly drained Runoff class: Very high

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: D Ecological site: F144AY009CT - Wet Till Depressions Hydric soil rating: Yes

Minor Components

Woodbridge, very stony

Percent of map unit: 7 percent Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Summit, backslope, footslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Whitman, very stony

Percent of map unit: 4 percent Landform: Drumlins, ground moraines, hills, drainageways, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scituate, very stony

Percent of map unit: 2 percent Landform: Ground moraines, hills, drumlins Landform position (two-dimensional): Summit, backslope, footslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Walpole

Percent of map unit: 2 percent Landform: Drainageways, outwash terraces, depressions Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

W-Water

Map Unit Setting

National map unit symbol: 9cq3 Elevation: 200 to 2,610 feet Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

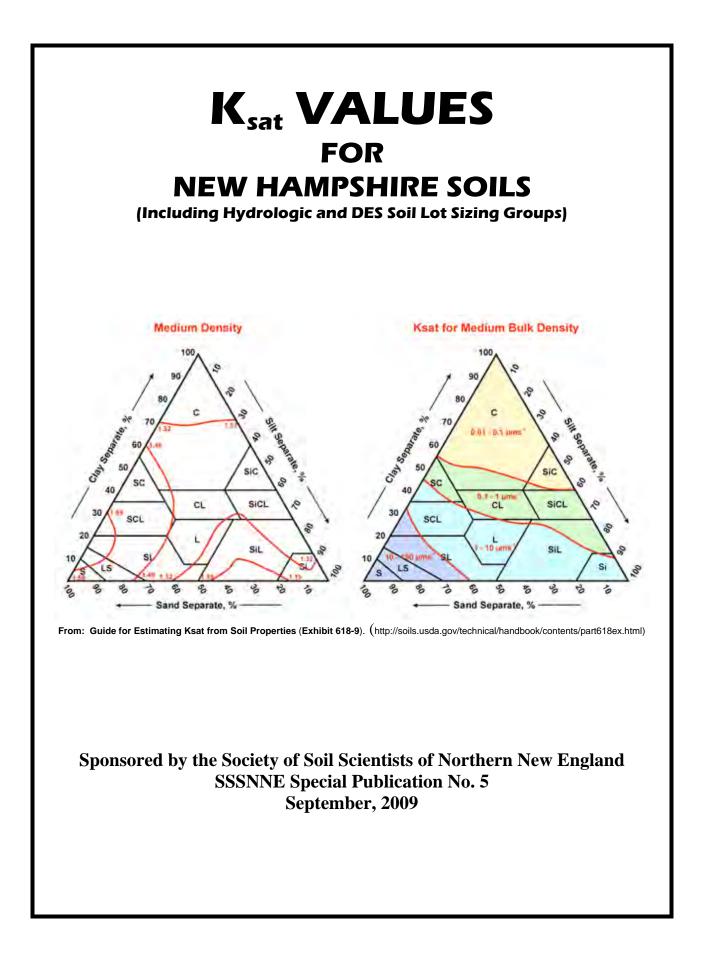
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.


United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

K_{sat} VALUES FOR NEW HAMPSHIRE SOILS

ABOUT THE SOCIETY OF SOIL SCIENTISTS OF NORTHERN NEW ENGLAND

The Society of Soil Scientists of Northern New England (SSSNNE) is a non-profit professional organization of soil scientists, both in the private and public sectors, which is dedicated to the advancement of soil science. The Society fosters the profession of soil classification, mapping and interpretation, and encourages the dissemination of information concerning soil science. With the intent of contributing to the general human welfare, the Society seeks to educate the public on the wise use of soils and the associated natural resources.

INTRODUCTION

The publication " K_{sat} Values for New Hampshire Soils" is designed to assist soil scientists, engineers, and other professionals by assembling tables of existing data for all soil series currently on the state soil legend with regard to K_{sat} values and hydrologic groupings (Hyd.Grp.). The need for this information has become more important since the adoption by the New Hampshire Department of Environmental Services of the revised Alteration of Terrain rules for stormwater management. Additional information has been provided for each soil series with regard to landform, temperature regime (Temp.), soil textures, NHDES Soil Lot Size Groupings (Group), whether the soil is a Spodosol (Spodosol?) and other information which will be valuable to a variety of soil information users.

The data for each soil series has been sorted 3 ways for ease of searching:

Table A-Sorted by Numerical Legend Table B-Sorted by Soil Series Name Table C-Sorted by NHDES Soil Group for Establishing Lot Size

The report represents cumulative efforts by private soil scientists and NHDES staff with assistance from the USDA Natural Resource Conservation Service.

Comments or inquires on the information in this publication may be directed to the Board of Directors at the following address:

Society of Soil Scientists of Northern New England PO Box 76 Durham, NH 03824

SATURATED HYDRAULIC CONDUCTIVITY (K_{SAT})

 K_{sat} refers to the ease with which pores in a saturated soil transmit water. The estimates presented here are expressed in terms of inches per hour (NRCS official data presents K_{sat} in both micrometers per second and inches per hour). K_{sat} values are based on soil characteristics observed in the field, particularly structure, consistence, porosity, and texture. (USDA NRCS, Web Soil Survey)

Saturated flow occurs when the soil water pressure is positive; that is, when the soil matric potential is zero (satiated wet condition). In most soils this situation takes place when about 95 percent of the total pore space is filled with water. The remaining 5 percent is filled with entrapped air. Saturated hydraulic conductivity cannot be used to describe water movement under unsaturated conditions. (Soil Survey Manual, 1993)

It is commonly known that soil features (and thus data) for a certain soil series name may be slightly different from one county soil survey to the next and the range in characteristics (via the Typical Pedon) may be slightly different. For example – a Marlow soil (series) in Carroll County may have a higher sand content in its B horizon as opposed to a Marlow soil (series) in Coos County; resulting in a slightly different Ksat range for the B horizon.

The K_{sat} data for this publication was obtained from the USDA-NRCS Soil Data Mart using the Typical Pedon from the county that best reflected the soil and/or had the most acres of that soil. This data is presented in B and C horizons only as it is assumed that the topsoil (A or A_p horizon) will be removed in typical construction practices.

References:

Web Soil Survey. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/.

Soil Data Mart. http://soildatamart.nrcs.usda.gov/.

Soil Survey Manual. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

HYDROLOGIC SOIL GROUPS

Hydrologic group is a group of soils having the same runoff potential under similar storm and cover conditions.

Hydrologic groups are used in equations that estimate runoff from rainfall. These estimates are needed for solving hydrologic problems that arise in planning stormwater management, watershed protection, and flood-prevention projects and for planning or designing structures for the use, control, and disposal of water.

Classifications assigned to soils were based on the use of rainfall-runoff data from small watersheds and infiltrometer plots. From these data, relationships between soil properties and hydrologic groups were established. Assignment of soils to hydrologic groups is based on the relationship between soil properties and hydrologic groups. Wetness characteristics, permeability after prolonged wetting, and depth to very slowly permeable layers are properties that assist in estimating hydrologic groups. Minimum annual steady ponded infiltration rate for a bare ground surface determines the hydrologic soil groups.

Soil properties that influence runoff potential are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. These properties are depth to a seasonally high water table, intake rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. (The influence of ground cover is treated independently, not in hydrologic soil groups.).

The soils in the United States are placed into four groups, A, B, C, and D, and three dual classes, A/D, B/D, and C/D. In the definitions of the classes, infiltration rate is the rate at which water enters the soil at the surface and is controlled by the surface conditions. Transmission rate is the rate at which water moves in the soil and is controlled by soil properties. Definitions of the classes are as follows:

Group A- Saturated hydraulic conductivity is very high or in the upper half of high and internal free water occurrence is very deep. Soils in this group have low runoff potential when thoroughly wet. Water is transmitted freely through the soil. Group A soils typically have less than 10 percent clay and more than 90 percent sand or gravel and have gravel or sand textures. Some soils having loamy sand, sandy loam, loam or silt loam textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments. The limits on the diagnostic physical characteristics of group A are as follows. The saturated hydraulic conductivity of all soil layers exceeds 40.0 micrometers per second (5.67 inches per hour). The depth to any water impermeable layer is greater than 50 centimeters [20 inches]. The depth to the water table is greater than 60 centimeters [24 inches]. Soils that are deeper than 100 centimeters [40 inches] to a water impermeable layer are in group A if the saturated hydraulic conductivity of all soil layers within 100 centimeters [40 inches] of the surface exceeds 10 micrometers per second (1.42 inches per hour).

Group B- Saturated hydraulic conductivity is in the lower half of high or in the upper half of moderately high and free water occurrence is deep or very deep. Soils in this group have moderately low runoff potential when thoroughly wet. Water transmission through the soil is unimpeded. Group B soils typically have between 10 percent and 20 percent clay and 50 percent to 90 percent sand and have loamy sand or sandy loam textures. Some soils having loam, silt loam, silt, or sandy clay loam textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments. The limits on the diagnostic physical characteristics of group B are as follows. The saturated hydraulic conductivity in the least transmissive layer between the surface and 50 centimeters [20 inches] ranges from 10.0 micrometers per second (1.42 inches per hour) to 40.0 micrometers per second (5.67 inches per hour). The depth to any water impermeable layer is greater than 50 centimeters [20 inches]. The depth to the water table is greater than 60 centimeters [24 inches]. Soils that are deeper than 100 centimeters [40 inches] to a water impermeable layer or water table are in group B if the saturated hydraulic conductivity of all soil layers within 100 centimeters [40 inches] of the surface exceeds 4.0 micrometers per second (0.57 inches per hour) but is less than 10.0 micrometers per second (1.42 inches per hour).

Group C- Saturated hydraulic conductivity is in the lower half of moderately high or in the upper half of moderately low and internal free water occurrence is deeper than shallow. Soils in this group have moderately high runoff potential when thoroughly wet. Water transmission through the soil is somewhat restricted. Group C soils typically have between 20 percent and 40 percent clay and less than 50 percent sand and have loam, silt loam, sandy clay loam, clay loam, and silty clay loam textures. Some soils having clay, silty clay, or sandy clay textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments. The limits on the diagnostic physical characteristics of group C are as follows. The saturated hydraulic conductivity in the least transmissive layer between the surface and 50 centimeters [20 inches] is between 1.0 micrometers per second (0.14 inches per hour) and 10.0 micrometers per second (1.42 inches per hour). The depth to any water impermeable layer is greater than 50 centimeters [20 inches]. The depth to the water table is greater than 60 centimeters [24 inches]. Soils that are deeper than 100 centimeters [40 inches] to a restriction or water table are in group C if the saturated hydraulic conductivity of all soil layers within 100 centimeters [40 inches] of the surface exceeds 0.40 micrometers per second (0.06 inches per hour) but is less than 4.0 micrometers per second (0.57 inches per hour).

Group D- Saturated hydraulic conductivity is below the upper half of moderately low, and/or internal free water occurrence is shallow or very shallow and transitory through permanent. Soils in this group have high runoff potential when thoroughly wet. Water movement through the soil is restricted or very restricted. Group D soils typically have greater than 40 percent clay, less than 50 percent sand, and have clayey textures. In some areas, they also have high shrink-swell potential. All soils with a depth to a water impermeable layer less than 50 centimeters [20 inches] and all soils with a water table within 60 centimeters [24 inches] of the surface are in this group, although some may have a dual classification, as described in the next section, if they can be adequately drained. The limits on the physical diagnostic characteristics of group D are as follows. For soils with a water impermeable layer at a depth between 50 centimeters and 100 centimeters [20 and 40 inches], the saturated hydraulic conductivity in the least transmissive soil layer is less than or equal to 1.0 micrometers per second (0.14 inches per hour). For soils that are deeper than 100 centimeters [40 inches] to a restriction or water table, the saturated hydraulic

conductivity of all soil layers within 100 centimeters [40 inches] of the surface is less than or equal to 0.40 micrometers per second (0.06 inches per hour).

Dual hydrologic soil groups-Certain wet soils are placed in group D based solely on the presence of a water table within 60 centimeters [24 inches] of the surface even though the saturated hydraulic conductivity may be favorable for water transmission. If these soils can be adequately drained, then they are assigned to dual hydrologic soil groups (A/D, B/D, and C/D) based on their saturated hydraulic conductivity and the water table depth when drained. The first letter applies to the drained condition and the second to the undrained condition. For the purpose of hydrologic soil group, adequately drained means that the seasonal high water table is kept at least 60 centimeters [24 inches] below the surface in a soil where it would be higher in a natural state.

References:

National Engineering Handbook, Natural Resource Conservation Service, U.S. Department of Agriculture.

Soil Data Mart. <u>http://soildatamart.nrcs.usda.gov/</u>.

Soil Survey Manual. Soil Survey Division Staff. 1993. Soil survey manual. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 18.

TABLE A NUMERICAL LEGEND

Soil Series	legend number	Ksat low - B in/hr	Ksat high - B in/hr	Ksat low - C in/hr	Ksat high - C in/hr	Hyd. Grp.	Group	Land Form	Temp.	Soil Textures	Spodosol ?	Other
Occum	1	0.6	2.0	6.00	20.0	B	2	Flood Plain (Bottom Land)	mesic	loamy	no	loamy over loamy sand
Suncook	2	6.0	20.0	6.00	20.0	A	1	Flood Plain (Bottomland)	mesic	sandy	no	occasionally flooded
Lim	3	0.6	2.0	6.00	20.0	C	5	Flood Plain (Bottom Land)	mesic	loamy	no	
Pootatuck	4	0.6	6.0	6.00	20.0	B	3	Flood Plain (Bottom Land)	mesic	loamy	no	single grain in C
Rippowam	5	0.6	6.0	6.00	20.0	C	5	Flood Plain (Bottom Land)	mesic	loamy	no	onigio grant in o
Saco	6	0.6	2.0	6.00	20.0	D	6	Flood Plain (Bottom Land)	mesic	silty	no	strata
Hadley	8	0.6	2.0	0.60	6.0	В	2	Flood Plain (Bottom Land)	mesic	silty	no	strata of fine sand
Winooski	9	0.6	6.0	0.60	6.0	В		Flood Plain (Bottom Land)	mesic	silty over loamy	no	
Merrimac	10	2.0	20.0	6.00	20.0	А	1	Outwash and Stream Terraces	mesic	gravelly sand	no	loamy cap
Gloucester	11	6.0	20.0	6.00	20.0	А	1	Sandy Till	mesic	sandy-skeletal	no	loamy cap
Hinckley	12	6.0	20.0	20.00	100.0	А	1	Outwash and Stream Terraces	mesic	sandy-skeletal	no	
Sheepscot	14	6.0	20.0	6.00	20.0	В	3	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	gravelly coarse sand
Searsport	15	6.0	20.0	6.00	20.0	D	6	Outwash and Stream Terraces	frigid	sandy	no	organic over sand
Saugatuck	16	0.06	0.2	6.00	20.0	С	5	Outwash and Stream Terraces	mesic	sandy	yes	ortstein
Colton, gravelly	21	6.0	20.0	20.00	100.0	А	1	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	gravelly surface
Colton	22	6.0	20.0	20.00	100.0	А	1	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	* *
Masardis	23	6.0	20.0	6.00	20.0	Α	1	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	slate, loamy cap
Agawam	24	6.0	20.0	20.00	100.0	В	2	Outwash and Stream Terraces	mesic	loamy over sandy	no	loamy over sand/gravel
Windsor	26	6.0	20.0	6.00	20.0	А	1	Outwash and Stream Terraces	mesic	sandy	no	·
Groveton	27	0.6	2.0	0.60	6.0	В	2	Outwash and Stream Terraces	frigid	loamy	yes	loamy over sandy
Madawaska	28	0.6	2.0	6.00	20.0	В	3	Outwash and Stream Terraces	frigid	loamy over sandy	yes	sandy or sandy-skeletal
Woodbridge	29	0.6	2.0	0.00	0.6	С	3	Firm, platy, loamy till	mesic	loamy	no	sandy loam in Cd
Unadilla	30	0.6	2.0	2.00	20.0	В	2	Terraces and glacial lake plains	mesic	silty	no	silty over gravelly
Hartland	31	0.6	2.0	0.20	2.0	В	2	Terraces and glacial lake plains	mesic	silty	no	very fine sandy loam
Boxford	32	0.1	0.2	0.00	0.2	С	3	Silt and Clay Deposits	mesic	fine	no	silty clay loam
Scitico	33	0.0	0.2	0.00	0.2	С	5	Silt and Clay Deposits	mesic	fine	no	
Wareham	34	6.0	20.0	6.00	20.0	С	5	Outwash and Stream Terraces	mesic	sandy	no	
Champlain	35	6.0	20.0	20.00	100.0	А	1	Outwash and Stream Terraces	frigid	gravelly sand	no	
Adams	36	6.0	20.0	20.00	99.0	А	1	Outwash and Stream Terraces	frigid	sandy	yes	
Melrose	37	2.0	6.0	0.00	0.2	С	3	Sandy/loamy over silt/clay	frigid	loamy over clayey	no	silty clay loam in C
Eldridge	38	6.0	20.0	0.06	0.6	С	3	Sandy/loamy over silt/clay	mesic	sandy over loamy	no	
Millis	39					С	3	Firm, platy, sandy till	frigid	loamy	yes	loamy sand in Cd
Canton	42	2.0	6.0	6.00	20.0	В	2	Loose till, sandy textures	mesic	loamy over sandy	no	loamy over loamy sand
Montauk	44	0.6	6.0	0.06	0.6	С	3	Firm, platy, sandy till	mesic	loamy	no	loamy sand in Cd
Henniker	46	0.6	2.0	0.06	0.6	С	3	Firm, platy, sandy till	frigid	loamy	no	loamy sand in Cd
Madawaska, aquentic	48	0.6	2.0	6.00	20.0	В	3	Outwash and Stream Terraces	frigid	loamy over sandy	yes	sandy or sandy-skeletal
Whitman	49	0.0	0.2	0.00	0.2	D	6	Firm, platy, loamy till	mesic	loamy	no	mucky loam
Hermon	55	2.0	20.0	6.00	20.0	A	1	Sandy Till	frigid	sandy-skeletal	yes	loamy cap
Becket	56	0.6	2.0	0.06	0.6	С	3	Firm, platy, sandy till	frigid	loamy	yes	gravelly sandy loam in Cd
Waumbeck	58	2.0	20.0	6.00	20.0	В	3	Loose till, sandy textures	frigid	sandy-skeletal	yes	very cobbly loamy sand
Charlton	62	0.6	6.0	0.60	6.0	В	2	Loose till, loamy textures	mesic	loamy	no	fine sandy loam
Paxton	66	0.6	2.0	0.00	0.2	С	3	Firm, platy, loamy till	mesic	loamy	no	
Sutton	68	0.6	6.0	0.60	6.0	В	3	Loose till, loamy textures	mesic	loamy	no	
Berkshire	72	0.6	6.0	0.60	6.0	В	2	Loose till, loamy textures	frigid	loamy	yes	fine sandy loam
Marlow	76	0.6	2.0	0.06	0.6	С	3	Firm, platy, loamy till	frigid	loamy	yes	fine sandy loam in Cd
Peru	78	0.6	2.0	0.06	0.6	С	3	Firm, platy, loamy till	frigid	loamy	yes	
Thorndike	84	0.6	2.0	0.60	2.0	C/D	4	Friable till, silty, schist & phyllite	frigid	loamy-skeletal	yes	less than 20 in. deep
Hollis	86	0.6	6.0	0.60	6.0	C/D	4	Loose till, bedrock	mesic	loamy	no	less than 20 in. deep
Winnecook	88	0.6	2.0	0.60	2.0	С	4	Friable till, silty, schist & phyllite	frigid	loamy-skeletal	yes	20 to 40 in. deep
Chatfield	89	0.6	6.0	0.60	6.0	В	4	Loose till, bedrock	mesic	loamy	no	20 to 40 in. deep
Hogback	91	2.0	6.0	2.00	6.0	С	4	Loose till, bedrock	frigid	loamy	yes	less than 20 in. deep
Lyman	92	2.0	6.0	2.00	6.0	A/D	4	Loose till, bedrock	frigid	loamy	yes	less than 20 in. deep
Woodstock	93	2.0	6.0	2.00	6.0	C/D	4	Loose till, bedrock	frigid	loamy	no	less than 20 in. deep
Rawsonville	98	0.6	6.0	0.60	6.0	С	4	Loose till, bedrock	frigid	loamy	yes	20 to 40 in. deep
Tunbridge	99	0.6	6.0	0.60	6.0	С	4	Loose till, bedrock	frigid	loamy	yes	20 to 40 in. deep

Soil Series	legend number	Ksat low - B in/hr	Ksat high - B in/hr	Ksat low - C in/hr	Ksat high - C in/hr	Hyd. Grp.	Group	Land Form	Temp.	Soil Textures	Spodosol ?	Other
Ondawa	101	0.6	6.0	6.00	20.0	B	2	Flood Plain (Bottom Land)	frigid	loamy	no .	loamy over loamy sand
Sundav	101	6.0	20.0	6.00	20.0	A	1	Flood Plain (Bottomland)	frigid	sandy	no	occasionally flooded
Winooski	103	0.6	6.0	0.60	6.0	В	3	Flood Plain (Bottom Land)	mesic	silty	no	very fine sandy loam
Podunk	104	0.6	6.0	6.00	20.0	B	3	Flood Plain (Bottom Land)	frigid	loamy	no	loamy to coarse sand in C
Rumney	105	0.6	6.0	6.00	20.0	С	5	Flood Plain (Bottom Land)	frigid	loamy	no	
Hadley	108	0.6	2.0	0.60	6.0	В	2	Flood Plain (Bottom Land)	mesic	silty	no	strata of fine sand, occ flooded
Limerick	109	0.6	2.0	0.60	2.0	С	5	Flood Plain (Bottom Land)	mesic	silty	no	
Scarboro	115	6.0	20.0	6.00	20.0	D	6	Outwash and Stream Terraces	mesic	sandy	no	organic over sand, non stony
Finch	116					С	3	Outwash and Stream Terraces	frigid	sandy	yes	cemented (ortstein)
Sudbury	118	2.0	6.0	2.00	20.0	В	3	Outwash and Stream Terraces	mesic	sandy	no	loam over gravelly sand
Telos	123	0.6	2.0	0.02	0.2	С	3	Firm, platy, silty till, schist & phyllite	frigid	loamy	yes	channery silt loam in Cd
Chesuncook	126	0.6	2.0	0.02	0.2	С	3	Firm, platy, silty till, schist & phyllite	frigid	loamy	yes	channery silt loam in Cd
Allagash	127	0.6	2.0	6.00	20.0	В	2	Outwash and Stream Terraces	frigid	loamy over sandy	yes	loamy over sandy
Elliottsville	128	0.6	2.0	0.60	2.0	В	4	Friable till, silty, schist & phyllite	frigid	loamy	yes	20 to 40 in. deep
Hitchcock	130	0.6	2.0	0.06	0.6	В	3	Terraces and glacial lake plains	mesic	silty	no	silt loam to silt in C
Burnham	131	0.2	6.0	0.02	0.2	D	6	Firm, platy, silty till, schist & phylitte	frigid	loamy	no	organic over silt
Dartmouth	132	0.6	2.0	0.06	0.6	В	3	Terraces and glacial lake plains	mesic	silty	no	thin strata silty clay loam
Monson	133	0.6	2.0	0.60	2.0	D	4	Friable till, silty, schist & phyllite	frigid	loamy	yes	less than 20 in. deep
Maybid	134	0.0	0.2	0.00	0.2	D	6	Silt and Clay Deposits	mesic	fine	no	silt over clay
Shapleigh	136					C/D	4	Sandy Till	mesic	sandy	yes	less than 20 in. deep
Monadnock	142	0.6	2.0	2.00	6.0	В	2	Loose till, sandy textures	frigid	loamy over sandy, sandy-skeletal	yes	gravelly loamy sand in C
Acton	146	2.0	20.0	2.00	20.0	В	3	Loose till, sandy textures	mesic	sandy-skeletal	no	cobbly loamy sand
Vassalboro	150					D	6	Organic Materials - Freshwater	frigid	peat	no	deep organic
Success	154	2.0	6.0	6.00	20.0	Α	1	Sandy Till	frigid	sandy-skeletal	yes	cemented
Canterbury	166	0.6	2.0	0.06	0.6	С	3	Firm, platy, loamy till	frigid	loamy	no	loam in Cd
Sunapee	168	0.6	2.0	0.60	6.0	В	3	Loose till, loamy textures	frigid	loamy	yes	
Waskish	195					D	6	Organic Materials - Freshwater	frigid	peat	no	deep organic
Ondawa	201	0.6	6.0	6.00	20.0	В	2	Flood Plain (Bottom Land)	frigid	loamy	no	occ flood, loamy over I. sand
Sunday	202	6.0	20.0	6.00	20.0	A	1	Flood Plain (Bottomland)	frigid	sandy	no	frequently flooded
Fryeburg	208	0.6	2.0	2.00	6.0	В	2	Flood Plain (Bottom Land)	frigid	silty	no	very fine sandy loam
Charles	209	0.6	100.0	0.60	100.0	С	5	Flood Plain (Bottom Land)	frigid	silty	no	
Warwick	210	2.0	6.0	20.00	100.0	A	1	Outwash and Stream Terraces	mesic	loamy-skeletal	no	loamy over slate gravel
Naumburg	214	6.0	20.0	6.00	20.0	С	5	Outwash and Stream Terraces	frigid	sandy	yes	
Boscawen	220	6.0	20.0	20.00	100.0	A	1	Outwash and Stream Terraces	frigid	sandy-skeletal	no	loamy cap
Bemis	224	0.6	0.2	0.00	0.2	С	5	Firm, platy, loamy till	cryic	loamy	no	
Bice	226	0.6	6.0	0.60	6.0	В	2	Loose till, loamy textures	frigid	loamy	no	sandy loam
Lanesboro	228	0.6	2.0	0.06	0.2	С	3	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	channery silt loam in Cd
Poocham	230	0.6	2.0	0.20	2.0	В	3	Terraces and glacial lake plains	mesic	silty	no	silt loam in C
Buxton	232	0.1	0.6	0.00	0.2	С	3	Silt and Clay Deposits	frigid	fine	no	silty clay
Scantic	233	0.0	0.2	0.00	0.2	D	5	Silt and Clay Deposits	frigid	fine	no	
Biddeford	234	0.0	0.2	0.00	0.2	D	6	Silt and Clay Deposits	frigid	fine	no	organic over clay
Buckland	237	0.6	2.0	0.06	0.2	С	3	Firm, platy, loamy till	frigid	loamy	no	loam in Cd
Elmridge	238	2.0	6.0	0.00	0.2	С	3	Sandy/loamy over silt/clay	mesic	loamy over clayey	no	
Brayton	240	0.6	2.0	0.06	0.6	С	5	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	
Lyme	246	0.6	6.0	0.60	6.0	С	5	Loose till, sandy textures	frigid	loamy	no	
Millsite	251	0.6	6.0	0.60	6.0	<u>C</u>	4	Loose till, bedrock	frigid	loamy	no	20 to 40 in. deep
Macomber	252	0.6	2.0	0.60	2.0	C	4	Friable till, silty, schist & phyllite	frigid	loamy-skeletal	yes	20 to 40 in. deep
Lombard	259	0.6	6.0	2.00	20.0	C/D	2	Weathered bedrock, phyllite	frigid	loamy	no	very channery
Sunapee var	269	0.6	2.0	0.60	6.0	B	3	Loose till, loamy textures	frigid	loamy	yes	frigid dystrudept
Chatfield Var.	289	0.6	6.0	0.60	6.0	B	3	Loose till, bedrock	mesic	loamy	no	mwd to swpd
Greenwood	295					A/D	6	Organic Materials - Freshwater	frigid	hemic	no	deep organic
Catden	296		2.0	0.00		A/D	6	Organic Materials - Freshwater	mesic	sapric	no	deep organic
Lovewell	307	0.6	2.0	0.60	2.0	B	3	Flood Plain (Bottom Land)	frigid	silty	no	very fine sandy loam
Quonset	310	2.0	20.0	20.00	100.0	A	1	Outwash and Stream Terraces	mesic	sandy-skeletal	no	shale
Deerfield	313	6.0	20.0	20.00	100.0	В	3	Outwash and Stream Terraces	mesic	sandy	no	single grain in C

Soil Series	legend		•		Ksat high - C	Hyd.	Group	Land Form	Temp.	Soil Textures	Spodosol	Other
	number	in/hr	in/hr	in/hr	in/hr	Grp.					?	
Pipestone	314					В	5	Outwash and Stream Terraces	mesic	sandy	yes	
Mashpee	315	6.0	20.0	6.00	20.0	В	5	Outwash and Stream Terraces	mesic	sandy	yes	
Bernardston	330	0.6	2.0	0.06	0.2	С	3	Firm, platy, silty till, schist & phyllite	mesic	loamy	no	channery silt loam in Cd
Roundabout	333	0.2	2.0	0.06	0.6	С	5	Terraces and glacial lake plains	frigid	silty	no	silt loam in the C
Pittstown	334	0.6	2.0	0.06	0.2	С	3	Firm, platy, silty till, schist & phyllite	mesic	loamy	no	channery silt loam in Cd
Elmwood	338	2.0	6.0	0.00	0.2	С	3	Sandy/loamy over silt/clay	frigid	loamy over clayey	no	
Stissing	340	0.6	2.0	0.06	0.2	С	5	Firm, platy, silty till, schist & phyllite	mesic	loamy	no	
Cardigan	357	0.6	2.0	0.60	2.0	В	4	Friable till, silty, schist & phyllite	mesic	loamy	no	20 to 40 in. deep
Kearsarge	359	0.6	2.0	0.60	2.0	В	4	Friable till, silty, schist & phyllite	mesic	loamy	no	less than 20 in. deep
Dutchess	366	0.6	2.0	0.60	2.0	В	2	Friable till, silty, schist & phyllite	mesic	loamy	no	very channery
Dixfield	378	0.6	2.0	0.06	0.6	C	3	Firm, platy, loamy till	frigid	loamy	yes	fine sandy loam in Cd
Timakwa	393			6.00	100.0	D	6	Organic Materials - Freshwater	mesic	sandy or sandy-skeletal	no	organic over sand
Chocorua	395			6.00	20.0	D	6	Organic Materials - Freshwater	frigid	sandy or sandy-skeletal	no	organic over sand
Ipswich	397					D	6	Tidal Flat	mesic	hemic/sapric	no	deep organic
Suncook	402	6.0	20.0	6.00	20.0	А	1	Flood Plain (Bottomland)	mesic	sandy	no	frequent flooding
Metallak	404	6.0	100.0	6.00	100.0	В	3	Flood Plain (Bottom Land)	frigid	loamy over sandy	no	sandy or sandy-skeletal
Medomak	406	0.6	2.0	0.60	2.0	D	6	Flood Plain (Bottom Land)	frigid	silty	no	organic over silt
Haven	410	0.6	2.0	20.00	100.0	В	2	Outwash and Stream Terraces	mesic	loamy over sandy	no	loamy over sand/gravel
Duane	413	6.0	20.0	6.00	20.0	В	3	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	cemented (ortstein)
Moosilauke	414	6.0	20.0	6.00	20.0	С	5	Loose till, sandy textures	frigid	sandy	no	
Grange	433	0.6	2.0	0.60	2.0	C	5	Outwash and Stream Terraces	frigid	co. loamy over sandy (skeletal)	no	
Swanton	438	2.0	6.0	0.00	0.2	С	5	Sandy/loamy over silt/clay	frigid	co. loamy over clayey	no	
Shaker	439	2.0	6.0	0.00	0.2	С	5	Sandy/loamy over silt/clay	mesic	co. loamy over clayey	no	
Chichester	442	0.6	2.0	2.00	6.0	В		Loose till, sandy textures	frigid	loamy over sandy	no	loamy over loamy sand
Newfields	444	0.6	2.0	0.60	2.0	В	3	Loose till, sandy textures	mesic	loamy over sandy	no	sandy or sandy-skeletal
Scituate	448	0.6	2.0	0.06	0.2	C	3	Firm, platy, sandy till	mesic	loamy	no	loamy sand in Cd
Metacomet	458	0.6	2.0	0.06	0.6	C	3	Firm, platy, sandy till	frigid	loamy	no	loamy sand in Cd
Pennichuck	460	0.6	2.0	0.60	2.0	B	4	Friable till, silty, schist & phyllite	mesic	loamy-skeletal	no	20 to 40 in. deep
Gilmanton	478	0.6	2.0	0.06	0.6	С	3	Firm, platy, loamy till	frigid	loamy	no	fine sandy loam in Cd
Ossipee	495			0.20	2.0	D	6	Organic Materials - Freshwater	frigid	loamy	no	organic over loam
Natchaug	496			0.20 20.00	2.0 100.0	D	6	Organic Materials - Freshwater	mesic	loamy	no	organic over loam
Pawcatuck	497 501				99.0		6	Tidal Flat	mesic	sandy or sandy-skeletal	no	organic over sand
Abenaki		0.6	2.0	6.00 0.60	99.0	B C	2	Outwash and Stream Terraces	frigid	loamy over sandy-skeletal	no	loamy over gravelly
Cohas	505 510	0.6 2.0	2.0	20.00	100.0	-	5	Flood Plain (Bottom Land)	frigid	co. loamy over sandy (skeletal)	no	alata Jaamu aan
Hoosic Ninigret	510	2.0	6.0	6.00	20.0	A B	3	Outwash and Stream Terraces Outwash and Stream Terraces	mesic mesic	sandy-skeletal loamy over sandy	no no	slate, loamy cap sandy or sandy-skeletal
Leicester	513	0.6	6.0	0.60	20.0	C	5	Loose till, loamy textures	mesic	loamy	no	Sandy of Sandy-Skeletai
Au Gres	514	0.0	0.0	0.60	20.0	B	5	Outwash and Stream Terraces	frigid	sandy		single grain, loose
Machias	520	2.0	6.0	6.00	20.0	B	3	Outwash and Stream Terraces	frigid	sandy or sandy-skeletal	yes	strata sand/gravel in C
Stetson	520	0.6	6.0	6.00	20.0	B	2	Outwash and Stream Terraces	frigid	sandy-skeletal	yes ves	loamy over gravelly
Caesar	525	20.0	100.0	20.00	100.0	A	∠ 1	Outwash and Stream Terraces	mesic	coarse sand	no	idaniy over gravelly
Scio	531	0.6	2.0	0.60	2.0	B	3	Terraces and glacial lake plains	mesic	silty	no	gravelly sand in 2C
Belgrade	532	0.6	2.0	0.06	2.0	B	3	Terraces and glacial lake plains	mesic	silty	no	strata of fine sand
Raynham	533	0.0	2.0	0.06	0.2	C	5	Terraces and glacial lake plains	mesic	silty	no	Strata of fine Sand
Binghamville	534	0.2	2.0	0.00	0.2	D	5	Terraces and glacial lake plains	mesic	silty	no	
Suffield	536	0.2	2.0	0.00	0.2	C	3	Sandy/loamy over silt/clay	mesic	silty over clayey	no	deep to clay C
Squamscott	538	6.0	20.0	0.06	0.6	C	5	Sandy/loamy over silt/clay	mesic	sandy over loamy	yes	
Raypol	540	0.6	2.0	6.00	100.0	D	5	Outwash and Stream Terraces	mesic	co. loamy over sandy (skeletal)	no	
Walpole	546	2.0	6.0	6.00	20.0	C	5	Outwash and Stream Terraces	mesic	sandy	no	
Peacham	549	0.6	2.0	0.00	0.2	D	6	Firm, platy, silty till, schist & phylitte	frigid	loamy	no	organic over loam
Skerry	558	0.6	2.0	0.06	0.6	C	3	Firm, platy, sardy till	frigid	loamy	yes	loamy sand in Cd
Plaisted	563	0.6	2.0	0.06	0.6	C	3	Firm, platy, silty till, schist & phyllite	frigid	loamy	yes	channery silt loam in Cd
Howland	566	0.6	2.0	0.06	0.0	c	3	Firm, platy, silty till, schist & phyllite	frigid	loamy	yes	silt loam, platy in Cd
Monarda	569	0.2	2.0	0.02	0.2	D	5	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	Litt loani, platy in ou
	572	0.6	2.0	0.60	2.0	B	2	Friable till, silty, schist & phyllite	frigid	loamy	yes	silt loam

Soil Series	legend	Ksat low - B	Ksat high - B	Ksat low - C	Ksat high - C	Hyd.	Group	Land Form	Temp.	Soil Textures	Spodosol	Other
	number	in/hr	in/hr	in/hr	in/hr	Grp.	-				. ?	
Dixmont	578	0.6	2.0	0.60	2.0	С	3	Friable till, silty, schist & phyllite	frigid	loamy	yes	silt loam, platy in C
Cabot	589	0.6	2.0	0.06	0.2	D	5	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	
Westbrook	597			0.00	2.0	D	6	Tidal Flat	mesic	loamy	no	organic over loam
Mundal	610	0.6	2.0	0.06	0.6	С	3	Firm, platy, loamy till	frigid	loamy	yes	gravelly sandy loam in Cd
Croghan	613	20.0	100.0	20.00	100.0	В	3	Outwash and Stream Terraces	frigid	sandy	yes	single grain in C
Kinsman	614	6.0	20.0	6.00	20.0	С	5	Outwash and Stream Terraces	frigid	sandy	yes	
Salmon	630	0.6	2.0	0.60	2.0	В	2	Terraces and glacial lake plains	frigid	silty	yes	very fine sandy loam
Nicholville	632	0.6	2.0	0.60	2.0	С	3	Terraces and glacial lake plains	frigid	silty	yes	very fine sandy loam
Pemi	633	0.6	2.0	0.06	0.6	С	5	Terraces and glacial lake plains	frigid	silty	no	
Pillsbury	646	0.6	2.0	0.06	0.2	С	5	Firm, platy, loamy till	frigid	silty	no	
Ridgebury	656	0.6	6.0	0.00	0.2	С	5	Firm, platy, loamy till	mesic	loamy	no	
Canaan	663	2.0	20.0	2.00	20.0	С	4	Weathered Bedrock Till	frigid	loamy-skeletal	yes	less than 20 in. deep
Redstone	665	2.0	6.0	6.00	20.0	А	1	Weathered Bedrock Till	frigid	fragmental	yes	loamy cap
Sisk	667	0.6	2.0	0.00	0.6	С	3	Firm, platy, loamy till	cryic	loamy	yes	sandy loam in Cd
Surplus	669	0.6	2.0	0.00	0.6	С	3	Firm, platy, loamy till	cryic	loamy	yes	mwd, sandy loam in Cd
Glebe	671	2.0	6.0	2.00	6.0	С	4	Loose till, bedrock	cryic	loamy	yes	20 to 40 in. deep
Saddleback	673	0.6	2.0	0.60	2.0	C/D	4	Loose till, bedrock	cryic	loamy	yes	less than 20 in. deep
Ricker	674	2.0	6.0	2.00	6.0	А	4	Organic over bedrock (up to 4" of mineral)	cryic	fibric to hemic	no	well drained, less than 20 in. deep
Houghtonville	795	0.6	6.0	0.60	6.0	В	2	Loose till, loamy textures	frigid	loamy	yes	cobbly fine sandy loam
Matunuck	797			20.00	100.0	D	6	Tidal Flat	mesic	sandy	no	organic over sand
Meadowsedge	894					D	6	Organic Materials - Freshwater	frigid	peat	no	deep organic
Bucksport	895					D	6	Organic Materials - Freshwater	frigid	sapric	no	deep organic
Colonel	927	0.6	2.0	0.06	0.6	С	3	Firm, platy, loamy till	frigid	loamy	yes	loam in Cd
Pondicherry	992			6.00	20.0	D	6	Organic Materials - Freshwater	frigid	sandy or sandy-skeletal	no	organic over sand
Wonsqueak	995			0.20	2.0	D	6	Organic Materials - Freshwater	frigid	loamy	no	organic over loam
Glover	NA	0.6	2.0	0.60	2	D	4	Friable till, silty, schist & phyllite	frigid	loamy	no	less than 20 in. deep

no longer recognized organic materials

> Sorted by Numerical Legend K_{sat} B and C horizons SSSNNE Special pub no. 5

TABLE B

SOIL SERIES

Soil Series	legend	Ksat low - B	Ksat high - B	Ksat low - C	Ksat high - C	Hyd.	Group	Land Form	Temp.	Soil Textures	Spodosol	Other
	number	in/hr	in/hr	in/hr	in/hr	Grp.					?	
Abenaki	501	0.6	2.0	6.00	99.0	В	2	Outwash and Stream Terraces	frigid	loamy over sandy-skeletal	no	loamy over gravelly
Acton	146	2.0	20.0	2.00	20.0	В	3	Loose till, sandy textures	mesic	sandy-skeletal	no	cobbly loamy sand
Adams	36	6.0	20.0	20.00	99.0	Α	1	Outwash and Stream Terraces	frigid	sandy	yes	
Agawam	24	6.0	20.0	20.00	100.0	В	2	Outwash and Stream Terraces	mesic	loamy over sandy	no	loamy over sand/gravel
Allagash	127	0.6	2.0	6.00	20.0	В	2	Outwash and Stream Terraces	frigid	loamy over sandy	yes	loamy over sandy
Au Gres	516					В	5	Outwash and Stream Terraces	frigid	sandy	yes	single grain, loose
Bangor	572	0.6	2.0	0.60	2.0	В	2	Friable till, silty, schist & phyllite	frigid	loamy	yes	silt loam
Becket	56	0.6	2.0	0.06	0.6	С	3	Firm, platy, sandy till	frigid	loamy	yes	gravelly sandy loam in Cd
Belgrade	532	0.6	2.0	0.06	2.0	В	3	Terraces and glacial lake plains	mesic	silty	no	strata of fine sand
Bemis	224	0.6	0.2	0.00	0.2	С	5	Firm, platy, loamy till	cryic	loamy	no	
Berkshire	72	0.6	6.0	0.60	6.0	В	2	Loose till, loamy textures	frigid	loamy	yes	fine sandy loam
Bernardston	330	0.6	2.0	0.06	0.2	С	3	Firm, platy, silty till, schist & phyllite	mesic	loamy	no	channery silt loam in Cd
Bice	226	0.6	6.0	0.60	6.0	В	2	Loose till, loamy textures	frigid	loamy	no	sandy loam
Biddeford	234	0.0	0.2	0.00	0.2	D	6	Silt and Clay Deposits	frigid	fine	no	organic over clay
Binghamville	534	0.2	2.0	0.06	0.2	D	5	Terraces and glacial lake plains	mesic	silty	no	
Boscawen	220	6.0	20.0	20.00	100.0	Α	1	Outwash and Stream Terraces	frigid	sandy-skeletal	no	loamy cap
Boxford	32	0.1	0.2	0.00	0.2	С	3	Silt and Clay Deposits	mesic	fine	no	silty clay loam
Brayton	240	0.6	2.0	0.06	0.6	С	5	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	
Buckland	237	0.6	2.0	0.06	0.2	С	3	Firm, platy, loamy till	frigid	loamy	no	loam in Cd
Bucksport	895					D	6	Organic Materials - Freshwater	frigid	sapric	no	deep organic
Burnham	131	0.2	6.0	0.02	0.2	D	6	Firm, platy, silty till, schist & phylitte	frigid	loamv	no	organic over silt
Buxton	232	0.1	0.6	0.00	0.2	С	3	Silt and Clay Deposits	frigid	fine	no	silty clay
Cabot	589	0.6	2.0	0.06	0.2	D	5	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	
Caesar	526	20.0	100.0	20.00	100.0	A	1	Outwash and Stream Terraces	mesic	coarse sand	no	
Canaan	663	2.0	20.0	2.00	20.0	C	4	Weathered Bedrock Till	frigid	loamy-skeletal	ves	less than 20 in. deep
Canterbury	166	0.6	2.0	0.06	0.6	Č	3	Firm, platy, loamy till	frigid	loamy	no	loam in Cd
Canton	42	2.0	6.0	6.00	20.0	В	2	Loose till, sandy textures	mesic	loamy over sandy	no	loamy over loamy sand
Cardigan	357	0.6	2.0	0.60	2.0	В	4	Friable till, silty, schist & phyllite	mesic	loamy	no	20 to 40 in. deep
Catden	296					A/D	6	Organic Materials - Freshwater	mesic	sapric	no	deep organic
Champlain	35	6.0	20.0	20.00	100.0	A	1	Outwash and Stream Terraces	frigid	gravelly sand	no	
Charles	209	0.6	100.0	0.60	100.0	С	5	Flood Plain (Bottom Land)	frigid	silty	no	
Charlton	62	0.6	6.0	0.60	6.0	B	2	Loose till. loamy textures	mesic	loamy	no	fine sandy loam
Chatfield	89	0.6	6.0	0.60	6.0	B	4	Loose till, bedrock	mesic	loamy	no	20 to 40 in. deep
Chatfield Var.	289	0.6	6.0	0.60	6.0	B	3	Loose till, bedrock	mesic	loamy	no	mwd to swpd
Chesuncook	126	0.6	2.0	0.02	0.2	C	3	Firm, platy, silty till, schist & phyllite	frigid	loamy	ves	channery silt loam in Cd
Chichester	442	0.6	2.0	2.00	6.0	В		Loose till, sandy textures	frigid	loamy over sandy	no	loamy over loamy sand
Chocorua	395			6.00	20.0	D	6	Organic Materials - Freshwater	frigid	sandy or sandy-skeletal	no	organic over sand
Cohas	505	0.6	2.0	0.60	100.0	C	5	Flood Plain (Bottom Land)	frigid	co. loamy over sandy (skeletal)	no	
Colonel	927	0.6	2.0	0.06	0.6	C	3	Firm, platy, loamy till	frigid	loamy	yes	loam in Cd
Colton	22	6.0	20.0	20.00	100.0	Ă	1	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	
Colton, gravelly	21	6.0	20.0	20.00	100.0	A	1	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	gravelly surface
Croghan	613	20.0	100.0	20.00	100.0	B	3	Outwash and Stream Terraces	frigid	sandy	yes	single grain in C
Dartmouth	132	0.6	2.0	0.06	0.6	B	3	Terraces and glacial lake plains	mesic	silty	no	thin strata silty clay loam
Deerfield	313	6.0	20.0	20.00	100.0	B	3	Outwash and Stream Terraces	mesic	sandy	no	single grain in C
Dixfield	378	0.6	2.0	0.06	0.6	C	3	Firm, platy, loamy till	frigid	loamy	yes	fine sandy loam in Cd
Dixmont	578	0.6	2.0	0.60	2.0	C	3	Friable till, silty, schist & phyllite	frigid	loamy	yes	silt loam, platy in C
Duane	413	6.0	20.0	6.00	20.0	B	3	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	cemented (ortstein)
Dutchess	366	0.6	2.0	0.60	2.0	B	2	Friable till, silty, schist & phyllite	mesic	loamy	no	very channery
Eldridge	38	6.0	20.0	0.06	0.6	C	3	Sandy/loamy over silt/clay	mesic	sandy over loamy	no	very enamery
Elliottsville	128	0.6	2.0	0.60	2.0	B	4	Friable till, silty, schist & phyllite	frigid	loamy	ves	20 to 40 in. deep
Elmridge	238	2.0	6.0	0.00	0.2	C	3	Sandy/loamy over silt/clay	mesic	loamy over clayey	no	20 10 40 III. deep
Elmwood	338	2.0	6.0	0.00	0.2	c	3	Sandy/loamy over silt/clay	frigid	loamy over clayey	no	
	550	2.0	0.0	0.00	0.2	C	3	Outwash and Stream Terraces	frigid	sandy	ves	cemented (ortstein)

Fryeburg 20 Gilmanton 47 Glebe 67 Gloucester 1 Glover N Grange 43 Greenwood 22 Groveton 2 Hadley 10 Hadley 11 Haven 44 Henniker 44	Imber 208 478 671 11 NA 433 295 27 8 108 31 440 46	in/hr 0.6 0.6 2.0 6.0 0.6 0.6 0.6 0.6 0.6 0.6 0	in/hr 2.0 2.0 6.0 20.0 2.0 2.0 2.0 2.0 2.0 2.0	in/hr 2.00 0.06 2.00 6.00 0.60 0.60 0.60	in/hr 6.0 0.6 6.0 20.0 2 2.0	Grp. B C C A D C	2 3 4 1 4	Flood Plain (Bottom Land) Firm, platy, loamy till Loose till, bedrock Sandy Till	frigid frigid cryic	silty loamy	? no no	very fine sandy loam fine sandy loam in Cd
Gilmanton 47 Glebe 67 Gloucester 1 Glover N Grange 43 Greenwood 22 Groveton 2 Hadley 8 Hadley 10 Hartland 3 Haven 44 Henniker 4 Hermon 55	478 671 11 NA 433 295 27 8 108 31 410	0.6 2.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	2.0 6.0 20.0 2.0 2.0 2.0 2.0 2.0	0.06 2.00 6.00 0.60 0.60 0.60	0.6 6.0 20.0 2	C C A D	3 4 1	Firm, platy, loamy till Loose till, bedrock	frigid	loamy	-	, ,
Glebe 67 Gloucester 1 Glover N Grange 43 Greenwood 29 Groveton 29 Hadley 10 Hartland 3 Haven 47 Henniker 4 Hermon 5	671 11 NA 433 295 27 8 108 31 410	2.0 6.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6	6.0 20.0 2.0 2.0 2.0 2.0 2.0	2.00 6.00 0.60 0.60 0.60	6.0 20.0 2	C A D	4	Loose till, bedrock	0	,	no	fine sandy loam in Cd
Gloucester 1 Glover N Grange 43 Greenwood 29 Groveton 29 Hadley 28 Hadley 10 Hartland 3 Haven 47 Henniker 44 Hermon 55	11 NA 433 295 27 8 108 31 410	6.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6	20.0 2.0 2.0 2.0 2.0 2.0	6.00 0.60 0.60 0.60	20.0 2	A	1		cryic			
Glover N Grange 42 Greenwood 22 Groveton 22 Hadley 8 Hadley 10 Hartland 3 Haven 42 Henniker 4 Hermon 55	NA 433 295 27 8 108 31 410	0.6 0.6 0.6 0.6 0.6 0.6 0.6	2.0 2.0 2.0 2.0 2.0	0.60 0.60 0.60	2	D		Sandy Till		loamy	yes	20 to 40 in. deep
Grange 43 Greenwood 29 Groveton 2 Hadley 8 Hadley 10 Hartland 3 Haven 44 Henniker 44 Hermon 5	433 295 27 8 108 31 410	0.6 0.6 0.6 0.6 0.6	2.0 2.0 2.0	0.60			4		mesic	sandy-skeletal	no	loamy cap
Greenwood 29 Groveton 2 Hadley 2 Hadley 10 Hartland 3 Haven 41 Henniker 4 Hermon 5	295 27 8 108 31 410	0.6 0.6 0.6 0.6	2.0 2.0	0.60	2.0	С		Friable till, silty, schist & phyllite	frigid	loamy	no	less than 20 in. deep
Groveton2Hadley8Hadley10Hartland3Haven4'Henniker4Hermon5	27 8 108 31 410	0.6 0.6 0.6	2.0				5	Outwash and Stream Terraces	frigid	co. loamy over sandy (skeletal)	no	
Hadley8Hadley10Hartland3Haven4'Henniker4Hermon5	8 108 31 410	0.6 0.6 0.6	2.0			A/D	6	Organic Materials - Freshwater	frigid	hemic	no	deep organic
Hadley10Hartland3Haven4'Henniker4Hermon5	108 31 410	0.6 0.6			6.0	В	2	Outwash and Stream Terraces	frigid	loamy	yes	loamy over sandy
Hartland3Haven4'Henniker4Hermon5	31 410	0.6	20	0.60	6.0	В	2	Flood Plain (Bottom Land)	mesic	silty	no	strata of fine sand
Haven 4 Henniker 4 Hermon 5	410		-	0.60	6.0	В	2	Flood Plain (Bottom Land)	mesic	silty	no	strata of fine sand, occ flooded
Henniker 4 Hermon 5	-		2.0	0.20	2.0	В	2	Terraces and glacial lake plains	mesic	silty	no	very fine sandy loam
Hermon 5	46	0.6	2.0	20.00	100.0	В	2	Outwash and Stream Terraces	mesic	loamy over sandy	no	loamy over sand/gravel
		0.6	2.0	0.06	0.6	С	3	Firm, platy, sandy till	frigid	loamy	no	loamy sand in Cd
	55	2.0	20.0	6.00	20.0	A	1	Sandy Till	frigid	sandy-skeletal	yes	loamy cap
	12	6.0	20.0	20.00	100.0	A	1	Outwash and Stream Terraces	mesic	sandy-skeletal	no	
	130	0.6	2.0	0.06	0.6	В	3	Terraces and glacial lake plains	mesic	silty	no	silt loam to silt in C
	91	2.0	6.0	2.00	6.0	С	4	Loose till, bedrock	frigid	loamy	yes	less than 20 in. deep
	86	0.6	6.0	0.60	6.0	C/D	4	Loose till, bedrock	mesic	loamy	no	less than 20 in. deep
	510	2.0	20.0	20.00	100.0	A	1	Outwash and Stream Terraces	mesic	sandy-skeletal	no	slate, loamy cap
	795	0.6	6.0	0.60	6.0	В	2	Loose till, loamy textures	frigid	loamy	yes	cobbly fine sandy loam
	566	0.6	2.0	0.06	0.2	С	3	Firm, platy, silty till, schist & phyllite	frigid	loamy	yes	silt loam, platy in Cd
	397					D	6	Tidal Flat	mesic	hemic/sapric	no	deep organic
<u> </u>	359	0.6	2.0	0.60	2.0	В	4	Friable till, silty, schist & phyllite	mesic	loamy	no	less than 20 in. deep
	614	6.0	20.0	6.00	20.0	С	5	Outwash and Stream Terraces	frigid	sandy	yes	
	228	0.6	2.0	0.06	0.2	С	3	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	channery silt loam in Cd
	514	0.6	6.0	0.60	20.0	С	5	Loose till, loamy textures	mesic	loamy	no	
	3	0.6	2.0	6.00	20.0	С	5	Flood Plain (Bottom Land)	mesic	loamy	no	
	109	0.6	2.0	0.60	2.0	C	5	Flood Plain (Bottom Land)	mesic	silty	no	
	259	0.6	6.0	2.00	20.0	C/D B	2	Weathered bedrock, phyllite	frigid	loamy	no	very channery
	307	0.6	2.0	0.60	2.0		3	Flood Plain (Bottom Land)	frigid	silty	no	very fine sandy loam
	92 246	2.0 0.6	6.0 6.0	2.00 0.60	6.0 6.0	A/D C	4	Loose till, bedrock Loose till, sandy textures	frigid frigid	loamy	yes	less than 20 in. deep
	246 520	2.0	6.0	6.00	20.0	B	3		0	loamy	no	strata sand/gravel in C
	252	2.0	2.0	0.60	20.0	C	4	Outwash and Stream Terraces	frigid	sandy or sandy-skeletal loamy-skeletal	yes ves	20 to 40 in. deep
	232	0.6	2.0	6.00	20.0	B	3	Friable till, silty, schist & phyllite Outwash and Stream Terraces	frigid frigid	loamy over sandy	yes	sandy or sandy-skeletal
	48	0.6	2.0	6.00	20.0	B	3	Outwash and Stream Terraces	frigid	loamy over sandy	yes	sandy or sandy-skeletal
	76	0.6	2.0	0.06	0.6	C	3	Firm, platy, loamy till	frigid	loamy	ves	fine sandy loam in Cd
	23	6.0	20.0	6.00	20.0	A	1	Outwash and Stream Terraces	frigid	sandy-skeletal	ves	slate, loamy cap
	315	6.0	20.0	6.00	20.0	В	5	Outwash and Stream Terraces	mesic	sandy	ves	blate, iourny oup
	797	0.0	20.0	20.00	100.0	D	6	Tidal Flat	mesic	sandy	no	organic over sand
	134	0.0	0.2	0.00	0.2	D	6	Silt and Clay Deposits	mesic	fine	no	silt over clay
	894	0.0		0.00	0.2	D	6	Organic Materials - Freshwater	frigid	peat	no	deep organic
	406	0.6	2.0	0.60	2.0	D	6	Flood Plain (Bottom Land)	frigid	silty	no	organic over silt
	37	2.0	6.0	0.00	0.2	C	3	Sandy/loamy over silt/clay	frigid	loamy over clayey	no	silty clay loam in C
	10	2.0	20.0	6.00	20.0	A	1	Outwash and Stream Terraces	mesic	gravelly sand	no	loamy cap
	458	0.6	2.0	0.06	0.6	C	3	Firm, platy, sandy till	frigid	loamy	no	loamy sand in Cd
	404	6.0	100.0	6.00	100.0	B	3	Flood Plain (Bottom Land)	frigid	loamy over sandy	no	sandy or sandy-skeletal
	39					C	3	Firm, platy, sandy till	frigid	loamy	yes	loamy sand in Cd
	251	0.6	6.0	0.60	6.0	C	4	Loose till, bedrock	frigid	loamy	no	20 to 40 in. deep
	142	0.6	2.0	2.00	6.0	B	2	Loose till, sandy textures	frigid	bamy over sandy, sandy-skeleta	ves	gravelly loamy sand in C
	569	0.2	2.0	0.02	0.2	D	5	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	g. s. siy ioaniy cana in o
	133	0.6	2.0	0.60	2.0	D	4	Friable till, silty, schist & phyllite	frigid	loamy	ves	less than 20 in. deep
	44	0.6	6.0	0.06	0.6	C	3	Firm, platy, sandy till	mesic	loamy	no	loamy sand in Cd
	414	6.0	20.0	6.00	20.0	c	5	Loose till, sandy textures	frigid	sandy	no	isaniy cana in cu

Soil Series	legend	Ksat low - B	Ksat high - B	Ksat low - C	Ksat high - C	Hyd.	Group	Land Form	Temp.	Soil Textures	Spodosol	Other
	number	in/hr	in/hr	in/hr	in/hr	Grp.					?	
Mundal	610	0.6	2.0	0.06	0.6	С	3	Firm, platy, loamy till	frigid	loamy	yes	gravelly sandy loam in Cd
Natchaug	496			0.20	2.0	D	6	Organic Materials - Freshwater	mesic	loamy	no	organic over loam
Naumburg	214	6.0	20.0	6.00	20.0	С	5	Outwash and Stream Terraces	frigid	sandy	yes	
Newfields	444	0.6	2.0	0.60	2.0	В	3	Loose till, sandy textures	mesic	loamy over sandy	no	sandy or sandy-skeletal
Nicholville	632	0.6	2.0	0.60	2.0	С	3	Terraces and glacial lake plains	frigid	silty	yes	very fine sandy loam
Ninigret	513	0.6	6.0	6.00	20.0	В	3	Outwash and Stream Terraces	mesic	loamy over sandy	no	sandy or sandy-skeletal
Occum	1	0.6	2.0	6.00	20.0	В	2	Flood Plain (Bottom Land)	mesic	loamy	no	loamy over loamy sand
Ondawa	101	0.6	6.0	6.00	20.0	В	2	Flood Plain (Bottom Land)	frigid	loamy	no	loamy over loamy sand
Ondawa	201	0.6	6.0	6.00	20.0	В	2	Flood Plain (Bottom Land)	frigid	loamy	no	occ flood, loamy over I. sand
Ossipee	495			0.20	2.0	D	6	Organic Materials - Freshwater	frigid	loamy	no	organic over loam
Pawcatuck	497			20.00	100.0	D	6	Tidal Flat	mesic	sandy or sandy-skeletal	no	organic over sand
Paxton	66	0.6	2.0	0.00	0.2	С	3	Firm, platy, loamy till	mesic	loamy	no	
Peacham	549	0.6	2.0	0.00	0.2	D	6	Firm, platy, silty till, schist & phylitte	frigid	loamy	no	organic over loam
Pemi	633	0.6	2.0	0.06	0.6	С	5	Terraces and glacial lake plains	frigid	silty	no	
Pennichuck	460	0.6	2.0	0.60	2.0	В	4	Friable till, silty, schist & phyllite	mesic	loamy-skeletal	no	20 to 40 in. deep
Peru	78	0.6	2.0	0.06	0.6	С	3	Firm, platy, loamy till	frigid	loamy	yes	
Pillsbury	646	0.6	2.0	0.06	0.2	С	5	Firm, platy, loamy till	frigid	silty	no	
Pipestone	314					В	5	Outwash and Stream Terraces	mesic	sandy	yes	
Pittstown	334	0.6	2.0	0.06	0.2	С	3	Firm, platy, silty till, schist & phyllite	mesic	loamy	no	channery silt loam in Cd
Plaisted	563	0.6	2.0	0.06	0.6	С	3	Firm, platy, silty till, schist & phyllite	frigid	loamy	yes	channery silt loam in Cd
Podunk	104	0.6	6.0	6.00	20.0	В	3	Flood Plain (Bottom Land)	frigid	loamy	no	loamy to coarse sand in C
Pondicherry	992			6.00	20.0	D	6	Organic Materials - Freshwater	frigid	sandy or sandy-skeletal	no	organic over sand
Poocham	230	0.6	2.0	0.20	2.0	В	3	Terraces and glacial lake plains	mesic	silty	no	silt loam in C
Pootatuck	4	0.6	6.0	6.00	20.0	В	3	Flood Plain (Bottom Land)	mesic	loamy	no	single grain in C
Quonset	310	2.0	20.0	20.00	100.0	Α	1	Outwash and Stream Terraces	mesic	sandy-skeletal	no	shale
Rawsonville	98	0.6	6.0	0.60	6.0	С	4	Loose till, bedrock	frigid	loamy	yes	20 to 40 in. deep
Raynham	533	0.2	2.0	0.06	0.2	С	5	Terraces and glacial lake plains	mesic	silty	no	
Raypol	540	0.6	2.0	6.00	100.0	D	5	Outwash and Stream Terraces	mesic	co. loamy over sandy (skeletal)	no	
Redstone	665	2.0	6.0	6.00	20.0	Α	1	Weathered Bedrock Till	frigid	fragmental	yes	loamy cap
Ricker	674	2.0	6.0	2.00	6.0	Α	4	rganic over bedrock (up to 4" of miner	cryic	fibric to hemic	no	well drained, less than 20 in. deep
Ridgebury	656	0.6	6.0	0.00	0.2	С	5	Firm, platy, loamy till	mesic	loamy	no	
Rippowam	5	0.6	6.0	6.00	20.0	С	5	Flood Plain (Bottom Land)	mesic	loamy	no	
Roundabout	333	0.2	2.0	0.06	0.6	С	5	Terraces and glacial lake plains	frigid	silty	no	silt loam in the C
Rumney	105	0.6	6.0	6.00	20.0	С	5	Flood Plain (Bottom Land)	frigid	loamy	no	
Saco	6	0.6	2.0	6.00	20.0	D	6	Flood Plain (Bottom Land)	mesic	silty	no	strata
Saddleback	673	0.6	2.0	0.60	2.0	C/D	4	Loose till, bedrock	cryic	loamy	yes	less than 20 in. deep
Salmon	630	0.6	2.0	0.60	2.0	В	2	Terraces and glacial lake plains	frigid	silty	yes	very fine sandy loam
Saugatuck	16	0.06	0.2	6.00	20.0	С	5	Outwash and Stream Terraces	mesic	sandy	yes	ortstein
Scantic	233	0.0	0.2	0.00	0.2	D	5	Silt and Clay Deposits	frigid	fine	no	
Scarboro	115	6.0	20.0	6.00	20.0	D	6	Outwash and Stream Terraces	mesic	sandy	no	organic over sand, non stony
Scio	531	0.6	2.0	0.60	2.0	В	3	Terraces and glacial lake plains	mesic	silty	no	gravelly sand in 2C
Scitico	33	0.0	0.2	0.00	0.2	С	5	Silt and Clay Deposits	mesic	fine	no	
Scituate	448	0.6	2.0	0.06	0.2	С	3	Firm, platy, sandy till	mesic	loamy	no	loamy sand in Cd
Searsport	15	6.0	20.0	6.00	20.0	D	6	Outwash and Stream Terraces	frigid	sandy	no	organic over sand
Shaker	439	2.0	6.0	0.00	0.2	С	5	Sandy/loamy over silt/clay	mesic	co. loamy over clayey	no	
Shapleigh	136					C/D	4	Sandy Till	mesic	sandy	yes	less than 20 in. deep
Sheepscot	14	6.0	20.0	6.00	20.0	В	3	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	gravelly coarse sand
Sisk	667	0.6	2.0	0.00	0.6	С	3	Firm, platy, loamy till	cryic	loamy	yes	sandy loam in Cd
Skerry	558	0.6	2.0	0.06	0.6	С	3	Firm, platy, sandy till	frigid	loamy	yes	loamy sand in Cd
Squamscott	538	6.0	20.0	0.06	0.6	С	5	Sandy/loamy over silt/clay	mesic	sandy over loamy	yes	
Stetson	523	0.6	6.0	6.00	20.0	В	2	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	loamy over gravelly
Stissing	340	0.6	2.0	0.06	0.2	С	5	Firm, platy, silty till, schist & phyllite	mesic	loamy	no	
Success	154	2.0	6.0	6.00	20.0	Α	1	Sandy Till	frigid	sandy-skeletal	yes	cemented
Sudbury	118	2.0	6.0	2.00	20.0	В	3	Outwash and Stream Terraces	mesic	sandy	no	loam over gravelly sand

Soil Series	legend	Ksat low - B	Ksat high - B	Ksat low - C	Ksat high - C	Hyd.	Group	Land Form	Temp.	Soil Textures	Spodosol	Other
	number	in/hr	in/hr	in/hr	in/hr	Grp.	-		-		?	
Suffield	536	0.6	2.0	0.00	0.2	С	3	Sandy/loamy over silt/clay	mesic	silty over clayey	no	deep to clay C
Sunapee	168	0.6	2.0	0.60	6.0	В	3	Loose till, loamy textures	frigid	loamy	yes	
Sunapee var	269	0.6	2.0	0.60	6.0	В	3	Loose till, loamy textures	frigid	loamy	yes	frigid dystrudept
Suncook	2	6.0	20.0	6.00	20.0	Α	1	Flood Plain (Bottomland)	mesic	sandy	no	occasionally flooded
Suncook	402	6.0	20.0	6.00	20.0	Α	1	Flood Plain (Bottomland)	mesic	sandy	no	frequent flooding
Sunday	102	6.0	20.0	6.00	20.0	Α	1	Flood Plain (Bottomland)	frigid	sandy	no	occasionally flooded
Sunday	202	6.0	20.0	6.00	20.0	Α	1	Flood Plain (Bottomland)	frigid	sandy	no	frequently flooded
Surplus	669	0.6	2.0	0.00	0.6	С	3	Firm, platy, loamy till	cryic	loamy	yes	mwd, sandy loam in Cd
Sutton	68	0.6	6.0	0.60	6.0	В	3	Loose till, loamy textures	mesic	loamy	no	
Swanton	438	2.0	6.0	0.00	0.2	С	5	Sandy/loamy over silt/clay	frigid	co. loamy over clayey	no	
Telos	123	0.6	2.0	0.02	0.2	С	3	Firm, platy, silty till, schist & phyllite	frigid	loamy	yes	channery silt loam in Cd
Thorndike	84	0.6	2.0	0.60	2.0	C/D	4	Friable till, silty, schist & phyllite	frigid	loamy-skeletal	yes	less than 20 in. deep
Timakwa	393			6.00	100.0	D	6	Organic Materials - Freshwater	mesic	sandy or sandy-skeletal	no	organic over sand
Tunbridge	99	0.6	6.0	0.60	6.0	С	4	Loose till, bedrock	frigid	loamy	yes	20 to 40 in. deep
Unadilla	30	0.6	2.0	2.00	20.0	В	2	Terraces and glacial lake plains	mesic	silty	no	silty over gravelly
Vassalboro	150					D	6	Organic Materials - Freshwater	frigid	peat	no	deep organic
Walpole	546	2.0	6.0	6.00	20.0	С	5	Outwash and Stream Terraces	mesic	sandy	no	• •
Wareham	34	6.0	20.0	6.00	20.0	С	5	Outwash and Stream Terraces	mesic	sandy	no	
Warwick	210	2.0	6.0	20.00	100.0	Α	1	Outwash and Stream Terraces	mesic	loamy-skeletal	no	loamy over slate gravel
Waskish	195					D	6	Organic Materials - Freshwater	frigid	peat	no	deep organic
Waumbeck	58	2.0	20.0	6.00	20.0	В	3	Loose till, sandy textures	frigid	sandy-skeletal	yes	very cobbly loamy sand
Westbrook	597			0.00	2.0	D	6	Tidal Flat	mesic	loamy	no	organic over loam
Whitman	49	0.0	0.2	0.00	0.2	D	6	Firm, platy, loamy till	mesic	loamy	no	mucky loam
Windsor	26	6.0	20.0	6.00	20.0	А	1	Outwash and Stream Terraces	mesic	sandy	no	
Winnecook	88	0.6	2.0	0.60	2.0	С	4	Friable till, silty, schist & phyllite	frigid	loamy-skeletal	yes	20 to 40 in. deep
Winooski	9	0.6	6.0	0.60	6.0	В		Flood Plain (Bottom Land)	mesic	silty over loamy	no	· · · · · ·
Winooski	103	0.6	6.0	0.60	6.0	В	3	Flood Plain (Bottom Land)	mesic	silty	no	very fine sandy loam
Wonsqueak	995			0.20	2.0	D	6	Organic Materials - Freshwater	frigid	loamy	no	organic over loam
Woodbridge	29	0.6	2.0	0.00	0.6	С	3	Firm, platy, loamy till	mesic	loamy	no	sandy loam in Cd
Woodstock	93	2.0	6.0	2.00	6.0	C/D	4	Loose till, bedrock	frigid	loamy	no	less than 20 in. deep

no longer recognized organic materials

TABLE C

NHDES SOIL GROUPINGS

Soil Series	number	NHDES	Ksat low - B	Ksat high - B	Ksat low - C	Ksat high - C	Hyd.	Land Form	Temp.	Soil Textures	Spodosol	Other
		Soil Group	in/hr	in/hr	in/hr	in/hr	Grp.				?	
Adams	36	1	6.0	20.0	20.00	99.0	Α	Outwash and Stream Terraces	frigid	sandy	yes	
Boscawen	220	1	6.0	20.0	20.00	100.0	Α	Outwash and Stream Terraces	frigid	sandy-skeletal	no	loamy cap
Caesar	526	1	20.0	100.0	20.00	100.0	Α	Outwash and Stream Terraces	mesic	coarse sand	no	
Champlain	35	1	6.0	20.0	20.00	100.0	Α	Outwash and Stream Terraces	frigid	gravelly sand	no	
Colton	22	1	6.0	20.0	20.00	100.0	Α	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	
Colton, gravelly	21	1	6.0	20.0	20.00	100.0	A	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	gravelly surface
Gloucester	11	1	6.0	20.0	6.00	20.0	A	Sandy Till	mesic	sandy-skeletal	no	loamy cap
Hermon	55	1	2.0	20.0	6.00	20.0	A	Sandy Till	frigid	sandy-skeletal	yes	loamy cap
Hinckley	12	1	6.0	20.0	20.00	100.0	A	Outwash and Stream Terraces	mesic	sandy-skeletal	no	
Hoosic	510	1	2.0	20.0	20.00	100.0	A	Outwash and Stream Terraces	mesic	sandy-skeletal	no	slate, loamy cap
Masardis	23	1	6.0	20.0	6.00	20.0	A	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	slate, loamy cap
Merrimac	10	1	2.0	20.0	6.00	20.0	A	Outwash and Stream Terraces	mesic	gravelly sand	no	loamy cap
Quonset	310	1	2.0	20.0	20.00	100.0	A	Outwash and Stream Terraces	mesic	sandy-skeletal	no	shale
Redstone	665	1	2.0	6.0	6.00	20.0	A	Weathered Bedrock Till	frigid	fragmental	yes	loamy cap
Success	154	1	2.0	6.0	6.00	20.0	A	Sandy Till	frigid	sandy-skeletal	yes	cemented
Suncook	2	1	6.0	20.0	6.00	20.0	A	Flood Plain (Bottomland)	mesic	sandy	no	occasionally flooded
Suncook	402	1	6.0	20.0	6.00	20.0	A	Flood Plain (Bottomland)	mesic	sandy	no	frequent flooding
Sunday	102	1	6.0	20.0 20.0	6.00	20.0 20.0	A	Flood Plain (Bottomland)	frigid	sandy	no	occasionally flooded
Sunday Warwick	202 210	1	6.0 2.0	6.0	6.00 20.00	100.0	A	Flood Plain (Bottomland) Outwash and Stream Terraces	frigid	sandy	no	frequently flooded
Windsor	210	1	6.0	20.0	6.00	20.0	A	Outwash and Stream Terraces	mesic mesic	loamy-skeletal sandy	no no	loamy over slate gravel
WINGSON	20	I	0.0	20.0	6.00	20.0	A	Outwash and Stream remaces	mesic	sandy	no	
Abenaki	501	2	0.6	2.0	6.00	99.0	В	Outwash and Stream Terraces	frigid	loamy over sandy-skeletal	no	loamy over gravelly
Agawam	24	2	6.0	20.0	20.00	100.0	B	Outwash and Stream Terraces	mesic	loamy over sandy-skeletal	no	loamy over sand/gravel
Allagash	127	2	0.6	2.0	6.00	20.0	B	Outwash and Stream Terraces	frigid	loamy over sandy	yes	loamy over sandy
Bangor	572	2	0.6	2.0	0.60	2.0	B	Friable till, silty, schist & phyllite	frigid	loamy	yes	silt loam
Berkshire	72	2	0.6	6.0	0.60	6.0	B	Loose till, loamy textures	frigid	loamy	yes	fine sandy loam
Bice	226	2	0.6	6.0	0.60	6.0	B	Loose till, loamy textures	frigid	loamy	no	sandy loam
Canton	42	2	2.0	6.0	6.00	20.0	B	Loose till, sandy textures	mesic	loamy over sandy	no	loamy over loamy sand
Charlton	62	2	0.6	6.0	0.60	6.0	В	Loose till, loamy textures	mesic	loamy	no	fine sandy loam
Dutchess	366	2	0.6	2.0	0.60	2.0	В	Friable till, silty, schist & phyllite	mesic	loamy	no	very channery
Fryeburg	208	2	0.6	2.0	2.00	6.0	В	Flood Plain (Bottom Land)	frigid	silty	no	very fine sandy loam
Groveton	27	2	0.6	2.0	0.60	6.0	В	Outwash and Stream Terraces	frigid	loamy	yes	loamy over sandy
Hadley	8	2	0.6	2.0	0.60	6.0	В	Flood Plain (Bottom Land)	mesic	silty	no	strata of fine sand
Hadley	108	2	0.6	2.0	0.60	6.0	В	Flood Plain (Bottom Land)	mesic	silty	no	strata of fine sand, occ flooded
Hartland	31	2	0.6	2.0	0.20	2.0	В	Terraces and glacial lake plains	mesic	silty	no	very fine sandy loam
Haven	410	2	0.6	2.0	20.00	100.0	В	Outwash and Stream Terraces	mesic	loamy over sandy	no	loamy over sand/gravel
Houghtonville	795	2	0.6	6.0	0.60	6.0	В	Loose till, loamy textures	frigid	loamy	yes	cobbly fine sandy loam
Lombard	259	2	0.6	6.0	2.00	20.0	C/D	Weathered bedrock, phyllite	frigid	loamy	no	very channery
Monadnock	142	2	0.6	2.0	2.00	6.0	В	Loose till, sandy textures	frigid	oamy over sandy, sandy-skelet	yes	gravelly loamy sand in C
Occum	1	2	0.6	2.0	6.00	20.0	В	Flood Plain (Bottom Land)	mesic	loamy	no	loamy over loamy sand
Ondawa	101	2	0.6	6.0	6.00	20.0	В	Flood Plain (Bottom Land)	frigid	loamy	no	loamy over loamy sand
Ondawa	201	2	0.6	6.0	6.00	20.0	В	Flood Plain (Bottom Land)	frigid	loamy	no	occ flood, loamy over I. sand
Salmon	630	2	0.6	2.0	0.60	2.0	В	Terraces and glacial lake plains	frigid	silty	yes	very fine sandy loam
Stetson	523	2	0.6	6.0	6.00	20.0	В	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	loamy over gravelly
Unadilla	30	2	0.6	2.0	2.00	20.0	В	Terraces and glacial lake plains	mesic	silty	no	silty over gravelly
Chichester	442	2	0.6	2.0	2.00	6.0	В	Loose till, sandy textures	frigid	loamy over sandy	no	loamy over loamy sand
							_					
Acton	146	3	2.0	20.0	2.00	20.0	В	Loose till, sandy textures	mesic	sandy-skeletal	no	cobbly loamy sand
Becket	56	3	0.6	2.0	0.06	0.6	С	Firm, platy, sandy till	frigid	loamy	yes	gravelly sandy loam in Cd
Belgrade	532	3	0.6	2.0	0.06	2.0	В	Terraces and glacial lake plains	mesic	silty	no	strata of fine sand
Bernardston	330	3	0.6	2.0	0.06	0.2	C	Firm, platy, silty till, schist & phyllite	mesic	loamy	no	channery silt loam in Cd
Boxford	32	3	0.1	0.2	0.00	0.2	С	Silt and Clay Deposits	mesic	fine	no	silty clay loam

Sorted by DES Soil Group for Establishing Lot Size K_{sat} B and C horizons SSSNNE pub no. 5

Soil Series	number	NHDES	Ksat low - B	Ksat high - B	Ksat low - C	Ksat high - C	Hyd.	Land Form	Temp.	Soil Textures	Spodosol	Other
		Soil Group	in/hr	in/hr	in/hr	in/hr	Grp.				?	
Buckland	237	3	0.6	2.0	0.06	0.2	С	Firm, platy, loamy till	frigid	loamy	no	loam in Cd
Buxton	232	3	0.1	0.6	0.00	0.2	С	Silt and Clay Deposits	frigid	fine	no	silty clay
Canterbury	166	3	0.6	2.0	0.06	0.6	С	Firm, platy, loamy till	frigid	loamy	no	loam in Cd
Chatfield Var.	289	3	0.6	6.0	0.60	6.0	В	Loose till, bedrock	mesic	loamy	no	mwd to swpd
Chesuncook	126	3	0.6	2.0	0.02	0.2	С	Firm, platy, silty till, schist & phyllite	frigid	loamy	yes	channery silt loam in Cd
Colonel	927	3	0.6	2.0	0.06	0.6	С	Firm, platy, loamy till	frigid	loamy	yes	loam in Cd
Croghan	613	3	20.0	100.0	20.00	100.0	В	Outwash and Stream Terraces	frigid	sandy	yes	single grain in C
Dartmouth	132	3	0.6	2.0	0.06	0.6	В	Terraces and glacial lake plains	mesic	silty	no	thin strata silty clay loam
Deerfield	313	3	6.0	20.0	20.00	100.0	В	Outwash and Stream Terraces	mesic	sandy	no	single grain in C
Dixfield	378	3	0.6	2.0	0.06	0.6	С	Firm, platy, loamy till	frigid	loamy	yes	fine sandy loam in Cd
Dixmont	578	3	0.6	2.0	0.60	2.0	С	Friable till, silty, schist & phyllite	frigid	loamy	yes	silt loam, platy in C
Duane	413	3	6.0	20.0	6.00	20.0	В	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	cemented (ortstein)
Eldridge	38	3	6.0	20.0	0.06	0.6	С	Sandy/loamy over silt/clay	mesic	sandy over loamy	no	
Elmridge	238	3	2.0	6.0	0.00	0.2	С	Sandy/loamy over silt/clay	mesic	loamy over clayey	no	
Elmwood	338	3	2.0	6.0	0.00	0.2	С	Sandy/loamy over silt/clay	frigid	loamy over clayey	no	
Finch	116	3					C	Outwash and Stream Terraces	frigid	sandy	yes	cemented (ortstein)
Gilmanton	478	3	0.6	2.0	0.06	0.6	C	Firm, platy, loamy till	frigid	loamy	no	fine sandy loam in Cd
Henniker	46	3	0.6	2.0	0.06	0.6	С	Firm, platy, sandy till	frigid	loamy	no	loamy sand in Cd
Hitchcock	130	3	0.6	2.0	0.06	0.6	В	Terraces and glacial lake plains	mesic	silty	no	silt loam to silt in C
Howland	566	3	0.6	2.0	0.06	0.2	С	Firm, platy, silty till, schist & phyllite	frigid	loamy	yes	silt loam, platy in Cd
Lanesboro	228	3	0.6	2.0	0.06	0.2	С	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	channery silt loam in Cd
Lovewell	307	3	0.6	2.0	0.60	2.0	B	Flood Plain (Bottom Land)	frigid	silty	no	very fine sandy loam
Machias	520	3	2.0	6.0	6.00	20.0	B	Outwash and Stream Terraces	frigid	sandy or sandy-skeletal	yes	strata sand/gravel in C
Madawaska	28	3	0.6	2.0	6.00	20.0	B	Outwash and Stream Terraces	frigid	loamy over sandy	yes	sandy or sandy-skeletal
ladawaska, aquer	48	3	0.6	2.0 2.0	6.00 0.06	20.0 0.6	B C	Outwash and Stream Terraces	frigid	loamy over sandy	yes	sandy or sandy-skeletal
Marlow Melrose	37	3	2.0	6.0	0.00	0.8	C C	Firm, platy, loamy till Sandy/loamy over silt/clay	frigid frigid	loamy	yes	fine sandy loam in Cd silty clay loam in C
Metacomet	458	3	0.6	2.0	0.00	0.2	C C	Firm, platy, sandy till	frigid	loamy over clayey loamy	no	loamy sand in Cd
Metallak	404	3	6.0	100.0	6.00	100.0	B	Flood Plain (Bottom Land)	frigid	loamy over sandy	no	sandy or sandy-skeletal
Millis	39	3	0.0	100.0	0.00	100.0	C	Firm, platy, sandy till	frigid	loamy	yes	loamy sand in Cd
Montauk	44	3	0.6	6.0	0.06	0.6	c	Firm, platy, sandy till	mesic	loamy	no	loamy sand in Cd
Mundal	610	3	0.6	2.0	0.06	0.6	c	Firm, platy, loamy till	frigid	loamy	ves	gravelly sandy loam in Cd
Newfields	444	3	0.6	2.0	0.60	2.0	В	Loose till, sandy textures	mesic	loamy over sandy	no	sandy or sandy-skeletal
Nicholville	632	3	0.6	2.0	0.60	2.0	C	Terraces and glacial lake plains	frigid	silty	yes	very fine sandy loam
Ninigret	513	3	0.6	6.0	6.00	20.0	B	Outwash and Stream Terraces	mesic	loamy over sandy	no	sandy or sandy-skeletal
Paxton	66	3	0.6	2.0	0.00	0.2	C	Firm, platy, loamy till	mesic	loamy	no	
Peru	78	3	0.6	2.0	0.06	0.6	Č	Firm, platy, loamy till	frigid	loamy	ves	
Pittstown	334	3	0.6	2.0	0.06	0.2	Č	Firm, platy, silty till, schist & phyllite	mesic	loamy	no	channery silt loam in Cd
Plaisted	563	3	0.6	2.0	0.06	0.6	C	Firm, platy, silty till, schist & phyllite	frigid	loamy	ves	channery silt loam in Cd
Podunk	104	3	0.6	6.0	6.00	20.0	В	Flood Plain (Bottom Land)	frigid	loamy	no	loamy to coarse sand in C
Poocham	230	3	0.6	2.0	0.20	2.0	В	Terraces and glacial lake plains	mesic	silty	no	silt loam in C
Pootatuck	4	3	0.6	6.0	6.00	20.0	В	Flood Plain (Bottom Land)	mesic	loamy	no	single grain in C
Scio	531	3	0.6	2.0	0.60	2.0	В	Terraces and glacial lake plains	mesic	silty	no	gravelly sand in 2C
Scituate	448	3	0.6	2.0	0.06	0.2	С	Firm, platy, sandy till	mesic	loamy	no	loamy sand in Cd
Sheepscot	14	3	6.0	20.0	6.00	20.0	В	Outwash and Stream Terraces	frigid	sandy-skeletal	yes	gravelly coarse sand
Sisk	667	3	0.6	2.0	0.00	0.6	С	Firm, platy, loamy till	cryic	loamy	yes	sandy loam in Cd
Skerry	558	3	0.6	2.0	0.06	0.6	С	Firm, platy, sandy till	frigid	loamy	yes	loamy sand in Cd
Sudbury	118	3	2.0	6.0	2.00	20.0	В	Outwash and Stream Terraces	mesic	sandy	no	loam over gravelly sand
Suffield	536	3	0.6	2.0	0.00	0.2	С	Sandy/loamy over silt/clay	mesic	silty over clayey	no	deep to clay C
Sunapee	168	3	0.6	2.0	0.60	6.0	В	Loose till, loamy textures	frigid	loamy	yes	
Sunapee var	269	3	0.6	2.0	0.60	6.0	В	Loose till, loamy textures	frigid	loamy	yes	frigid dystrudept
Surplus	669	3	0.6	2.0	0.00	0.6	С	Firm, platy, loamy till	cryic	loamy	yes	mwd, sandy loam in Cd
Sutton	68	3	0.6	6.0	0.60	6.0	В	Loose till, loamy textures	mesic	loamy	no	
Telos	123	3	0.6	2.0	0.02	0.2	С	Firm, platy, silty till, schist & phyllite	frigid	loamy	yes	channery silt loam in Cd

Soil Series	number	NHDES	Ksat low - B	Ksat high - B	Ksat low - C	Ksat high - C	Hyd.	Land Form	Temp.	Soil Textures	Spodosol	Other
		Soil Group	in/hr	in/hr	in/hr	in/hr	Grp.				?	
Waumbeck	58	3	2.0	20.0	6.00	20.0	В	Loose till, sandy textures	frigid	sandy-skeletal	yes	very cobbly loamy sand
Winooski	103	3	0.6	6.0	0.60	6.0	В	Flood Plain (Bottom Land)	mesic	silty	no	very fine sandy loam
Woodbridge	29	3	0.6	2.0	0.00	0.6	С	Firm, platy, loamy till	mesic	loamy	no	sandy loam in Cd
Winooski	9	3	0.6	6.0	0.60	6.0	В	Flood Plain (Bottom Land)	mesic	silty over loamy	no	
Canaan	663	4	2.0	20.0	2.00	20.0	С	Weathered Bedrock Till	frigid	loamy-skeletal	yes	less than 20 in. deep
Cardigan	357	4	0.6	2.0	0.60	2.0	В	Friable till, silty, schist & phyllite	mesic	loamy	no	20 to 40 in. deep
Chatfield	89	4	0.6	6.0	0.60	6.0	В	Loose till, bedrock	mesic	loamy	no	20 to 40 in. deep
Elliottsville	128	4	0.6	2.0	0.60	2.0	В	Friable till, silty, schist & phyllite	frigid	loamy	yes	20 to 40 in. deep
Glebe	671	4	2.0	6.0	2.00	6.0	С	Loose till, bedrock	cryic	loamy	yes	20 to 40 in. deep
Glover	NA	4	0.6	2.0	0.60	2	D	Friable till, silty, schist & phyllite	frigid	loamy	no	less than 20 in. deep
Hogback	91	4	2.0	6.0	2.00	6.0	С	Loose till, bedrock	frigid	loamy	yes	less than 20 in. deep
Hollis	86	4	0.6	6.0	0.60	6.0	C/D	Loose till, bedrock	mesic	loamy	no	less than 20 in. deep
Kearsarge	359	4	0.6	2.0	0.60	2.0	В	Friable till, silty, schist & phyllite	mesic	loamy	no	less than 20 in. deep
Lyman	92	4	2.0	6.0	2.00	6.0	A/D	Loose till, bedrock	frigid	loamy	yes	less than 20 in. deep
Macomber	252	4	0.6	2.0	0.60	2.0	C	Friable till, silty, schist & phyllite	frigid	loamy-skeletal	yes	20 to 40 in. deep
Millsite	251	4	0.6	6.0	0.60	6.0	С	Loose till, bedrock	frigid	loamy	no	20 to 40 in. deep
Monson	133	4	0.6	2.0	0.60	2.0	D	Friable till, silty, schist & phyllite	frigid	loamy	yes	less than 20 in. deep
Pennichuck	460	4	0.6	2.0	0.60	2.0	В	Friable till, silty, schist & phyllite	mesic	loamy-skeletal	no	20 to 40 in. deep
Rawsonville	98	4	0.6	6.0	0.60	6.0	C	Loose till, bedrock	frigid	loamy	yes	20 to 40 in. deep
Ricker	674	4	2.0	6.0	2.00	6.0	A	rganic over bedrock (up to 4" of minera	cryic	fibric to hemic	no	well drained, less than 20 in. deep
Saddleback	673	4	0.6	2.0	0.60	2.0	C/D	Loose till, bedrock	cryic	loamy	yes	less than 20 in. deep
Shapleigh	136	4					C/D	Sandy Till	mesic	sandy	yes	less than 20 in. deep
Thorndike	84	4	0.6	2.0	0.60	2.0	C/D	Friable till, silty, schist & phyllite	frigid	loamy-skeletal	yes	less than 20 in. deep
Tunbridge	99	4	0.6	6.0	0.60	6.0	C	Loose till, bedrock	frigid	loamy	yes	20 to 40 in. deep
Winnecook	88	4	0.6	2.0	0.60	2.0	С	Friable till, silty, schist & phyllite	frigid	loamy-skeletal	yes	20 to 40 in. deep
Woodstock	93	4	2.0	6.0	2.00	6.0	C/D	Loose till, bedrock	frigid	loamy	no	less than 20 in. deep
Au Gres	516	5					В	Outwash and Stream Terraces	frigid	sandy	yes	single grain, loose
Bemis	224	5	0.6	0.2	0.00	0.2	Č	Firm, platy, loamy till	cryic	loamy	no	
Binghamville	534	5	0.2	2.0	0.06	0.2	D	Terraces and glacial lake plains	mesic	silty	no	
Brayton	240	5	0.6	2.0	0.06	0.6	С	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	
Cabot	589	5	0.6	2.0	0.06	0.2	D	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	
Charles	209	5	0.6	100.0	0.60	100.0	С	Flood Plain (Bottom Land)	frigid	silty	no	
Cohas	505	5	0.6	2.0	0.60	100.0	С	Flood Plain (Bottom Land)	frigid	co. loamy over sandy (skeletal)	no	
Grange	433	5	0.6	2.0	0.60	2.0	С	Outwash and Stream Terraces	frigid	co. loamy over sandy (skeletal)	no	
Kinsman	614	5	6.0	20.0	6.00	20.0	С	Outwash and Stream Terraces	frigid	sandy	yes	
Leicester	514	5	0.6	6.0	0.60	20.0	С	Loose till, loamy textures	mesic	loamy	no	
Lim	3	5	0.6	2.0	6.00	20.0	С	Flood Plain (Bottom Land)	mesic	loamy	no	
Limerick	109	5	0.6	2.0	0.60	2.0	С	Flood Plain (Bottom Land)	mesic	silty	no	
Lyme	246	5	0.6	6.0	0.60	6.0	С	Loose till, sandy textures	frigid	loamy	no	
Mashpee	315	5	6.0	20.0	6.00	20.0	В	Outwash and Stream Terraces	mesic	sandy	yes	
Monarda	569	5	0.2	2.0	0.02	0.2	D	Firm, platy, silty till, schist & phyllite	frigid	loamy	no	
Moosilauke	414	5	6.0	20.0	6.00	20.0	С	Loose till, sandy textures	frigid	sandy	no	
Naumburg	214	5	6.0	20.0	6.00	20.0	С	Outwash and Stream Terraces	frigid	sandy	yes	
Pemi	633	5	0.6	2.0	0.06	0.6	С	Terraces and glacial lake plains	frigid	silty	no	
Pillsbury	646	5	0.6	2.0	0.06	0.2	С	Firm, platy, loamy till	frigid	silty	no	
Pipestone	314	5					В	Outwash and Stream Terraces	mesic	sandy	yes	
Raynham	533	5	0.2	2.0	0.06	0.2	С	Terraces and glacial lake plains	mesic	silty	no	
Raypol	540	5	0.6	2.0	6.00	100.0	D	Outwash and Stream Terraces	mesic	co. loamy over sandy (skeletal)	no	
Ridgebury	656	5	0.6	6.0	0.00	0.2	С	Firm, platy, loamy till	mesic	loamy	no	
Rippowam	5	5	0.6	6.0	6.00	20.0	С	Flood Plain (Bottom Land)	mesic	loamy	no	
Roundabout	333	5	0.2	2.0	0.06	0.6	С	Terraces and glacial lake plains	frigid	silty	no	silt loam in the C
Rumney	105	5	0.6	6.0	6.00	20.0	С	Flood Plain (Bottom Land)	frigid	loamy	no	

Sorted by DES Soil Group for Establishing Lot Size K_{sat} B and C horizons SSSNNE pub no. 5

Soil Series	number	NHDES	Ksat low - B	Ksat high - B	Ksat low - C	Ksat high - C	Hyd.	Land Form	Temp.	Soil Textures	Spodosol	Other
		Soil Group	in/hr	in/hr	in/hr	in/hr	Grp.				?	
Saugatuck	16	5	0.06	0.2	6.00	20.0	С	Outwash and Stream Terraces	mesic	sandy	yes	ortstein
Scantic	233	5	0.0	0.2	0.00	0.2	D	Silt and Clay Deposits	frigid	fine	no	
Scitico	33	5	0.0	0.2	0.00	0.2	С	Silt and Clay Deposits	mesic	fine	no	
Shaker	439	5	2.0	6.0	0.00	0.2	С	Sandy/loamy over silt/clay	mesic	co. loamy over clayey	no	
Squamscott	538	5	6.0	20.0	0.06	0.6	С	Sandy/loamy over silt/clay	mesic	sandy over loamy	yes	
Stissing	340	5	0.6	2.0	0.06	0.2	С	Firm, platy, silty till, schist & phyllite	mesic	loamy	no	
Swanton	438	5	2.0	6.0	0.00	0.2	С	Sandy/loamy over silt/clay	frigid	co. loamy over clayey	no	
Walpole	546	5	2.0	6.0	6.00	20.0	С	Outwash and Stream Terraces	mesic	sandy	no	
Wareham	34	5	6.0	20.0	6.00	20.0	С	Outwash and Stream Terraces	mesic	sandy	no	
										· · · · ·		
Biddeford	234	6	0.0	0.2	0.00	0.2	D	Silt and Clay Deposits	frigid	fine	no	organic over clay
Bucksport	895	6					D	Organic Materials - Freshwater	frigid	sapric	no	deep organic
Burnham	131	6	0.2	6.0	0.02	0.2	D	Firm, platy, silty till, schist & phylitte	frigid	loamy	no	organic over silt
Catden	296	6					A/D	Organic Materials - Freshwater	mesic	sapric	no	deep organic
Chocorua	395	6			6.00	20.0	D	Organic Materials - Freshwater	frigid	sandy or sandy-skeletal	no	organic over sand
Greenwood	295	6					A/D	Organic Materials - Freshwater	frigid	hemic	no	deep organic
Ipswich	397	6					D	Tidal Flat	mesic	hemic/sapric	no	deep organic
Matunuck	797	6			20.00	100.0	D	Tidal Flat	mesic	sandy	no	organic over sand
Maybid	134	6	0.0	0.2	0.00	0.2	D	Silt and Clay Deposits	mesic	fine	no	silt over clay
Meadowsedge	894	6					D	Organic Materials - Freshwater	frigid	peat	no	deep organic
Medomak	406	6	0.6	2.0	0.60	2.0	D	Flood Plain (Bottom Land)	frigid	silty	no	organic over silt
Natchaug	496	6			0.20	2.0	D	Organic Materials - Freshwater	mesic	loamy	no	organic over loam
Ossipee	495	6			0.20	2.0	D	Organic Materials - Freshwater	frigid	loamy	no	organic over loam
Pawcatuck	497	6			20.00	100.0	D	Tidal Flat	mesic	sandy or sandy-skeletal	no	organic over sand
Peacham	549	6	0.6	2.0	0.00	0.2	D	Firm, platy, silty till, schist & phylitte	frigid	loamy	no	organic over loam
Pondicherry	992	6			6.00	20.0	D	Organic Materials - Freshwater	frigid	sandy or sandy-skeletal	no	organic over sand
Saco	6	6	0.6	2.0	6.00	20.0	D	Flood Plain (Bottom Land)	mesic	silty	no	strata
Scarboro	115	6	6.0	20.0	6.00	20.0	D	Outwash and Stream Terraces	mesic	sandy	no	organic over sand, non stony
Searsport	15	6	6.0	20.0	6.00	20.0	D	Outwash and Stream Terraces	frigid	sandy	no	organic over sand
Timakwa	393	6			6.00	100.0	D	Organic Materials - Freshwater	mesic	sandy or sandy-skeletal	no	organic over sand
Vassalboro	150	6					D	Organic Materials - Freshwater	frigid	peat	no	deep organic
Waskish	195	6					D	Organic Materials - Freshwater	frigid	peat	no	deep organic
Westbrook	597	6			0.00	2.0	D	Tidal Flat	mesic	loamy	no	organic over loam
Whitman	49	6	0.0	0.2	0.00	0.2	D	Firm, platy, loamy till	mesic	loamy	no	mucky loam
Wonsqueak	995	6			0.20	2.0	D	Organic Materials - Freshwater	frigid	loamy	no	organic over loam
onoquodit	000	, , , , , , , , , , , , , , , , , , ,			0.20	2.0		ergano materialo i reoriwater	nigia	loanty		

no longer recognized

organic materials

denotes break betweenSoil Group

ORDER FORM							
Ksat VALUES FOR NEW HAMPSHIRE SOILS							
(Including Hydrologic and Soil Lot Sizing Groups)							
SSSNNE Publication #5							
DATE							
Mail Copy of Publication #5 to:							
Name							
Address City State							
Quantity of Publications @ \$8.00 = Total Order: \$							
Amount Enclosed: \$							
Enclose check or money order for the full amount payable to:							
Society of Soil Scientists of Northern New England PO Box 76 Durham, NH 03824							
Please allow 4 weeks for delivery.							

John P. Hayes III CSS, CWS, 7 Limestone Way North Hampton, NH 03862 603-205-4396 johnphayes@comcast.net

6/22/22

Christopher Berry Berry Surveying and Engineering 335 Second Crown Point Road Barrington NH 03825

Job # 20-020

6/10/22 - 6/16/22 Site Specific Soil Survey Map 23 Lot 11 Smoke Street Nottingham, NH

Dear Chris,

This letter report presents the findings of a Site Specific Soil Survey conducted on the referenced properties by John P. Hayes III between June 10 and June 16, 2022. The soil survey was conducted in accordance with the New Hampshire Supplement of the Site-Specific Soil Mapping Standard For New Hampshire and Vermont, Version 5.0, December 2017, Special Publication # 3, published by the Society of Soil Scientist of Northern New England.

The properties that are subject of the soil survey is located east side of Smoke street, north of Mill Pond road, and west of Fort Hill road, in Nottingham, NH. The parcel is 110.2 acres in size. The plans used for these soil maps are a 100 scale plan, where 1 inch equals 100 feet, with two foot contours.

The purpose of the soil survey is to provide the client with soils information for urban and suburban or rural land planning. Soil characteristics on the property were evaluated through observation of numerous test pits, and hand auger probes conducted throughout the property. Slope phases were determined with the use of the topography provided on the plan. The Site-specific Soil Map Units identified are taken from the New Hampshire State-Wide Numerical Soils Legend, Issue #10 January 2011, and are briefly described below. Official Series Descriptions (OSD) for each of these soil series are enclosed with this report. The soil map units comply with the Range In Characteristics described in the OSD. Any limiting enclusions on the site, do not exceed 15 percent of any of the soil map units. Dissimilar inclusions, if any, will be noted in the report. Limits of the Site Specific mapping units are highlighted on the plan. The Site Section Section Section No. 5 Ksat Values for New Hampshire Soils September 2009. Limits of the Site Specific mapping units are highlighted on the plan.

Soil parent materials on this site include Glacial Till and Glaciofuvial deposits. The portions of the soil map that are identified with the map unit 40/Rk, are a Chatfield Hollis soil complex that is shallow to ledge, with varing depths to ledge that are less than 40 in in depth. Portions of the soil map with the map unit denominator P and VP, are poorly drained, and very poorly drained soils respectively. Portions of the soil map, with the map lable 400, contain disturbed soils that have been excavated and/or regraded, that are sandy or gravelly in texture. Portions of the soil map, with the map lable 500, contain disturbed soils that have been excavated and/or regraded, that are sandy or gravelly in texture. Portions of the soil map, with the map lable 900/P, contain disturbed soils that have been excavated down to, or near the water table. A Disturbed Soil Mapping Unit Supplement for New Hampshire DES AoT Site Specific Soil Maps, is also included. This supplement explains the additional information given about each of the disturbed soil map units that are present on the site.

MAP UNIT #	SOIL TAXANOMIC NAME	SLOPES	HYDRO LOGIC SOIL GROUP	DESCRIPTION
12	Hinckley	BCDE	A	The Hinckley series consists of very deep, excessively drained soils formed in glaciofluvial materials. These soils are located mostly in the southeastern portion of the parcel. The soil textures are loamy sand over gravelly sand. They are deep to bedrock. Saturated hydraulic conductivity is high to very high. Some inclusion of somewhat excessively drained Windsor, and moderately well drained Sudbury and Deerfield soils may be present, but are less than 10 percent of the mapped areas. Estimated seasonal high water tables in these soils ranges from 38 to 60 inches.
26	Windsor	B D	A	The Windsor series consists of very deep, excessively drained soils formed in sandy outwash or eolian deposits. A small are of this soil series is located on a hill on the southeastern portion of the parcel. The soil textures are loamy sand over sand. They are deep to bedrock. Saturated hydraulic conductivity is high to very high. Some inclusions of moderately well drained Deerfield soils may be present, but are less than 10 percent of the mapped areas. Estimated seasonal high water tables in these soils ranges from 40 to 55 inches.
29	Woodbridge	BCDE		The Woodbridge series consists of moderately well drained loamy soils formed in lodgment till. These soils are located mostly in the northern portion of the lot between Smoke street and the Little River. The soil textures are fine sandy loam over a gravelly fine sandy loam that has a firm restrictive layer. They are deep to bedrock. Saturated hydraulic conductivity ranges from moderately high to high in the surface layer and subsoil and low or moderately low in the dense substratum. Some inclusions of well drained Paxton and Canton, and somewhat poorly drained Ridgebury soils may be present, but are less than 10 percent of the mapped areas. Estimated seasonal high water tables in these soils ranges from 20 to 36 inches.

NAME		HYDRO LOGIC SOIL GROUP	DESCRIPTION
Chatfield Hollis Complex (well Drained	BC	C/D	The Chatfield series consists of well drained soils formed in loamy melt-out till that have densic contact between 20 and 40 inches. Saturated hydraulic conductivity is moderately high or high in the mineral soil. The Hollis series consists of well drained and somewhat excessively drained soils formed in a thin mantle of till that have densic contact within 20 inches of the soil surface. Saturated hydraulic conductivity is moderately high or high. These soils are located on the southwestern portion of the parcel, near Smoke street. The soil textures are fine sandy loamy over bedrock. Some inclusions of moderately well drained Sutton or Deerfield soils may be present, but are less than 10 percent of the mapped areas. These shallow to ledge soils have no estimated seasonal high water tables
Canton (very stony)	BCDE		The Canton series consists of very deep, well drained soils formed in a loamy mantle underlain by sandy till. These soils are located mostly in the northern portion of the parcel between Smoke street and the Little River. There are also some located on the southwestern part of the lot near Smoke street. The soil textures are fine sandy loam over gravelly loamy sand. These soils are deep to bedrock. Saturated hydraulic conductivity is moderately high or high in the solum and high or very high in the substratum. Some inclusions of well drained Paxton, and moderately well drained Woodbridge soils may be present, but are less than 10 percent of the mapped areas. Estimated seasonal high water tables in these soils ranges from 38 to 65 inches.
	Hollis Complex (well Drained	Hollis Complex (well Drained Granton	Hollis Complex (well Drained Image: Complex (well Drained Canton (very stony) BCDE

MAP UNIT #	SOIL TAXANOMIC NAME	SLOPES	HYDRO LOGIC SOIL GROUP	DESCRIPTION
67	Paxton (very stony)	BCDE	C	The Paxton series consists of well drained loamy soils formed in lodgment till. These soils are located mostly on the hills and steep slopes on the northeastern portion of the parcel. The soil textures are fine sandy loam over a gravelly fine sandy loam that has a firm restrictive layer. These soils are deep to bedrock. Saturated hydraulic conductivity is moderately high or high in the surface layer and subsoil and low or moderately low in the substratum.Some inclusions of well drained Canton, and moderately well drained Woodbridge soils may be present, but are less than 10 percent of the mapped areas. Estimated seasonal high water tables in these soils ranges from 38 to 60 inches.
68	Sutton	BC	В	The Sutton series consists of very deep, moderately well drained loamy soils formed in melt-out till. These soils are located on the southwestern portion of the parcel, near Smoke street. The soil textures are fine sandy loam over a gravelly fine sandy loam that has a firm restrictive layer. These soils are deep to bedrock. Saturated hydraulic conductivity is moderately high or high. Some inclusions of well drained Canton, and moderately well drained Deerfield soils may be present, but are less than 10 percent of the mapped areas. Estimated seasonal high water tables in these soils ranges from 20 to 36 inches.
115 VPD	Scarboro	Α		The Scarboro series consists of very deep, very poorly drained soils in sandy glaciofluvial deposits. These soils run through the wetland area that is in the central portion of the property, from east to west. There are also some of these soils in the wetland on the southeast corner of the lot. These soils are deep to bedrock. Saturated hydraulic conductivity is high to very high. Organic layers in this soil range from 4 to 16 inches. Some inclusions of poorly drained Walpole soils may be present, but are less than 10 percent of the mapped areas. These soils are permanantly saturated.

MAP UNIT #	SOIL TAXANOMIC NAME	SLOPES	HYDRO LOGIC SOIL GROUP	
118	Sudbury	BCDE	В	The Sudbury series consists of very deep, moderately well drained soils on outwash plains. These soils are located in the central portion of the parcel, mostly along the eastern side. The soil textures are fine sandy loam over a gravelly coarse sand. These soils are deep to bedrock. Saturated hydraulic conductivity is moderately high or high in the upper solum and high or very high in the lower solum and substratum. Some inclusions of excessively drained Hinkley, and moderately well drained Deerfield soils may be present, but are less than 10 percent of the mapped areas. Estimated seasonal high water tables in these soils range from 20 to 36 inches.
313	Deerfield	BCDE	В	The Deerfield series consists of very deep, moderately well drained soils formed in glaciofluvial deposits. These soils are found in the lower areas throughout the property. The soil textures are loamy fine sandy loam over sand. These soils are deep to bedrock. Saturated hydraulic conductivity is high or very high. Some inclusions of excessively drained Hinkley , moderately well drained Sudbury, and somewhat poorly drained Deerfield Variant soils may be present, but are less than 10 percent of the mapped areas. Estimated seasonal high water tables in these soils range from 18 to 36 inches.
400 (abada)	Udorthents (sandy or gravelly)	ABCD		Udorthents are disturbed soils that have been excavated and/or regraded and are sandy or gravelly in texture. These disturbed soils are located on the western portion of the parcel, near Smoke street. The area appears to be an old gravel pit. These disturbed soils appear to be mostly derrived from the Hinkley soil series, and are somewhat excessively drained. The soils are deep to bedrock. The saturated hydralic conductivity is high to very high. Estimated seasonal high water tables in these soils range from 18 to 60 inches.

MAP UNIT #	SOIL TAXANOMIC NAME	SLOPES	HYDRO LOGIC SOIL GROUP	DESCRIPTION
<u>496</u> VP	Natchaug Variant	A	D	The Natchaug series consists of very deep, very poorly drained soils formed in woody and herbaceous organic materials overlying loamy deposits in outwash. These soils are located on the northeast side of the property, in and along the Little River. These soils are deep to bedrock. Saturated hydraulic conductivity is moderately high or high in the organic layers and moderately low to high in the loamy material. Some inclusions of the Walpole soil series may be present, but are less than 10 percent of the mapped areas. These soils are permanantly saturated.
500 (cccdc)	Udorthents loamy	В	C	Udorthents are disturbed soils that have been excavated and/or regraded and are loamy in texture. These disturbed soils are located in the center of the lot, at the eastern side of the disturbed area. These disturbed soils are mostly derrived from the well drained Paxton soil series, and are moderately well drained. The soils are deep to bedrock. The saturated hydralic conductivity is moderately high in the upper portion of the soil profile, and moderately low in the firm substratum. Estimated seasonal high water tables in these soils range from 20 to 34 inches.
<u>547</u> P	Walpole (very stony)	В		The Walpole Series consists of very deep, poorly drained sandy soils formed in outwash and stratified drift. These soils are present throughout the property in the wetland areas. The soil textures are fine sandy loam over a gravelly loamy sand. The soils are deep to bedrock. Saturated hydraulic conductivity is moderately high or high in the surface layer and subsoil, and high or very high in the substratum. Estimated seasonal high water tables in these soils range from 0 to 10 inches.

MAP UNIT #	SOIL TAXANOMIC NAME	SLOPES	HYDRO LOGIC SOIL GROUP	DESCRIPTION
900 P (fbadc)	Endoquents (sandy or gravelly)	A	С	This map unit represents areas of poorly drained soils where soil material was excavated down to, or near the water table. These disturbed soils are located in the southeast portion northeasr portion of the lot near Smoke street. The area appears to be part of an old gravel pit where the upper soil layers have been excavated. And it has been dug down to, or near the water table. These disturbed soils appear to be mostly derrived from the excessively drained Hinkley soil series, but are now poorly drained. These soils are deep to bedrock. Saturated hydraulic conductivity is moderately high or high. Estimated seasonal high water table in these soils is less than 10 inches.

Slope Phases

Alpha Slope Symbol	Range	
Α	0-3%	
В	3 - 8%	
С	8-15%	
D	15-25%	
E	25 - 50%	
F	> 50%	

I trust that this Soil Survey and report meet your current planning needs. Please do not hesitate to contact me if you have any questions.

Sincerely:

pm P. Happ III

John P. Hayes III CSS, CWS

Disturbed Soil Mapping Unit Supplement for New Hampshire DES AoT Site Specific Soil Maps

Introduction

The NRCS NH State-Wide Legend, as amended, contains a number of distinct map units used for identifying areas of soils altered or disturbed by human influence. However, in preparing the required Site Specific Soils Maps for compliance with NH Department of Environmental Services Alteration of Terrain (AoT) rules, additional information is often needed and desired. This supplement provides a means to supply the user a more detailed soil mapping unit description to meet this need.

Purpose

To provide soil scientists with additional soil mapping tools for disturbed sites and miscellaneous areas to enhance site specific soil maps and interpretations to reflect new requirements under the revised NH Alteration of Terrain regulations. This supplement is intended to allow the creation of soil maps with mapping units that can be expanded beyond those of the NRCS NH State-Wide Numerical Legend and the standards of the National Cooperative Soil Survey for disturbed units in order to provide specific information useful in preparation of site specific soils maps and reports to comply with NHDES Env-Wq 1500-Alteration of Terrain.

Note that the disturbed soil supplement has been created by SSSNNE and is not a product of the NRCS or the National Cooperative Soil Survey. Additionally, the supplemental legend can only be used in conjunction with the Site Specific Soil Mapping standards and cannot be used to create a stand-alone soils map.

For the purposes of this supplement, the definition of disturbed land, including excavate and fill, is as defined by RSA 485-A: 6, VIII; RSA 485-A: 17, and NHDES Env-Wq 1500.

Map Notation

Notation on the Site Specific Soil Map completed to comply with the NH AoT rules should include the following disclaimer:

Site-Specific Soil Map

 This detailed Site-Specific Soil Map conforms to the standards of SSSNNE Publication No. 3, as amended, "Site-Specific Soil Mapping Standards for NH and VT".

 This map has been prepared to comply with soil mapping requirements of RSA 485 A: 17and NHDES Env-Wq 1500, Alteration of Terrain.

3. See accompanying narrative report for methodology, map symbol legend, and interpretations.

Map Symbol Denominators for Disturbed Unit Supplements

The map symbols for Site-Specific Soil Mapping of disturbed soils in New Hampshire is a two part symbol with parts separated by a forward slash (/).

The first part consists of the USDA-NRCS Disturbed Map Unit symbol from the NH State-Wide Numerical Soil Legend. The map symbol is composed of 1 to 3 digits followed by a capital letter designating slope.

The second part consists of symbols of the SSSNNE NH Disturbed Soil Supplement to the Site Specific Soil Survey Standards, as detailed below. The disturbed map symbol is composed of 5 lower case letters.

Thus a Site Specific map symbol for a map prepared for an AoT application would be formatted as follows:

400A/aaaaa

These SSSNNE NH Disturbed Soil Supplemental symbols can only be used in conjunction with the USDA-NRCS Disturbed Map Unit symbols for the NH Statewide Numerical Soil Legend.

Supplemental Symbols

The five components of the Disturbed Soil Mapping Unit Supplement are as follows:

Symbol 1: Drainage Class

a-Excessively Drained b-Somewhat Excessively Drained c-Well Drained d-Moderately Well Drained e-Somewhat Poorly Drained f-Poorly Drained g-Very Poorly Drained h-Not Determined

Symbol 2: Parent Material (of naturally formed soil only, if present)

a-No natural soil within 60" b-Glaciofluvial Deposits (outwash/terraces of sand or sand and gravel) c-Glacial Till Material (active ice) d-Glaciolacustrine very fine sand and silt deposits (glacial lakes) e-Loamy/sandy over Silt/Clay deposits f-Marine Silt and Clay deposits (ocean waters) g-Alluvial Deposits (floodplains) h-Organic Materials-Fresh water Bogs, etc i- Organic Materials-Tidal Marsh

Symbol 3: Restrictive/Impervious Layers

a-None

b-Bouldery surface with more than 15% of the surface covered with boulders

c-Mineral restrictive layer(s) are present in the soil profile less than 40 inches below the soil surface such as hard pan, platy structure or clayey texture with consistence of at least firm (i.e. more than 20 newtons). For other examples of soil characteristics that qualify for restrictive layers, see "Soil Manual for Site evaluations in NH" 2nd Ed., (page 3-17, figure 3-14) d-Bedrock in the soil profile; 0-20 inches

e-Bedrock in the soil profile; 20-60 inches

f-Areas where depth to bedrock is so variable that a single soil type cannot be applied, will be mapped as a complex of soil types

g-Subject to Flooding

h-Man-made impervious surface including pavement, concrete, or built-up surfaces (i.e. buildings) with no morphological restrictive layer within control section

Symbol 4: Estimated Ksat* (most limiting layer excluding symbol 3h above). a- High. b-Moderate c-Low d-Not determined *See "Guidelines for Ksat Class Placement" in Chapter 3 of the Soil Survey Manual, USDA

Symbol 5: Hydrologic Soil Group* a-Group A b-Group B c-Group C d-Group D e-Not determined

*excluding man-made surface impervious/restrictive layers

Disturbed Map Units

This edition of the New Hampshire State-Wide Numerical Soil Legend contains eleven distinct map units used for identifying areas of soils altered or disturbed by human influence and the addition of one naturally formed map unit. These map units were designed for the Order 2 and Order 3 levels of mapping intensity, but can be used in Order 1 mapping if appropriate.

The definition of disturbed map units is intentionally brief and vague. Classification at the Great Group level allows for a wide range in soil properties and behavioral characteristics. The variability in soil properties typically requires on-site investigations before any interpretation can be developed. The map unit descriptions are intended to provide guidance in differentiating map units. The author of the soil map is expected to provide additional information to reflect the nature of the disturbed areas within the survey area.

I. Excavated land

300 Udipsamments

This map unit is characterized by soil textures of loamy fine sand to sand and gravel throughout the entire particle-size class control section (25 - 100 cm or 10 - 40 inches). Saturated hydraulic conductivity (K_{sat}) is high or very high. Drainage class ranges from excessively drained to well drained. The Hydrologic Soil Group (HSG) is A. Typical sand pit.

350 Udipsamments, wet substratum

This map unit is characterized by soil textures of loamy fine sand to sand and gravel throughout the entire particle-size class control section (25 - 100 cm or 10 - 40 inches). Saturated hydraulic conductivity (K_{sat}) is high or very high. Drainage class ranges from moderately well drained to somewhat poorly drained.

400 Udorthents, sandy or gravelly

This map unit typically includes the following concepts: 1) very gravelly (> 35%) sand or very gravelly loarny sand; Or 2) sand or loarny sand textures that may have lenses of loarny very fine sand or finer somewhere in the particle-size class control section (25 - 100 cm or 10 - 40"). Saturated hydraulic conductivity (K_{sat}) is high or very high. Drainage class ranges from excessively drained to somewhat poorly drained. Typical gravel pit.

Disturbed Map Units (continued)

500 Udorthents, loamy

This map unit is characterized typically by soil textures that are sandy loam, loam, or silt loam within the particle size control section $(25 - 100 \text{ cm} \text{ or } 10 - 40^\circ)$. Saturated hydraulic conductivity (K_{sat}) is low through high. Drainage class ranges from well drained to somewhat poorly drained. These areas typically represent excavated glacial till or perhaps areas where sand and gravel was excavated down to the loamy underlying material.

550 Udorthents, Bedrock substratum

This map unit is characterized by soil textures of sandy loam, loam, or silt loam within the particlesize class control section (25 - 100 cm or 10 - 40 inches). These areas typically represent excavated soil materials where the range in depth to bedrock is 10 - 60 inches (25 - 152 cm). Saturated hydraulic conductivity (K_{sat}) is low through high. Drainage class ranges from somewhat excessively drained to somewhat poorly drained.

600 Endoaquents, loamy

This map unit represents areas where soil material was excavated down to, or near the water table. Soil material is typically sandy loam, loam or silt loam within the particle-size class control section (25 - 100 cm or 10 - 40 inches). Saturated hydraulic conductivity (K_{sat}) is low through high. Drainage class is poorly or very poorly drained. The Hydrologic Soil Group (HSG) is D.

900 Endoaquents, sandy or gravelly

This map unit represents areas where soil material was excavated down to / near the water table. This map unit is characterized typically by soil textures of: 1) very gravelly (> 35% gravel) sand or very gravelly loamy sand or; 2) sand or loamy sand textures that may have lenses of loamy very fine sand or finer somewhere in the particle-size class control section ($25 - 100 \text{ cm or}^{-10} - 40^{\circ}$). Saturated hydraulic conductivity (K_{sat}) is high or very high. Drainage class is poorly or very poorly drained. The Hydrologic Soil Group (HSG) is D. Typical gravel pit dug down to or close to the water table.

Disturbed Map Units (continued)

II. Filled land

100 Udorthents, wet substratum

This map unit represents areas that have been filled and leveled over what were originally hydric soils.

199 Dumps, bark chips, and organic material

This map unit consists of man-made deposits of bark, wood chips, sawdust, paper mill sludge, cinders, waste paper, ashes, and other similar refuse from the operation of paper mills and sawmills.

200 Udorthents, refuse substratum

This map unit represents alternating layers of soil and refuse such as in sanitary landfills. Closed landfills typically have 2 feet of loamy material capping the area.

299 Udorthents, smoothed

This map unit represents areas that have been cut and filled to create a large level or nearly level area. Soil material making up the map units typically came from the immediate area. School athletic fields are an example (unless they were created on hydric soils – see Map Unit 100).

III. Bottom Land

7 Fluvaquents

This map unit represents areas of various kinds of soil materials on the bottom lands of streams and rivers. The soil material ranges in texture from silt loam to sand and gravel within the particle-size class control section (25 - 100 cm or 10 - 40 inches). Drainage class is poorly or very poorly drained. The Hydrologic Soil Group (HSG) is D.

21

LOCATION WALPOLE

Established Series Rev. MFF-SMF 05/2014

WALPOLE SERIES

The Walpole Series consists of very deep, poorly drained sandy soils formed in outwash and stratified drift. They are nearly level to gently sloping soils in low-lying positions on terraces and plains. Slope ranges from 0 to 8 percent. Saturated hydraulic conductivity is moderately high or high in the surface layer and subsoil, and high or very high in the substratum. Mean annual temperature is about 48 degrees F., and mean annual precipitation is about 43 inches.

TAXONOMIC CLASS: Sandy, mixed, mesic Aeric Endoaquepts

TYPICAL PEDON: Walpole sandy loam - forested, 2 percent slope. (Colors are for moist soil.)

Oe-0 to 3 cm (0 to 1 in); black (10YR 2/1) moderately decomposed forest plant material. (0 to 7 cm thick)

A--3 to 18 cm (1 to 7 in); very dark brown (10YR 2/2) sandy loam; weak medium granular structure; very friable; many fine and medium roots; 8 percent gravel; very strongly acid; clear smooth boundary. (8 to 33 cm thick)

Bg--18 to 53 cm (7 to 21 in); dark grayish brown (2.5Y 4/2) sandy loam; massive; friable; common fine and few medium roots in the upper part of the horizon and few fine roots in the lower part; 10 percent gravel; common medium prominent strong brown (7.5YR 5/6) and common medium prominent yellowish brown (10YR 5/4) and yellowish brown (10YR 5/6) masses of iron accumulation and common medium distinct light brownish gray (10YR 6/2) iron depletions; strongly acid; gradual smooth boundary.

BC--53 to 63 cm (21 to 25 in); light olive brown (2.5Y 5/4) gravelly sandy loam; massive; friable; 20 percent gravel; common medium prominent yellowish brown (10YR 5/6) masses of iron accumulation and light brownish gray (10YR 6/2) and dark grayish brown (2.5Y 4/2) iron depletions; strongly acid; clear smooth boundary. (Combined thickness of the Bg and BC horizons is 36 to 61 cm.)

C1--63 to 104 cm (25 to 41 in); light yellowish brown (2.5Y 6/4) very gravelly loamy sand; single grain; very friable; 30 percent gravel and 5 percent cobbles; common medium distinct strong brown (7.5YR 5/6) and yellowish brown (10YR 5/4) masses of iron accumulation; strongly acid; gradual smooth boundary. (25 to 102 cm thick)

C2--104 to 165 cm (41 to 65 in); light brownish gray (10YR 6/2) very gravelly sand, few brown (10YR 5/3) streaks; single grain; loose; 35 percent gravel and 5 percent cobbles; moderately acid.

TYPE LOCATION: Windham County, Connecticut; town of Killingly, 400 feet north along North Shore Drive from the intersection with Connecticut Route 101, 500 feet east of North Shore Drive; USGS Danielson topographic quadrangle; latitude 41 degrees 50 minutes 58 seconds N. and longitude 71 degrees 54 minutes 28 seconds W., NAD 27

RANGE IN CHARACTERISTICS: Thickness of the solum and depth to sand or loamy sand substratum layers range from 46 to 71 cm. Rock fragments range from 0 to 25 percent by volume in the solum and from 0 to

50 percent in individual layers of the substratum. Typically, 70 percent or more of the rock fragments are rounded gravel. Reaction ranges from very strongly acid to neutral throughout.

The A horizon has hue of 10YR, value of 2 or 3, and chroma of 1 or 2. Disturbed pedons have a Ap horizon 5 to 10 inches thick with value of 2 to 4 and chroma of 1 to 3. Dry value is 6 or more. The A or Ap horizon is sandy loam, fine sandy loam, or very fine sandy loam in the fine-earth fraction. It commonly has weak or moderate granular structure but the range includes subanular blocky in some pdons and is friable or very friable.

Some pedons have an Eg horizon with hue of 10YR to 5Y, value of 4 to 6, and chroma of 1 or 2. Texture and structure are similar to the A horizon.

The B horizon has hue of 10YR to 5Y, value of 4 to 6, and chroma of 1 to 4. Chroma of 3 or 4 is limited to subhorizons and chroma of 1 or 2 is in some subhorizon within a depth of 20 inches. The horizon has distinct or prominent redoximorphic features. Fine-earth texture is sandy loam or fine sandy loam with more than 50 percent fine or coarser sand. Structure is weak granular or weak subangular blocky, or the horizon is massive. Consistence is friable or very friable.

The BC horizon, where present, has hue of 10YR to 5Y, value of 4 to 6, and chroma of 3 or 4. The horizon has distinct or prominent redoximorphic features. Texture is similar to the B horizon. Structure is weak subangular blocky or the horizon is massive.

The C horizon has hue of 10YR to 5Y, value of 4 to 6, and chroma of 1 to 4. Texture of individual layers ranges from loamy fine sand to coarse sand in the fine-earth fraction.

COMPETING SERIES: There are no other series currently in the same family.

The Busti, Fredon, Lamson, Leicester, Massena, Moosilauke, Neversink, Newstead, Norwell, Punsit, Raypol, Red Hook, Ridgebury, Scarboro, Stafford, Stissing, Sudbury, Sun, and Wareham series are similar soils in related families. Busti, Lamson, Leicester, Massena, Neversink, Newstead, Punsit, Red Hook, Ridgebury, Stissing, and Sun soils are coarse-loamy. Norwell, Ridgebury and Stissing soils have a dense substratum. Fredon and Raypol soils are coarse-loamy over sandy or sandy-skeletal. Moosilauke soils are frigid. Scarboro soils have a histic epipedon. Stafford and Wareham soils do not have a cambic horizon. Sudbury soils have matrix chroma of 3 or more in the B horizon to a depth of 50 cm.

GEOGRAPHIC SETTING: Walpole soils are nearly level and gently sloping soils in shallow drainageways and low-lying areas on terraces and plains. Slope ranges from 0 to 8 percent. The soils formed in sandy glaciofluvial and stratified drift materials derived mainly from crystalline rocks. Mean annual temperature ranges from 7 to 12 degrees C., mean annual precipitation ranges from 940 to 1270 mm, and the growing season ranges from 120 to 190 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the <u>Agawam</u>, <u>Branford</u>, <u>Canton</u>, <u>Charlton</u>, <u>Deerfield</u>, <u>Enfield</u>, <u>Hartford</u>, <u>Haven</u>, <u>Hinckley</u>, <u>Gloucester</u>, <u>Leicester</u>, <u>Manchester</u>, <u>Merrimac</u>, <u>Ninigret</u>, <u>Occum</u>, <u>Pootatuck</u>, <u>Raypol</u>, <u>Rippowam</u>, <u>Ridgebury</u>, <u>Scarboro</u>, <u>Stissing</u>, <u>Sudbury</u>, <u>Tisbury</u>, and <u>Windsor</u> soils. The excessively drained Hinckley, somewhat excessively drained Merrimac, and the moderately well drained Sudbury soils are common drainage associates. Agawam, Branford, Enfield, Haven, Ninigret, and Tisbury soils are better drained terrace associates that are loamy over stratified sand and gravel. The well drained Canton and Charlton soils and the somewhat excessively drained Gloucester soils are on nearby till uplands. Deerfield, Hartford, Manchester, and Windsor soils are coarse-textured soils on nearby glaciofluvial landforms. Occum, Pootatuck, and Rippowam soils are on flood plains.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Poorly drained. Surface runoff is slow. Saturated hydraulic conductivity is moderately high or high in the surface layer and subsoil, and high or very high in the substratum. Walpole soils have a water table at or near the surface much of the year. **USE AND VEGETATION:** Most areas are wooded. Cleared areas are used for hay and pasture. Drained areas are used for silage corn and hay. hemlockThe typical vegetation consists of a forested community with canopy trees of Red Maple, American Elm, and/or scattered black gum, swamp white oak and yellow birch and/or eastern hemlock; with an shrub understory of spicebush, silky dogwood, northern arrow-wood with sweet pepperbush, and winterberry in slightly wetter situations; and a herb layer of cinnamon fern, royal fern, false hellebore, violets, wood-reed grass, with skunk cabbage and sedges.

DISTRIBUTION AND EXTENT: Late Wisconsin glaciofluvial landforms in Connecticut, Massachusetts, New Hampshire, eastern New York, Rhode Island, and Vermont; MLRAs 101, 142, 144A, and 145. Walpole series has been correlated in some published surveys in Maine, but after conducting temperature studies, Maine currently includes only frigid and cryic soil temperature regimes. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts

SERIES ESTABLISHED: Windham County, Connecticut, 1947.

REMARKS: Diagnostic horizons and features recognized in this pedon include:

1. Ochric epipedon - the zone from 0 to 18 cm (Oe and A horizons).

2. Cambic horizon - the zone from 18 to 63 cm (Bg and BC horizons).

3. Aquic moisture regime - indicated by chroma of 2 in Bg horizon but with chroma too high within 76 cm (chroma of 4 in BC horizon) to qualify for Typic Endoaquepts.

4. Endoaquepts subgroup based on saturation to a depth of 200 cm from the mineral soil surface.

5. Aeric great group based on matrix color and chroma of 3 or more in one subhorizon between the Ap and 75 cm. (BC horizon).

6. Particle-size class - averages sandy in the control section from 25 to 102 cm does not meet contrasting criteria.

National Cooperative Soil Survey U.S.A.

LOCATION WINDSOR

Established Series Rev. MFF-SMF-DCP 03/2014

WINDSOR SERIES

The Windsor series consists of very deep, excessively drained soils formed in sandy outwash or eolian deposits. They are nearly level through very steep soils on glaciofluvial landforms. Slope ranges from 0 through 60 percent. Saturated hydraulic conductivity is high or very high. Mean annual temperature is about 10 degrees C and mean annual precipitation is about 1092 mm.

TAXONOMIC CLASS: Mixed, mesic Typic Udipsamments

TYPICAL PEDON: Windsor loamy sand - forested, 3 percent slope, at an elevation of about 24 meters. (Colors are for moist soil.)

Oe--0 to 3 cm; black (10YR 2/1) moderately decomposed forest plant material; many very fine and fine roots; very strongly acid; abrupt smooth boundary. (0 to 8 cm thick.)

A--3 to 8 cm; very dark grayish brown (10YR 3/2) loamy sand; weak medium granular structure; very friable; many very fine and fine roots; strongly acid; abrupt wavy boundary. (3 to 25 cm thick.)

Bw1--8 to 23 cm; strong brown (7.5YR 5/6) loamy sand; very weak fine granular structure; very friable; many fine and medium roots; strongly acid; gradual wavy boundary.

Bw2--23 to 53 cm; yellowish brown (10YR 5/6) loamy sand; very weak fine granular structure; very friable; common fine and medium roots; strongly acid; gradual wavy boundary.

Bw3--53 to 64 cm; light yellowish brown (10YR 6/4) sand; single grain; loose; few coarse roots; strongly acid; clear wavy boundary. (Combined thickness of the Bw horizons is 23 to 86 cm.)

C--64 to 165 cm; pale brown (10YR 6/3) and light brownish gray (10YR 6/2) sand; single grain; loose; few coarse roots; strongly acid.

TYPE LOCATION: Hartford County, Connecticut; town of South Windsor, 1100 feet northwest along Chapel Road from the intersection of Chapel Road and Ellington Road and 100 feet due south of Chapel Road. USGS Manchester, CT topographic quadrangle, Latitude 41 degrees, 48 minutes, 35 seconds N., Longitude 72 degrees, 36 minutes, 22 seconds W., NAD 1983

RANGE IN CHARACTERISTICS: Thickness of the solum ranges from 25 to 92 cm. Rock fragments, dominantly fine gravel, range from 0 through 10 percent by volume in the solum and from 0 to 15 percent in the substratum. Thin strata of gravel or thin subhorizons of coarse sand or loamy coarse sand are present in some pedons. Unless limed, reaction in the solum commonly is extremely acid to moderately acid, but the range includes slightly acid. Unless limed, reaction in the substratum commonly is very strongly acid to slightly acid, but the range includes neutral.

O horizons are present in some pedons.

The A horizon has hue of 7.5YR or 10YR, value of 2 or 3, and chroma of 1 to 3. Many pedons have an Ap horizon up to 12 inches thick with value of 3 or 4 and chroma of 2 to 4. The A or Ap horizon is loamy fine sand, loamy sand, fine sand, or sand. It has weak or moderate granular structure and is very friable, friable, or loose.

Some pedons have a thin E horizon with hue 7.5YR or 10YR, value of 4 to 6, and chroma of 1 or 2.

The upper part of the Bw horizon has hue of 7.5YR to 2.5Y, value of 4 to 6, and chroma of 4 to 8. The lower part of Bw horizon has hue of 7.5YR to 5Y, value of 4 to 7, and chroma of 3 to 6. The Bw horizon is loamy sand or loamy fine sand in the upper part and loamy fine sand, loamy sand, fine sand, or sand in the lower part. The Bw horizon has weak granular or weak subangular blocky structure, or it is massive or single grain. Consistence is very friable or loose.

Some pedons have a BC horizon similar to the lower part of the Bw horizon.

The C horizon has hue of 5YR to 5Y, value of 4 to 7, and chroma of 1 to 6. It is fine sand, sand, coarse sand, loamy fine sand, or loamy sand. The horizon is massive or single grain and consistence is very friable or loose.

COMPETING SERIES: These are the Acquango, Aldo, Bigapple, Biltmore, Boplain, Breeze, Caesar, Chute, Dabney, Hodge, Oakville, Osolo, Pahuk, Penwood, Perks, Pinegrove, Plainfield, Poquonock, Ronda, Samoa, Sardak, Sarpy, Scotah, Spessard, Suncook, Tyner, and Wapanucket series. Aquango, Aldo, Biltmore, Boplain, Chute, Dabney, Hodge, Osolo, Pahuk, Perks, Ronda, Samoa, Sardak, Spessard, and Tyner soils are from outside of LRRs L, R, and S. Acquango soils are very slightly to moderately saline within the soil profile. Aldo soils have a water table and saturation within the series control section for as much as one month per year in 6 out of 10 years. Bigapple soils formed in human transported soil material from dredging activities. Biltmore and Spessard soils are well drained. Breeze soils formed in human transported sandy soil materials intermingled with construction debris. Caesar soils contain more coarse sand. Chute, Hodge, and Sarpy soils contain free carbonates and do not have a B horizon. Dabney soils do not have a B horizon and receive more than 152 cm of precipitation annually. Oakville soils typically average 50 percent or more fine sand in the subsoil. Osolo soils have a solum thicker than 1.5 m. Penwood soils have hue of 5YR or redder in the B horizon. Pahuk, Perks, Samoa, and Suncook soils do not have a B horizon. Plainfield soils are less moist in all parts of the control section for the 120 days following the summer solstice. Poquonock soils have a densic contact with in 1 m. Ronda soils formed in alluvium from residuum sources. Sardak soils formed in alluvium and are calcareous. Tyner soils have a thicker solum. Wapanucket soils are underlain by glaciolacustrine deposits with in the series control section.

GEOGRAPHIC SETTING: Windsor soils are nearly level through very steep soils typically on glaciofluvial landforms but include late-Wisconsin-aged dunes. The steeper slopes are typically on terrace escarpments. Slope ranges from 0 to 60 percent. The soils formed in outwash or eolian deposits of poorly graded sands and loamy sands derived mainly from crystalline rocks. Mean annual temperature ranges from 7 to 12 degrees C, and the mean annual precipitation typically ranges from 965 to 1270 mm, but the range includes as low as 660 mm in some places east of Adirondack Mountains in the Champlain Valley of New York. The growing season ranges from 120 to 190 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the <u>Deerfield</u>, <u>Hinckley</u>, <u>Merrimac</u>, <u>Quonset</u>, <u>Suncook</u>, <u>Agawam</u>, <u>Hadley</u>, <u>Haven</u>, <u>Occum</u>, <u>Pootatuck</u>, <u>Scarboro</u>, <u>Sudbury</u>, <u>Walpole</u>, <u>Wareham</u>, and <u>Winooski</u> soils on nearby landscapes. The moderately well drained Deerfield and Sudbury, the somewhat poorly drained and poorly drained Walpole and Wareham, and the very poorly drained Scarboro soils are common drainage associates. Agawam and Haven soils are coarse-loamy over sandy or sandy-skeletal or coarse-loamy terrace associates, respectively. Hadley, Occum, Pootatuck, and Winooski soils are on nearby flood plains.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Excessively drained. Surface runoff is negligible to medium. Saturated hydraulic conductivity is high or very high.

USE AND VEGETATION: Most areas are forested or in low growing brushy vegetation. Some areas are used

for silage corn, hay, and pasture. Small areas, mostly irrigated, are used for shade tobacco, vegetables and nursery stock. Some areas are in community development. Common trees are white, black, and northern red oak, eastern white pine, pitch pine, gray birch, poplar, red maple, and sugar maple.

DISTRIBUTION AND EXTENT: Late Wisconsin glaciofluvial or eolian landforms in Connecticut, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont; MLRAs 101, 142, 144A, and 145. The series is of large extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts.

SERIES ESTABLISHED: Connecticut Valley Area, 1899.

REMARKS: The use of the Windsor series in Maine, and in MLRAs 141, 144B, and 143 is relict to before temperature classes in soil taxoonomy. These have been removed from the SC file.

Diagnostic horizons and features recognized in this pedon include:

1. Ochric epipedon - the zone from 0 to 8 cm (Oe and A horizons).

2. Particle-size class - averages sandy in the control section from 25 to 100 cm.

3. No cambic horizon and development of color - the zone from 8 to 64 cm demonstrates development of color with no illuvial accumulation of material (Bw horizons).

ADDITIONAL DATA: Reference samples from pedons 54MA023005, 63VT011001, 63VT011002, 64NH017003, 64NH017004, 70CT003003, 70MA011003, 70VT017002, 73MA005003, 73MA005004, 91MA023006, 95NH013001, 96NH013004, 98NY045002, 98NY085002, S07VT011004.

National Cooperative Soil Survey U.S.A.

LOCATION HINCKLEY

Established Series Rev. CAW-SMF-DCP 08/2017

HINCKLEY SERIES

The Hinckley series consists of very deep, excessively drained soils formed in glaciofluvial materials. They are nearly level through very steep soils on outwash terraces, outwash plains, outwash deltas, kames, kame terraces, and eskers. Saturated hydraulic conductivity is high or very high. Slope ranges from 0 to 60 percent. Mean annual temperature is about 7 degrees C, and mean annual precipitation is about 1143 mm.

TAXONOMIC CLASS: Sandy-skeletal, mixed, mesic Typic Udorthents

TYPICAL PEDON: Hinckley loamy sand in woodland at an elevation of about 240 meters. (All colors are for moist soil.)

Oe -- 0 to 3 cm; moderately decomposed plant material derived from red pine needles and twigs. (0 to 5 cm thick.)

Ap -- 3 to 20 cm; very dark grayish brown (10YR 3/2) loamy sand; weak fine and medium granular structure; very friable; many fine and medium roots; 5 percent fine gravel; very strongly acid; abrupt smooth boundary. (3 to 25 cm thick.)

Bw1 -- 20 to 28 cm; strong brown (7.5YR 5/6) gravelly loamy sand; weak fine and medium granular structure; very friable; common fine and medium roots; 20 percent gravel; very strongly acid; clear smooth boundary.

Bw2 -- 28 to 41 cm; yellowish brown (10YR 5/4) gravelly loamy sand; weak fine and medium granular structure; very friable; common fine and medium roots; 25 percent gravel; very strongly acid; clear irregular boundary. (Combined thickness of the Bw horizon is 8 to 41 cm.)

BC -- 41 to 48 cm; yellowish brown (10YR 5/4) very gravelly sand; single grain; loose; common fine and medium roots; 40 percent gravel; strongly acid; clear smooth boundary. (0 to 13 cm thick)

C - 48 to 165 cm; light olive brown (2.5Y 5/4) extremely gravelly sand consisting of stratified sand, gravel and cobbles; single grain; loose; common fine and medium roots in the upper 20 cm and very few below; 60 percent gravel and cobbles; moderately acid.

TYPE LOCATION: Worcester County, Massachusetts; Town of Petersham, Harvard Forest, 240 feet north of Tom Swamp Road at a point 1.15 miles east of the intersection of Athol Road and Tom Swamp Road. USGS Athol, MA topographic quadrangle, Latitude 42 degrees, 30 minutes, 41.8 seconds N., and Longitude 72 degrees, 12 minutes, 28.9 seconds W., NAD 1983.

RANGE IN CHARACTERISTICS: Solum thickness ranges from 30 to 87 cm. Rock fragment content of the solum ranges from 5 through 50 percent gravel, 0 through 30 percent cobbles, and 0 through 3 percent stones. Rock fragment content of individual horizons of the substratum ranges from 10 through 55 percent gravel, 5 through 25 percent cobbles, and 0 through 5 percent stones. In some places gravel content throughout the soil ranges up through 75 percent. The soil ranges from extremely acid through moderately acid, except where limed.

The O horizons, where present, consist of slightly, moderately, and/or highly decomposed plant material. They have hue N or 2.5YR through 7.5YR, value of 2 or 3, and chroma of 0 through 3.

The Ap horizon has hue of 7.5YR or 10YR, value of 2 through 4, and chroma of 1 through 4. Texture of the fine-earth fraction is very fine sandy loam, fine sandy loam, sandy loam, coarse sandy loam, loamy fine sand, loamy sand, or loamy coarse sand. Structure is weak or moderate very fine through coarse granular or subangular blocky. Consistence is friable or very friable. Undisturbed areas have an A horizon that has hue of 10YR, value of 2 or 3, and chroma of 1 through 4.

Some pedons have thin E, Bhs, Bh, or Bs horizons below the A horizon.

The upper part of the Bw horizon has hue of 7.5YR or 10YR, value of 3 through 5, and chroma of 3 through 8. The lower part has hue of 7.5YR through 2.5Y, value of 3 through 6, and chroma of 3 through 8. Texture, to a depth of 25 cm from the surface, is fine sandy loam, sandy loam, coarse sandy loam, loamy fine sand, loamy sand, or loamy coarse sand in the fine-earth fraction. Below 25 cm it is loamy fine sand, loamy sand, loamy coarse sand, fine sand, or coarse sand in the fine-earth fraction. Structure commonly is weak fine and/or medium granular or the horizon is structureless, but ranges through weak subangular blocky in some places. It is very friable, friable, or loose.

Some pedons have a BC horizon with characteristics similar to both the B and 2C horizons.

The C horizon has hue of 7.5YR through 5Y, value of 3 through 7, and chroma of 2 through 8. Texture is loamy fine sand, loamy sand, loamy coarse sand, fine sand, sand or coarse sand in the fine-earth fraction, and is stratified.

COMPETING SERIES: These are the <u>Bonaparte</u>, <u>Manchester</u>, <u>Mecosta</u>, <u>Multorpor</u>, <u>Otisville</u>, <u>Quonset</u>, and <u>Rikers</u> series. Mecosta and Multorpor soils are from outside <u>Land</u> Resource Region R. Bonaparte soils have carbonates within a depth of 100 cm. Manchester soils have 5YR or redder hue in the Bw and C horizons. Mecosta soils are calcareous and Multorpor soils do not have Bw horizons. Otisville soils have rock fragments dominated by sandstone, shale, and slate. Quonset soils have rock fragments dominated by phyllite, slate, and shale. Rikers soils have carboliths in the soil.

GEOGRAPHIC SETTING: Hinckley soils are nearly level through very steep soils on outwash terraces, outwash plains, outwash deltas, kames, kame terraces, and eskers. Slope is generally 0 through 8 percent on tops of the terraces, outwash plains and deltas. Slope of 8 through 60 percent or more are on the kames, eskers and margins of the outwash plains, deltas, and terraces. The soils formed in glaciofluvial sand and gravel derived principally from granite, gneiss, and schist. Mean annual temperature ranges from 7 to 13 degrees C, and mean annual precipitation ranges from 1016 to 1270 mm. Length of the growing season ranges from 140 through 240 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the <u>Agawam</u>, <u>Canton</u>, <u>Charlton</u>, <u>Deerfield</u>, <u>Essex</u>, <u>Gloucester</u>, <u>Horseneck</u>, <u>Mashpee</u>, <u>Massasoit</u>, <u>Merrimac</u>, <u>Paxton</u>, <u>Pompton</u>, <u>Riverhead</u>, <u>Scarboro</u>, <u>Sudbury</u>, <u>Walpole</u>, <u>Wareham</u>, and <u>Windsor</u> soils on nearby landscapes. Horseneck, Pompton, and Riverhead soils are commonly associates in the extreme southern portions of MLRA 144A. Agawam, Merrimac, and Riverhead soils are similar to Hinckley soils, but have cambic horizons. Canton, Charlton, Essex, Gloucester, and Paxton soils formed in till. Deerfield, Horseneck, and Sudbury soils are moderately well drained and Horseneck and Sudbury soils have Cambic horizons. Pompton soils have Cambic horizons and are moderately well and somewhat poorly drained. Scarboro soils are very poorly drained. Windsor soils have less than 15 percent rock fragments. Mashpee and Massasoit soils are poorly drained with spodic horizons. Walpole and Wareham soils are poorly drained.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Excessively drained. Surface runoff is negligible through low. Saturated hydraulic conductivity is high or very high.

USE AND VEGETATION: Cleared areas are used for hay, pasture, and silage corn. In the southern Connecticut River Valley, Hinckley soils are used for growing tobacco and truck crops and in eastern Massachusetts, truck crops. Most areas are forested, brush land or used as urban land. Northern red, black, white, scarlet and scrub oak, eastern white and pitch pine, eastern hemlock, and gray birch are the common trees. Unimproved pasture and idle land support hardhack, little bluestem, bracken fern, sweet fern, and low bush blueberry.

DISTRIBUTION AND EXTENT: Connecticut, southern Maine, Massachusetts, New Hampshire, northern New Jersey, New York, Rhode Island, and Vermont. MLRA's 101, 141, 142, 144A, 145, and 149B. The series is extensive.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts.

SERIES ESTABLISHED: Oneida County, New York, 1913.

REMARKS: The use of the Hinckley series in frigid areas of Maine, and in MLRA 143 and 144B, is relict to before temperature classes. These have been removed from the SC file.

Diagnostic horizons and features recognized in this pedon are:

1. Ochric epipedon - the zone from 3 to 20 cm (Ap horizon).

2. Sandy-skeletal feature - the zone from 25 to 100 cm has a weighted average content of rock fragments of 51 percent and a particle size of the fine-earth fraction is sandy (Bw, BC, and C horizons).

ADDITIONAL DATA: Reference samples from pedons S55NH015002, S56MA011002, S56MA011003, S57MA023005, S58NH015002, S73MA009001, S73MA005002, S73MA009004, S73MA005005, S96NH013003 from Massachusetts and New Hampshire, samples by NSSL, Lincoln, NE, various dates.

National Cooperative Soil Survey U.S.A.

LOCATION NATCHAUG

Established Series DAF-SMF-JTI 03/2015

NATCHAUG SERIES

The Natchaug series consists of very deep, very poorly drained soils formed in woody and herbaceous organic materials overlying loamy deposits in depressions on lake plains, outwash plains, till plains, moraines, and flood plains. Saturated hydraulic conductivity is moderately high or high in the organic layers and moderately low to high in the loamy material. Slope ranges from 0 to 2 percent. Mean annual temperature is about 9 degrees Celsius and mean annual precipitation is about 1205 millimeters.

TAXONOMIC CLASS: Loamy, mixed, euic, mesic Terric Haplosaprists

TYPICAL PEDON: Natchaug muck - 0 percent slope in a wooded area at an elevation of about 80 meters. (Colors are for moist soil.)

Oa1--0 to 10 centimeters; very dark brown (10YR 2/2) rubbed and black (10YR 2/1) broken face muck; 15 percent fibers, 5 percent rubbed; moderate fine granular structure; friable, nonsticky, and slightly plastic; common medium roots; 20 percent mineral soil material; slightly acid; abrupt smooth boundary.

Oa2--10 to 46 centimeters; dark reddish brown (5YR 2/2) broken face muck; 30 percent fibers, 8 percent rubbed; massive; friable, moderately sticky, slightly plastic; 10 percent mineral soil material; neutral; abrupt smooth boundary. (Combined thickness of the O horizons is 40 to 130 cm.)

2Cg1--46 to 61 centimeters; dark gray (10YR 4/1) silt loam; massive; friable, slightly sticky, moderately plastic; neutral; abrupt smooth boundary.

2Cg2--61 to 152 centimeters; gray (10YR 5/1) fine sandy loam; massive; friable, nonsticky, nonplastic; neutral.

TYPE LOCATION: Rensselaer County, New York; Town of Schodack; 0.5 mile east of County Road 3, 3,000 feet north of New York Thruway, 3,700 feet west of New York Route 9; USGS Kinderhook, New York topographic quadrangle, latitude 42 degrees 29 minutes 38.53 seconds N. and longitude 73 degrees 41 minutes 20.42 seconds W., WGS 84.

RANGE IN CHARACTERISTICS: The organic material extends to a depth of 40 to 130 centimeters. Woody fragments, consisting of twigs, branches, logs, or stumps, commonly occur throughout the organic soil materials and average from 2 to 15 percent by volume in the control section. Fragments range in size from 20 to 300 millimeters in diameter, and in lieu textures include woody modifiers. The reaction of the organic material ranges from ultra acid to slightly alkaline. The reaction ranges from strongly acid to moderately alkaline in the substratum. Some pedons have free carbonates in the mineral soil material.

The surface tier has hue of 10YR to 5YR, or is neutral; value of 2 to 4, and chroma of 0 to 6. It is peat, mucky peat, or muck (fibric, hemic, or sapric materials). The surface tier is massive or has weak or medium, coarse to fine granular or subangular blocky structure.

The subsurface tier has hue of 2.5Y to 5YR, or is neutral, value of 2 to 4, and chroma of 0 to 4. It is commonly massive, but some pedons have granular, weak coarse blocky or thick platy structure. It is typically muck (sapric

materials), but some pedons have thin layers of mucky peat (hemic materials).

The bottom tier, where present, has characteristics similar to the subsurface tier.

The 2C or 2Cg horizon has a hue of 5YR to 5GY, or is neutral; value of 3 to 6, and chroma of 1 to 6. It is loamy very fine sand, very fine sandy loam, sandy loam, fine sandy loam, loam, silt loam, silty clay loam, or gravelly analogues of these textures. Rock fragments range in size from gravel to stones and from 0 to 30 percent by volume.

COMPETING SERIES: These are the <u>Klossner</u>, <u>Linwood</u>, <u>Medo</u>, <u>Palms</u>, <u>Philbon</u>, and <u>Shalcar</u> series. Klossner, Linwood, Medo, Philbon, and Shalcar soils are from outside LRRs R and S. Klossner and Philbon soils have A horizons directly below the organic material. Linwood soils are moist for more than 60 cumulative days in any part of the upper 15 centimeters of the soil in a normal year. Palms soils formed primarily in herbaceous materials, lack woody fragments, and average less than 920 mm of precipitation annually. Medo soils have sandy textures in the lower part of the series control section. Shalcar soils have mean summer temperatures that average less than 18 degrees Celsius.

GEOGRAPHIC SETTING: Natchaug soils are in depressions on lake plains, outwash plains, moraines, till plains, and flood plains. These soils formed in woody and herbaceous organic materials. Slope ranges from 0 to 2 percent. Mean annual temperature is 7 to 13 degrees Celsius. The mean annual precipitation is 920 to 1800 millimeters. The frost-free period is 130 to 240 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the <u>Catden</u>, <u>Freetown</u>, <u>Leicester</u>, <u>Ridgebury</u>, <u>Timakwa</u>, and <u>Whitman</u> soils. Catden and Freetown soils have organic deposits more than 130 centimeters deep. Timakwa soils have a sandy mineral substratum at depths of 40 to 130 centimeters. Poorly drained or very poorly drained mineral soils such as Ridgebury, Leicester, and Whitman occur at the margins of Natchaug soils as they grade to the uplands.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Very poorly drained. Depth to the seasonal high water table ranges from 1 foot above the surface to 30 centimeters below the surface from October to June. Surface runoff is negligible or very low. Saturated hydraulic conductivity is moderately high or high in the organic layers and moderately low to high in the loamy material. Some areas are subject to frequent, very long flooding from September through June.

USE AND VEGETATION: Most areas are used for wildlife habitat or are in woodland or clear-cut woodland. Some areas are used for pasture. Common vegetation is red maple, skunk cabbage, and sphagnum moss.

DISTRIBUTION AND EXTENT: Low-lying areas in Connecticut, Massachusetts, New Jersey, and New York; MLRAs 140, 144A, and 145. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts

SERIES ESTABLISHED: Connecticut Statewide Update Survey, 2003. The name is from a state forest in Connecticut.

REMARKS: These soils were previously mapped in Connecticut as the Palms series.

- Diagnostic horizons and features recognized in this pedon are:
- 1. Sapric soil materials the zone from the surface to 46 centimeters (Oa1 and Oa2 horizons)
- 2. Terric feature mineral soil material in the zone from 46 to 200 centimeters (2Cg1 and 2Cg2 horizons)
- 3. Particle size control section 46 to 130 centimeters (2Cg1 and 2Cg2 horizons);
- 4. Histosols control section the zone from 0 to 130 centimeters (Oa1, Oa2, 2Cg1, and 2Cg2 horizons)

5. Eulc reaction class - pH of 4.5 or more in 0.01 M calcium chloride in one or more organic layers within the Histosols control section (Oa1 and Oa2 horizons)

LOCATION DEERFIELD

Established Series Rev. CAW-MFF-JTI 05/2018

DEERFIELD SERIES

The Deerfield series consists of very deep, moderately well drained soils formed in glaciofluvial deposits. They are nearly level to strongly sloping soils on terraces, deltas, and outwash plains. Slope ranges from 0 to 15 percent. Saturated hydraulic conductivity is high or very high. Mean annual temperature is about 9 degrees C. and mean annual precipitation is about 1194 mm.

TAXONOMIC CLASS: Mixed, mesic Aquic Udipsamments

TYPICAL PEDON: Deerfield loamy fine sand in a hayfield at an elevation of about 19 meters. (Colors are for moist soil.)

Ap --0 to 23 cm; very dark brown (10YR 2/2) loamy fine sand; weak fine and medium granular structure; very friable; common fine roots; moderately acid; abrupt smooth boundary. (15 to 30 cm thick)

Bw1 --23 to 43 cm; strong brown (7.5YR 5/6) loamy fine sand; weak fine and medium granular structure; very friable; common fine roots; moderately acid; clear smooth boundary.

Bw2 --43 to 64 cm; yellowish brown (10YR 5/6) loamy fine sand; weak fine granular structure; very friable; few fine faint brownish yellow (10YR 6/6), moist, masses of oxidized iron accumulation; strongly acid; clear wavy boundary. (Combined thickness of the Bw horizons is 13 to 69 cm.)

BC --64 to 84 cm; yellowish brown (10YR 5/6) fine sand; single grain structure; loose; common fine and medium distinct strong brown (7.5YR 5/8) masses of oxidized iron accumulation and common fine and medium distinct light brownish gray (10YR 6/2) iron depletions; strongly acid; clear broken boundary. (0 to 51 cm thick)

C1 --84 to 102 cm; light brownish gray (10YR 6/2) stratified sand and fine sand; single grain structure; loose; common fine prominent strong brown (7.5YR 5/8) masses of oxidized iron accumulation; strongly acid; clear wavy boundary.

C2 --102 to 152 cm; light brownish gray (10YR 6/2) stratified sand and gravelly sand; single grain structure; loose; common fine and medium prominent strong brown (7.5YR 5/8) masses of oxidized iron accumulation; 10 percent rounded fine granite and quartzite gravel; very strongly acid; individual strata contain up to 20 percent gravel.

TYPE LOCATION: Essex County, Massachusetts; Town of Andover, 2,525 feet north-northwest (345 deg) of the intersection of Laurel Lane and Old River Road, in a hayfield. USGS Lawrence, Massachusetts topographic quadrangle; Lat. 42 degrees 41 minutes 49.57 seconds N. and long. 71 degrees 12 minutes 52.52 seconds W., WGS 84.

RANGE IN CHARACTERISTICS: Solum thickness ranges from 38 to 100 cm. Gravel, generally fine gravel, ranges from 0 to less than 15 percent in the solum and 0 to 20 percent in the substratum. Reaction ranges from extremely acid through slightly acid unless limed. Iron depletions with chroma of two or less are between depths of 38 and 100 cm from the mineral soil surface.

The O horizon, where present, has a hue of 5YR to 10YR, value of 2 to 3, and chroma of 1 to 3. It is slightly to highly decomposed plant material.

The Ap horizon has hue of 7.5YR or 10YR, value of 2 to 4, and chroma of 1 to 3. It is fine sandy loam, sandy loam, loamy fine sand, loamy sand, fine sand, or sand. Undisturbed pedons commonly have an O horizon and a thin sequence of A, E, and Bs, Bhs or Bh horizons. They may also have an AB or AE horizon. The Ap or A horizon has weak or moderate very fine to medium granular structure and is friable or very friable.

The Bw horizon has hue of 7.5YR to 2.5Y, value of 4 to 6, and chroma of 3 to 6. Texture of the upper part of the Bw horizon, within a depth of 25 cm from the soil surface, has the same range as the A horizon. Below 25 cm the texture is loamy fine sand, loamy sand, fine sand, sand or coarse sand. Structure is weak, very fine to medium granular or subangular blocky, or is single grain. Moist consistence is friable, very friable, or loose.

The BC horizon has hue of 7.5YR to 2.5Y, value of 3 to 6, and chroma of 2 to 4. Texture range is the same as the lower part of the Bw horizon. Structure is weak, very fine to medium subangular blocky, or is single grain. Moist consistence is friable, very friable, or loose.

The C horizon has hue of 7.5YR to 5Y, value of 4 to 6, and chroma of 1 to 4. Texture is loamy fine sand, loamy sand, fine sand, sand or coarse sand. Stratified textures of these textures and gravel, coarse sand, or loamy coarse sand are present in some pedons. It is single grain or massive. Moist consistence is friable, very friable or loose.

COMPETING SERIES: These are the <u>Algansee</u>, <u>Altmar</u>, <u>Birchwood</u>, <u>Brems</u>, <u>Brockatonorton</u>, <u>Elnora</u>, <u>Fortress</u>, <u>Livonia</u>, <u>Meckling</u>, <u>Morocco</u>, <u>Ottokee</u>, <u>Partridge</u>, <u>Succotash</u>, <u>Tedrow</u>, and Zaborowsky series. The Algansee, Brems, Brockatonorton, Meckling, Morocco, Ottokee, Partridge, Tedrow, and Zaborowsky soils are from outside of region R. Algansee soils have an irregular decrease of organic matter with depth. Altmar soils have rock fragments dominated by sandstone. Birchwood soils formed in sandy sediments over glacial till. Brems and Ottokee soils have sola more than 100 cm thick, and Ottokee soils have lamellae. Elnora soils contain more fine sand in the lower part of the series control section. Fortress soils formed in anthropotransported soil material from eolian sand, outwash, ordredging activities. Livonia soils formed in glaciolacustrine parent material with neutral to moderately alkaline reaction and average less than 960 mm of annual precipitation. Meckling soils are calcareous throughout. Morocco soils have redox features within a depth of 38 cm. Partridge soils have bedrock at depths of 50 to 100 cm. Succotash soils formed in sandy eolian and/or marine overwash deposits. Tedrow and Zaborosky</u> soils have carbonates.

GEOGRAPHIC SETTING: Deerfield soils are level to strongly sloping soils on outwash terraces, outwash deltas, and outwash plains. Slope gradients are commonly 0 to 3 percent, but range to 15 percent. The soils formed in thick deposits of sand derived mainly from granite, gneiss and quartzite, but in places containing materials from schist and sandstone. The sand is poorly graded; medium sand is generally dominant and typically contains little or no gravel. The mean annual precipitation typically ranges from 965 to 1397 mm but the range includes as low as 660 mm in some places east of Adirondack Mountains in the Champlain Valley of New York. The mean annual temperature ranges from 7 to 11 degrees C. The frost-free period ranges from 120 to 200 days.

GEOGRAPHICALLY ASSOCIATED SOILS: Deerfield soils are in a drainage sequence that includes the excessively drained <u>Carver</u> and <u>Windsor</u> soils, the somewhat poorly drained <u>Wareham</u> and <u>Pipestone</u> soils, and the very poorly drained <u>Scarboro</u> soils. The well drained <u>Agawam</u>, moderately well drained <u>Ninigret</u>, and poorly drained <u>Walpole</u> soils are terrace associates that are loamy over stratified sand and gravel. The somewhat excessively drained <u>Merrimac</u> and the excessively drained <u>Hinckley</u> and <u>Penwood</u> soils are on nearby glaciofluvial landforms and have sandy and gravelly substrata. The excessively drained <u>Plymouth</u>, somewhat excessively drained <u>Gloucester</u>, well drained <u>Canton</u>, <u>Charlton</u>, <u>Cheshire</u>, <u>Essex</u> and <u>Paxton</u>, and moderately well drained <u>Woodbridge</u> soils are on nearby glacial till uplands.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Moderately well drained. Runoff is

negligible to low. Saturated hydraulic conductivity is high or very high.

USE AND VEGETATION: Mainly cleared and used for truck crops, tobacco, potatoes, hay, pasture and silage corn. Forested areas have pitch pine, white pine, gray birch, red maple, oaks, and sugar maple. Many areas are in urban uses.

DISTRIBUTION AND EXTENT: New Hampshire, Vermont, Maine, Massachusetts, Rhode Island, Connecticut, and New York. (MLRAs 101, 142, 144A, 144B, 145, and 149B) The soils of this series are moderately extensive.

SOIL SURVEY REGIONAL OFFICE (SSRO) RESPONSIBLE: Amherst, Massachusetts.

SERIES ESTABLISHED: Franklin County, Massachusetts, 1964.

REMARKS: Diagnostic horizons and features recognized in this pedon include: Ochric epipedon - the zone from 0 to 23 cm (Ap horizon). Redox depletions with chroma of 2 or less - the zone from 64 to 152 cm. (BC, Cg1, and Cg2 horizons).

ADDITIONAL DATA: Full characterization data for pedons with User Pedon IDs of S1959MA005001, S1970MA011004, S1991MA023005, S2005CT003003, and S2013NY085002. Pedons analyzed by the KSSL, Lincoln, NE. The laboratory characterization data for these pedons and similar soils is available through the National Cooperative Soil Survey Soil Characterization Database: http://ncsslabdatamart.sc.egov.usda.gov/

National Cooperative Soil Survey U.S.A.

LOCATION SUDBURY

Established Series Rev. DGG-MFF-DCP 01/2013

SUDBURY SERIES

The Sudbury series consists of very deep, moderately well and somewhat poorly drained soils on outwash plains. They are nearly level through strongly sloping soils in slight depressions and on terraces and foot slopes in areas of outwash or glaciofluvial deposits. Slope ranges from 0 through 15 percent. Saturated hydraulic conductivity is moderately high or high in the upper solum and high or very high in the lower solum and substratum. Mean annual temperature is about 48 degrees F. (9 degrees C.) and the mean annual precipitation is about 43 inches (1092 millimeters).

TAXONOMIC CLASS: Sandy, mixed, mesic Aquic Dystrudepts

TYPICAL PEDON: Sudbury fine sandy loam in a cultivated field at an elevation of about 92 feet (28 meters). (Colors are for moist soils unless otherwise stated.)

Ap -- 0 to 13 inches (0 to 33 centimeters); very dark grayish brown (10YR 3/2) fine sandy loam, light brownish gray (10YR 6/2) dry; moderate fine granular structure; very friable; many fine roots; 5 percent gravel; moderately acid; abrupt smooth boundary. (6 to 14 inches, 15 to 36 centimeters thick.)

Bw -- 13 to 19 inches (33 to 48 centimeters); yellowish brown (10YR 5/6) sandy loam; weak medium granular structure; very friable; common grass roots; 10 percent fine gravel; few fine and medium prominent dark reddish gray (5YR 4/2) areas of iron depletion in the lower 3 inches (8 centimeters); moderately acid; abrupt wavy boundary. (2 to 20 inches, 5 to 51 centimeters thick.)

2CB -- 19 to 26 inches(48 to 66 centimeters); yellowish brown (10YR 5/4) gravelly coarse sand; single grain; loose; few fine roots; yellowish red (5YR 4/8) coatings on some sand grains; 20 percent gravel; many fine prominent dark reddish brown (2.5YR 3/4) and common coarse prominent reddish yellow (5YR 6/8) masses of iron accumulations; moderately acid; abrupt wavy boundary. (0 to 10 inches, 0 to 25 centimeters thick.)

2C -- 26 to 65 inches (66 to 165 centimeters); light olive brown (2.5Y 5/4) very gravelly coarse sand; single grain; loose; many sand grains coated with strong brown (7.5YR 5/6) and some sand grains slightly cemented, and many pebbles and cobbles coated with black (5YR 2/1); few fine roots; strata of sand and gravel consisting of about 50 percent gravel and some cobbles; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation; moderately acid.

TYPE LOCATION: Essex County, Massachusetts; town of Beverly, 0.2 miles south of the junction of Essex Street and Cole Street and 150 feet south of railroad track. USGS Salem, MA quadrangle; Latitude 42 degrees, 33 minutes, 52 seconds N., Longitude 70 degrees, 51 minutes, 38 seconds W., NAD 1983.

RANGE IN CHARACTERISTICS: Thickness of the solum and depth to stratified sand and gravel range from 18 through 36 inches (46 through 91 centimeters). Depth to redoximorphic features ranges from 12 through 24 inches (30 through 60 centimeters) and must include redoximorphic depletions with chroma of 2 or less. Rock fragment content of individual horizons of the solum ranges from 0 through 30 percent by volume. The fragments are primarily fine gravel but include some medium gravel, coarse gravel and cobbles. Rock fragment content of the C horizon ranges from 0 through 75 percent, and consists of 0 through 65 percent gravel and 0

through 25 percent cobbles and stones. The fragments are mainly granite or gneiss with less than 25 percent dark, fine-grained shale, slate, or phyllite. Reaction ranges from extremely acid through slightly acid in the solum, unless limed, and from very strongly acid through slightly acid in the substratum.

Some pedons have an O horizon.

The Ap or A horizon has hue of 7.5YR or 10YR, value of 2 through 4, and chroma of 0 through 4. It is fine sandy loam, sandy loam, or very fine sandy loam in the fine-earth fraction. Structure is granular or subangular blocky.

Some pedons have an E horizon that has hue of 7.5YR or 10YR, value of 4 through 6, and chroma of 1 or 2. The E horizon has the same texture range as the A horizon. Structure is granular or subangular blocky.

The Bw horizon has hue of 7.5YR through 2.5Y, value of 3 through 5, and chroma of 2 through 8. The upper part of the B horizon is fine sandy loam or sandy loam and the lower part ranges from sandy loam through coarse sand in the fine-earth fraction. Structure is granular or subangular blocky or the horizon is massive. The structure may be single grain in the lower part in some pedons.

The 2CB horizon, where present, has hue of 7.5YR through 2.5Y, value of 3 through 6, and chroma of 2 through 8. Texture ranges from loamy sand through coarse sand in the fine-earth fraction. The 2C horizon has hue of 7.5YR through 5Y, value of 4 through 6, and chroma of 2 through 8. It consists of stratified sand, gravel, and cobbles and ranges from loamy fine sand through coarse sand in the fine-earth fraction.

COMPETING SERIES: There are no other series in the same family.

The <u>Deerfield</u>, <u>Merrimac</u>, <u>Ninigret</u>, <u>Tisbury</u>, and <u>Walpole</u> series are in related families. Deerfield soils have loamy fine sand or coarser textures below a depth of 10 inches (25 centimeters). Merrimac soils are somewhat excessively drained. Ninigret soils are coarse loamy over sandy or sandy-skeletal. Tisbury soils are silt loam or very fine sandy loam in the upper part of the B horizon. Walpole soils are poorly drained.

GEOGRAPHIC SETTING: Sudbury soils are nearly level through strongly sloping soils in slight depressions on outwash plains and on gentle foot slopes. Slope ranges from 0 through 15 percent. The soils formed in water sorted sandy and gravelly glaciofluvial materials derived mainly from granite, gneiss, and schist. Mean annual precipitation ranges from 30 through 55 inches (762 through 1397 millimeters) and mean annual temperature ranges from 45 through 50 degrees F. (7 through 10 degrees C.). Mean growing season ranges from 120 through 240 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the <u>Agawam</u>, <u>Deerfield</u>, <u>Hinckley</u>, <u>Merrimac</u>, <u>Walpole</u> and <u>Windsor</u> soils on nearby landscapes. Agawam, Hinckley, Merrimac, and Windsor soils do not have redox depletions within 24 inches (60 centimeters) of the surface. In addition, the Hinckley and Windsor soils have loamy sand or coarser textures in the B horizon. Deerfield soils have loamy fine sand or coarser textures below a depth of 10 inches (25 centimeters). Walpole soils are poorly drained.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Moderately well and somewhat poorly drained. The potential for surface runoff is low to very high. The internal drainage is restricted by a seasonal high water table. Saturated hydraulic conductivity is moderately high or high in the upper solum and high or very high in the lower solum and substratum.

USE AND VEGETATION: Most areas used for growing hay, pasture, field and truck crops. Some are forested areas with mainly red maple, gray birch, eastern hemlock, larch, eastern white pine, and red, black, and scarlet oaks.

DISTRIBUTION AND EXTENT: Massachusetts, Connecticut, Rhode Island, Vermont, New Hampshire and

eastern New York. MLRAs 144A, 145, and 149B. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts.

SERIES ESTABLISHED: Middlesex County, Massachusetts, 1924.

REMARKS: Diagnostic horizons and features recognized in this pedon are:

1. Ochric epipedon - the zone from the soil surface to a depth of 13 inches (33 centimeters) (Ap horizon).

2. Cambic horizon - the zone from 13 to 19 inches (33 to 48 centimeters) (Bw horizon).

3. Aquic subgroup - redox depletions with a chroma of 2 within 24 inches (60 centimeters) of the soil surface.

National Cooperative Soil Survey U.S.A.

LOCATION SCARBORO

Established Series Rev. WHT-SMF-MFF 03/2010

SCARBORO SERIES

The Scarboro series consists of very deep, very poorly drained soils in sandy glaciofluvial deposits on outwash plains, deltas, and terraces. They are nearly level soils in depressions. Slope ranges from 0 through 3 percent. Saturated hydraulic conductivity is high or very high. Mean annual temperature is about 49 degrees F. (9 degrees C.) and the mean annual precipitation is about 44 inches (1118 millimeters).

TAXONOMIC CLASS: Sandy, mixed, mesic Histic Humaquepts

TYPICAL PEDON: Scarboro mucky fine sandy loam woodland; in an area of Scarboro mucky fine sandy loam at an elevation of about 212 meters. (Colors are for moist soil.)

Oi-- 0 to 1 inch (0 to 3 centimeters); slightly decomposed maple leaves and other plant material

Oa-1 to 8 inches (3 to 20 centimeters); dark brown (10YR3/3) mucky peat; thin platy structure; friable; common fine roots; very strongly acid; abrupt wavy boundary. (Combined thickness of Oi, Oe, and Oa horizons is 8 to 13 inches (20 to 33 centimeters).)

A-- 8 to 14 inches (20 to 36 centimeters); black (N 2/0) mucky fine sandy loam; weak medium granular structure; friable; common fine roots; very strongly acid; abrupt smooth boundary. (0 to 14 inches (0 to 36 centimeters) thick.)

Cg1-- 14 to 19 inches (36 to 48 centimeters); grayish brown (2.5Y 5/2) loamy sand; massive; friable; many fine roots; very strongly acid; abrupt irregular boundary.

Cg2-- 19 to 22 inches (48 to 56 centimeters); grayish brown (2.5Y 5/2) sand; massive; friable; few fine roots; 10 percent rock fragments; common medium prominent dark brown (7.5YR 3/2) areas of iron depletion and common medium prominent yellowish red (5YR 4/6) masses of iron; very strongly acid; clear wavy boundary.

Cg3-- 22 to 65 inches (56 to 165 centimeters); grayish brown (2.5Y 5/2) gravelly sand; single grain; loose; 15 percent rock fragments; strongly acid.

TYPE LOCATION: 60 feet north of Electric Avenue near the south edge of Forest Hill Cemetery in the City of Fitchburg, Massachusetts. USGS Fitchburg, MA topographic quadrangle, Latitude 42 degrees, 34 minutes, 0.3 seconds N., and Longitude 71 degrees, 48 minutes, 33.3 seconds W., NAD 1983.

RANGE IN CHARACTERISTICS: Stones range from 0 through 5 percent by volume in the A horizon and upper part of the C horizon and are absent in the lower part of the C horizon. Cobbles range from 0 through 10 percent in the A horizon, 0 through 5 percent in the upper part of the C horizon, and are absent in the lower part of the C horizon. Gravel ranges from 0 through 10 percent by volume in the A horizon, 0 through 20 percent in the upper part of the C horizon to a depth of 30 inches (76 centimeters), and 0 through 50 percent in the C horizon below a depth of 30 inches (76 centimeters). Reaction ranges from very strongly acid through moderately acid in the A horizon and upper part of the C horizon, and from very strongly acid through neutral in the lower part of the C horizon.

The O horizon is commonly mucky peat or muck, but the range includes thin layers of peat at the surface. The O horizon is neutral or has hue 5YR through 10YR, value of 2 or 3, and chroma of 0 through 3.

The A horizon where present is neutral or has hue of 5YR through 2.5Y, value of 2 through 3, and chroma of 0 through 2. It is fine sandy loam, sandy loam, loamy fine sand, loamy sand, fine sand, sand or their mucky analogues in the fine-earth fraction. This horizon commonly is 5 through 14 inches (13 through 36 centimeters) thick, but in some places may be less than 5 inches (13 centimeters) thick or absent.

The upper part of the Cg horizon is neutral or has hue of 10YR through 5Y, value of 3 through 7, and chroma of 0 through 3. Some pedons have few or common fine through coarse redoximorphic features. Texture is fine sandy loam, sandy loam, loamy fine sand, loamy coarse sand, loamy sand, fine sand, or sand in the fine-earth fraction.

The lower part of the C horizon is neutral or has hue of 10YR through 5Y or 5GY, value of 3 through 6, and chroma of 0 through 4. Redoximorphic features range from none through many and are fine through coarse. Texture is loamy fine sand, loamy sand, fine sand, sand, loamy coarse sand, or coarse sand in the fine-earth fraction. The C horizon is structureless and loose, very friable, or friable. It is often stratified.

COMPETING SERIES: These are the <u>Ackerman</u> and <u>Antung</u> series. These soils are from outside LRR R and S. Ackerman soils are more alkaline in the organic horizons and the upper part of the C horizon. They also contain coprogenous material. Antung soils are more alkaline and effervesce in the C horizon.

GEOGRAPHIC SETTING: Scarboro soils are in level or nearly level depressions on outwash plains, deltas, and terraces. Slope is less than 3 percent. The soils formed in sandy glaciofluvial deposits. Mean annual temperature ranges from 46 through 57 degrees F. (8 through 14 degrees C.) and mean annual precipitation ranges from 38 through 55 inches (965 through 1397 millimeters).

GEOGRAPHICALLY ASSOCIATED SOILS: The excessively drained <u>Hinckley</u>, <u>Windsor</u> and <u>Penwood</u> soils, somewhat excessively drained <u>Merrimac</u> soils, moderately well drained <u>Sudbury</u> and <u>Deerfield</u> soils, poorly drained Mashpee(T) and Massasoit(T) soils, somewhat poorly and poorly drained <u>Walpole</u> and <u>Wareham</u> soils are on higher positions on associated glaciofluvial landforms. The poorly drained <u>Rippowam</u> soils and very poorly drained <u>Saco</u> soils are on nearby flood plains. The very poorly drained <u>Rainberry</u> soils lack a Histic epipedon and have Spodic horizons.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Very poorly drained. Saturated hydraulic conductivity is high or very high. Surface runoff is high or very high. The water table is at or near the surface for 6 to 12 months of the year, and many areas are ponded for short periods.

USE AND VEGETATION: Shrub and brush land or woodland. Common shrubs are speckled alder, smooth alder, rhoda azalea, steeplebush spirea, leatherleaf, labrador-tea, winterberry, highbush blueberry, large cranberry, black huckleberry, poison sumac, and sheep laurel. Common trees are red maple, slippery elm, Atlantic white cedar, tamarack, eastern white pine, willow, and gray birch.

DISTRIBUTION AND EXTENT: Glaciofluvial landforms in Connecticut, Massachusetts, New Hampshire, Rhode Island, eastern New York, and Vermont. MLRAs 142, 144A, 145, and 149B. Scarboro soils are extensive.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts.

SERIES ESTABLISHED: Cumberland County, Maine; 1915.

REMARKS: 1. Geographical location (latitude and longitude) determined from the published soil survey.

2. The use of the Scarboro series in Maine, and in MLRA 144B, is relict to before temperature classes. These have been removed from the SC file.

Diagnostic horizons and features recognized in this pedon are:

1. Histic epipedon - the zone from the soil surface to a depth of 8 inches (20 centimeters), (Oi and Oa horizons).

2. Thickness of organic soil materials is 8 inches (20 centimeters).

3. Aquic conditions - Histic epipedon or the zone from 19 to 22 inches (48 to 56 centimeters) has 50 percent or more 2 chroma with redox concentrations (Cg2 horizon).

National Cooperative Soil Survey U.S.A.

2

LOCATION SUTTON

Established Series Rev. MFF-SMF-JTI 05/2016

SUTTON SERIES

The Sutton series consists of very deep, moderately well drained loamy soils formed in melt-out till. They are nearly level to strongly sloping soils on hills, low ridges, and ground moraines, typically on footslopes, lower backslopes and in slight depressions. Slope ranges from 0 to 15 percent. Saturated hydraulic conductivity is moderately high or high throughout. Mean annual temperature is about 9 degrees C and mean annual precipitation is about 1205 mm.

TAXONOMIC CLASS: Coarse-loamy, mixed, superactive, mesic Aquic Dystrudepts

TYPICAL PEDON: Sutton fine sandy loam, extremely stony - forested, with a one inch layer of undecomposed litter on surface at an elevation of about 250 meters. (Colors are for moist soil.)

Oe--0 to 2 cm; black (10YR 2/1) moderately decomposed forest plant material. (0 to 8 cm thick)

A--2 to 15 cm; very dark brown (10YR 2/2) fine sandy loam; weak medium granular structure; very friable; common fine and medium roots; 5 percent gravel; strongly acid; clear wavy boundary. (2 to 25 cm thick)

Bw1--15 to 30 cm; brown (7.5YR 4/4) fine sandy loam; weak fine and medium subangular blocky structure; friable; common fine and medium roots; 10 percent gravel and cobbles; moderately acid; gradual wavy boundary.

Bw2--30 to 61 cm; yellowish brown (10YR 5/6) fine sandy loam; weak medium subangular blocky structure; friable; few medium roots; 10 percent gravel and cobbles; common fine and medium prominent light brownish gray (2.5Y 6/2) iron depletions and yellowish red (5YR 5/6) masses of iron accumulation; moderately acid; gradual wavy boundary.

Bw3--61 to 71 cm; yellowish brown (10YR 5/4) fine sandy loam; weak medium subangular blocky structure; friable; 10 percent gravel and cobbles; common medium prominent light brownish gray (2.5Y 6/2) iron depletions and reddish brown (5YR 4/4) and strong brown (7.5YR 5/6) masses of iron accumulation; moderately acid; gradual wavy boundary. (Combined thickness of the Bw horizon is 35 to 92 cm.)

C1--71 to 91 cm; brown (10YR 5/3) gravelly fine sandy loam; weak thick platy structure; firm; 15 percent gravel and cobbles; common medium distinct light brownish gray (2.5Y 6/2) iron depletions and common medium prominent strong brown (7.5YR 5/6) masses of iron concentrations; moderately acid; gradual wavy boundary. (15 to 51 cm thick)

C2--91 to 165 cm; light olive brown (2.5Y 5/4) gravelly sandy loam; massive; friable; 25 percent gravel and cobbles; moderately acid.

TYPE LOCATION: New Haven County, Connecticut; town of Prospect, 400 feet southeast along Merriman Lane from the intersection with Summit Road, and 70 feet north of Merriman Lane, in a wooded area. USGS Southington quadrangle, latitude 41 degrees 30 minutes 31 seconds N., longitude 72 degrees 58 minutes 45 seconds W., NAD 27, in a wooded area.

RANGE IN CHARACTERISTICS: Thickness of the solum ranges from 50 to 100 cm. Depth to bedrock is commonly more than 2 meters. Rock fragments range from 5 to 35 percent by volume to a depth of 100 cm and up to 50 percent below 100 cm. Except where the surface is stony, the fragments are mostly subrounded gravel and typically make up 60 percent or more of the total rock fragments. Unless limed, reaction ranges from very strongly acid to moderately acid.

The A horizon has hue of 10YR or 7.5YR, value of 2 to 4, and chroma of 1 to 3. Disturbed pedons have an Ap horizon with value of 3 or 4 and chroma of 2 to 4. The A or Ap horizon is sandy loam, fine sandy loam, or loam in the fine-earth fraction. It has weak or moderate granular structure and is friable or very friable.

Some pedons have a thin E horizon below the A horizon. It has hue of 10YR or 2.5Y, value of 4 to 6, and chroma of 1 to 3. Texture, structure, and consistence are like the A horizon.

The upper part of the Bw horizon has hue of 7.5YR or 10YR and value and chroma of 4 to 6.

The lower part of the Bw horizon has hue of 10YR to 5Y and value and chroma of 4 to 6. It has iron depletions and masses of iron accumulation above a depth of 60 cm. Fine-earth texture of the Bw horizon is sandy loam, fine sandy loam, or loam with less than 65 percent silt plus very fine sand. Structure is weak platy, granular, or subangular blocky, or the horizon is massive. Consistence is friable or very friable.

Some pedons have a thin BC horizon with value and chroma like the lower part of the Bw horizon. The BC horizon has texture, structure, and consistence similar to the Bw horizon.

The C horizon has hue of 10YR to 5Y, value of 4 to 6, and chroma of 2 to 4. It typically has redoximorphic features in the upper part. Texture is commonly fine sandy loam or sandy loam, but ranges to very fine sandy loam in the fine-earth fraction. Some pedons have pockets or thin lenses of silt loam, loamy sand, or sand. The horizon is massive or it has weak plates. Consistence is commonly very friable or friable but the range includes firm in some pedons.

COMPETING SERIES: There are currently no other series in the same family.

The <u>Chautauqua</u>, <u>Pittstown</u>, <u>Pompton</u>, <u>Rainbow</u>, <u>Wapping</u>, <u>Wilbraham</u>, and <u>Woodbridge</u> series are in related families.

<u>Rainbow</u> soils have a dense substratum. <u>Wilbraham</u> soils have low chroma iron depletions throughout the B horizon and have a dense substratum. <u>Chautauqua</u> and <u>Wapping</u> soils have more than 65 percent silt plus very fine sand in the B horizon. <u>Pittstown</u> and <u>Woodbridge</u> soils have a dense substratum. <u>Pompton</u> soils have a stratified sandy and gravelly substratum within a depth of 100 centimeters.

GEOGRAPHIC SETTING: Sutton soils are nearly level to strongly sloping soils typically on footslopes and lower backslopes or in slightly depressed areas on hills on glaciated uplands. Slope ranges from 0 to 15 percent. The soils formed in acid melt-out till derived mainly from granite, gneiss, and/or schist. Mean annual air temperature ranges from 7 to 13 degrees C, and mean annual precipitation ranges from 910 to 1800 mm. The frost-free period ranges from 140 to 240 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the <u>Acton, Charlton, Rainbow, Wapping</u>, and <u>Woodbridge</u> soils and the <u>Broadbrook</u>, <u>Brookfield</u>, <u>Canton</u>, <u>Chatfield</u>, <u>Essex</u>, <u>Gloucester</u>, <u>Hollis</u>, <u>Leicester</u>, <u>Montauk</u>, <u>Narragansett</u>, <u>Paxton</u>, <u>Ridgebury</u>, <u>Scituate</u>, and <u>Whitman</u> soils on nearby landscapes. The well drained Charlton and the poorly drained Leicester soils are associated in a drainage sequence. Broadbrook, Essex, Montauk, and Paxton soils are well drained and have a dense substratum. Brookfield, Canton, Gloucester, and Narragansett soils are well drained and do not have redoximorphic features. Chatfield and Hollis soils have bedrock within a depth of 25 to 50 and 50 to 100 cm respectively. Ridgebury and Whitman soils are moderately well drained and very poorly drained, respectively and have a dense substratum. Scituate soils are moderately well drained and have a dense substratum.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Moderately well drained. Surface runoff is slow to medium. Saturated hydraulic conductivity ranges from moderately high or high throughout.

USE AND VEGETATION: Cleared areas are used for cultivated crops, hay, or pasture. Scattered areas are used for community development. Some areas are wooded. Common trees are red oak, white oak, black oak, hickory, ash, red maple, gray birch, hemlock, and white pine.

DISTRIBUTION AND EXTENT: Late Wisconsin age glaciated areas in Connecticut, Massachusetts, New Hampshire, New York, and Rhode Island; MLRAs 142, 144A, and 145. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts

SERIES ESTABLISHED: Worcester County, Massachusetts, 1922.

REMARKS: Diagnostic horizons and features recognized in this pedon are:

1. Ochric epipedon - the zone from 0 to 15 cm (Oe and A horizons).

2. Cambic horizon - the zone from 15 to 71 cm (Bw horizons).

3. Redox depletions with chroma 2 or less - zone from 30 to 91 cm (Bw2, Bw3, and C1 horizons).

4. Particle-size class - averages coarse-loamy in the control section from 27 to 102 cm.

ADDITIONAL DATA: Full characterization data for the pedon with User Pedon ID S1999NY005003. Pedon analyzed by the KSSL, Lincoln, NE. The laboratory characterization data for this pedon and similar soils is available through the National Cooperative Soil Survey Soil Characterization Database: http://ncsslabdatamart.sc.egov.usda.gov/

National Cooperative Soil Survey U.S.A.

LOCATION PAXTON

Established Series Rev. MFF-SMF-JTI 04/2015

PAXTON SERIES

The Paxton series consists of well drained loamy soils formed in lodgment till. The soils are very deep to bedrock and moderately deep to a densic contact. They are nearly level to steep soils on hills, drumlins, till plains, and ground moraines. Slope ranges from 0 to 45 percent. Saturated hydraulic conductivity is moderately high or high in the surface layer and subsoil and low or moderately low in the substratum. Mean annual temperature is about 10 degrees C., and mean annual precipitation is about 1194 mm.

TAXONOMIC CLASS: Coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts

TYPICAL PEDON: Paxton fine sandy loam - in a brushy field at an elevation of about 850 feet. (Colors are for moist soil unless otherwise noted.)

Ap -- 0 to 20 cm; dark brown (10YR 3/3) fine sandy loam, pale brown (10YR 6/3) dry; moderate medium granular structure; friable; many fine roots; 5 percent gravel; strongly acid; abrupt smooth boundary. (13 to 28 cm thick)

Bw1 -- 20 to 38 cm; dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine roots; 5 percent gravel; few earthworm casts; strongly acid; gradual wavy boundary.

Bw2 -- 38 to 66 cm; olive brown (2.5Y 4/4) fine sandy loam; weak medium subangular blocky structure; friable; few fine roots; 10 percent gravel; strongly acid; clear wavy boundary. (Combined thickness of the Bw horizon is 38 to 94 cm thick.)

Cd -- 66 to 165 cm; olive (5Y 5/3) gravelly fine sandy loam; medium plate-like divisions; massive; very firm, brittle; 25 percent gravel; many dark coatings on plates; strongly acid.

TYPE LOCATION: New Haven County, Connecticut; town of Prospect, 0.4 mile east of Straitsville Road and 0.5 mile north of the Bethany - Prospect town line; USGS Mount Carmel, CT topographic quadrangle; Latitude 41 degrees, 28 minutes, 34 33.79 seconds N., Longitude 72 degrees, 59 minutes, 16 119.19 seconds W., WGS 84

RANGE IN CHARACTERISTICS: Thickness of the mineral solum and depth to the densic contact ranges from 50 to 100 cm. Depth to bedrock is commonly more than 1.5 meters. Rock fragments range from 5 through 35 percent by volume in the mineral soil. Except where the surface is stony, the fragments are mostly subrounded gravel and typically make up 60 percent or more of the total rock fragments. Unless limed, reaction ranges from very strongly acid to slightly acid in the mineral soil.

The O horizon, where present, has hue of 5YR to 10YR or it is neutral, value of 2 or 3 and chroma of 0 to 2. It is mainly composed of slightly, moderately, or highly decomposed plant material.

The Ap horizon has hue of 10YR or 2.5Y, value of 3 or 4, and chroma of 2 to 4. Dry value is 6 or more. The structure is commonly granular but the range includes subangular blocky in some pedons. Undisturbed pedons have a thin A horizon with value of 2 or 3 and chroma of 1 or 2. The Ap or A horizon is loam, fine sandy loam,

or sandy loam in the fine-earth fraction.

Some pedons have a thin E horizon below the A horizon. It has hue of 10YR or 2.5Y, value of 4 to 6, and chroma of 1 to 3.

The upper part of the Bw horizon has hue of 7.5YR or 2.5Y, value of 4 to 6, and chroma of 4 to 8. The lower part of the Bw horizon has hue of 10YR or 2.5Y, value of 4 to 6, and chroma of 3 to 6. Some pedons have few faint redoximorphic features just above the Cd horizon. The Bw horizon is loam, fine sandy loam, or sandy loam with less than 65 percent silt plus very fine sand. It has granular or subangular blocky structure Consistence is friable or very friable.

Some pedons have a BC horizon up to 20 cm thick.

Some pedons have an E or E' horizon up to 8 cm thick below the B horizon. It has hue of 10YR to 5Y, value of 5 or 6, and chroma of 2 or 3. Typically, it is coarser textured than the overlying horizon.

The Cd has hue of 10YR to 5Y, value of 4 to 6, and chroma of 2 to 4. In some pedons there are a few faint or distinct areas of iron depletion or masses of iron accumulation in the upper part. Texture is loam, fine sandy loam, sandy loam, or coarse sandy loam in the fine-earth fraction. A few thin lenses of loamy sand are in some pedons. The structure is geogenetically derived, appearing in the form of medium to very thick plates, or it is massive. Consistence is firm or very firm. Some pedons have a friable C horizon above the Cd horizon.

COMPETING SERIES: These are <u>Amostown</u>, <u>Bernardston</u>, <u>Broadbrook</u>, <u>Horseneck</u>, <u>Nantucket</u>, <u>Scituate</u>, and <u>Wethersfield</u> series. Amostown soils are underlain by stratified very fine sand or silt within a depth of 100 cm. Bernardston and Broadbrook soils have a solum with more than 65 percent silt plus very fine sand. Horseneck soils lack a densic contact. Nantucket soils have a lithologic discontinuity. Scituate soils have sandy substrata. Wethersfield soils have 5YR or redder hue in the B and C horizons.

GEOGRAPHIC SETTING: Paxton soils are nearly level to steep and are on till plains, ground moraines, hills, and drumlins. Slope commonly is 0 to 35 percent, but range from 0 to 45 percent in some pedons. The soils formed in acid lodgment till derived mostly from schist, gneiss, and granite. Mean annual temperature ranges from 7 to 11 degrees C., mean annual precipitation ranges from 940 to 1245 mm, and the growing season ranges from 115 to 180 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the competing <u>Bernardston</u>, <u>Broadbrook</u>, and <u>Scituate</u> soils and the <u>Canton</u>, <u>Charlton</u>, <u>Chatfield</u>, <u>Georgia</u>, <u>Hollis</u>, <u>Leicester</u>, <u>Montauk</u>, <u>Narragansett</u>, <u>Pittstown</u>, <u>Ridgebury</u>, <u>Stockbridge</u>, <u>Sutton</u>, <u>Wapping</u>, <u>Whitman</u>, and <u>Woodbridge</u> soils on nearby landscapes. The moderately well drained Woodbridge, poorly drained Ridgebury, and the very poorly drained Whitman soils are associated in a drainage sequence. Canton soils have a friable loamy sand substratum. Well drained Stockbridge and moderately well drained Georgia soils have higher base status. Hollis soils have bedrock within a depth of 25 to 50 cm. Leicester soils are poorly drained and do not have a dense substratum. Montauk soils have sandy substrata. Narragansett soils have a lithologic discontinuity within a depth of 100 cm and a solum high in silt and very fine sand. Sutton and Wapping soils are moderately well drained and do not have a dense substratum.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Well drained. Water may perch on the densic contact for brief periods in late fall through early spring. Surface runoff is negligible to high. Saturated hydraulic conductivity is moderately high or high in the mineral solum and low or moderately low in the substratum.

USE AND VEGETATION: Many areas are cleared and used for cultivated crops, hay, or pasture. Scattered areas are used for community development. Some areas are wooded. Common trees are red, white, and black oak, hickory, sugar maple, red maple, gray and black birch, eastern white pine, and eastern hemlock.

DISTRIBUTION AND EXTENT: Glaciated uplands in Connecticut, Massachusetts, New Hampshire, eastern

New York, Rhode Island, and Vermont. MLRAs 144A and 145. The series is of large extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts

SERIES ESTABLISHED: Worcester County, Massachusetts, 1922.

REMARKS: Paxton is the state soil of Massachusetts.

Prior revisions included changes to the range in characteristics as well as general updating to metric units. Cation exchange activity class placement was determined from a review of limited lab data and similar or associated soils. Paxton soils were previously classified as Typic Dystrochrepts, and before that as Typic Fragiochrepts.

The Paxton series was previously used in some surveys in Maine. Maine determined from soil temperature studies that the mesic soil temperature regime would no longer be used. Maine is re-evaluating the soil temperature regimes in southern Maine as of the date of this revision.

Diagnostic horizons and features recognized in this pedon include:

- 1. Ochric epipedon the zone from 0 to 20 cm (Ap horizon).
- 2. Cambic horizon the zone from 20 to 66 cm (Bw horizons).
- 3. Densic material the zone from 66 to 165 cm (Cd horizon).

4. Oxyaquic subgroup - based on saturation in one or more layers within 100 cm of the mineral surface, for one month or more per year, in 6 out of 10 years.

5) Particle-size control section - the zone from 20 to 66 cm (Bw horizons).

ADDITIONAL DATA: Full characterization data for pedons with User Pedon IDs of S1955MA027002, S1955NH015001, S1973MA005001, S1973MA005006, S1975CT013001, S1996NH013001, S1999NY061001. Pedons analyzed by the NSSL, Lincoln, NE. Laboratory characterization data for these pedons and similar soils is available through the National Cooperative Soil Survey Soil Characterization Database: http://ncsslabdatamart.sc.egov.usda.gov/

National Cooperative Soil Survey U.S.A.

Established Series Rev. LWK-ERS-JTI 04/2017

CHATFIELD SERIES

The Chatfield series consists of well drained soils formed in loamy melt-out till. They are moderately deep to bedrock. They are nearly level to very steep soils on bedrock-controlled hills and ridges. Slope ranges from 0 to 70 percent. Crystalline bedrock is at depths of 50 to 100 cm. Saturated hydraulic conductivity is moderately high or high in the mineral soil. Mean annual temperature is about 9 degrees C, and mean annual precipitation is about 1205 mm.

TAXONOMIC CLASS: Coarse-loamy, mixed, superactive, mesic Typic Dystrudepts

TYPICAL PEDON: Chatfield fine sandy loam, on a 13 percent slope in a wooded area. (Colors are for moist soil unless otherwise noted).

Oi -- 0 to 3 cm, slightly decomposed leaf, needle, and twig litter; extremely acid, pH 4.2. (0 to 15 cm thick.)

A -- 3 to 5 cm, very dark gray (10YR 3/1) fine sandy loam, gray (10YR 5/1), dry; weak fine subangular blocky structure; friable; many fine and medium roots throughout; 5 percent mixed gravel and cobbles; very strongly acid, pH 4.5; abrupt smooth boundary. (1 to 25 cm thick.)

Bw1-- 5 to 33 cm, strong brown (7.5YR 5/6) gravelly fine sandy loam; weak fine subangular blocky structure; friable; common fine roots throughout and common medium roots throughout; 15 percent mixed gravel and cobbles; very strongly acid, pH 4.5; abrupt wavy boundary.

Bw2 -- 33 to 76 cm, strong brown (7.5YR 5/6) gravelly fine sandy loam; moderate medium subangular blocky structure; friable; few fine roots throughout; 20 percent mixed rock fragments; very strongly acid, pH 4.5; abrupt irregular boundary. (Combined thickness of the Bw horizons is 10 to 80 cm.)

2R -- 76 cm; fractured slightly-weathered schist bedrock.

TYPE LOCATION: Merrimack County, New Hampshire; Town of Epsom, 450 feet north-northwest from point 3,550 feet southwest along Old Mountain Road from intersection of Mountain Road and Tarlton Road. USGS Gossville, NH topographic quadrangle; Latitude 43 degrees, 11 minutes, 55.79 seconds N. and Longitude 71 degrees, 19 minutes, 22.31 seconds W., WGS 1984.

RANGE IN CHARACTERISTICS: Solum thickness ranges from 40 to 97 cm. Depth to bedrock ranges from 50 to 100 cm from the mineral soil surface. Rock fragments range from 5 to 50 percent by volume in the A horizon and from 5 to 35 percent in the B and C horizons. Rock fragments are typically gravel or channers, but include cobbles, stones, boulders and flagstones, particularly just above the bedrock.

The O horizon has hue of 5YR to 2.5Y, value of 2 or 3, and chroma of 0 to 2. It is slightly, intermediately, and/or highly decomposed plant material. Reaction ranges from extremely acid to moderately acid.

The A, or Ap horizon where present, has hue of 7.5YR to 2.5Y, value of 2 to 4, and chroma of 1 to 4. Dry value is 6 or higher. Texture is sandy loam, fine sandy loam, very fine sandy loam, loam, or silt loam in the fine-earth

fraction. Structure is granular. Consistence is friable or very friable. Reaction ranges from extremely acid to moderately acid, unless limed.

The AB or BA horizon, where present, has hue of 7.5YR to 2.5Y, value of 3 or 4, and chroma of 2 to 4. Texture is similar to the A horizon.

The Bw horizon commonly has hue of 10YR or 2.5Y, and includes 7.5YR when a high ratio of ammonium oxalate extractable iron to dithionite-citrate extractable iron (greater than 0.15) exists, value of 3 to 6, and chroma of 4 to 6. Texture is similar to the A horizon. The Bw horizon has subangular blocky or granular structure and is friable or very friable. Reaction ranges from very strongly acid to moderately acid.

Some pedons have a BC horizon with color and texture similar to the C horizon.

The C horizon, where present, has hue of 7.5YR to 5Y, value of 4 or 5, and chroma of 2 to 4, and the 7.5YR hue is limited to horizons having a high ratio of ammonium oxalate extractable iron to dithionite-citrate extractable iron (> 0.15). Texture is sandy loam, fine sandy loam, very fine sandy loam, or silt loam in the fine-earth fraction and may have lenses or pockets of loamy sand. It is massive and may have plate-like divisions. It is friable or firm. Reaction ranges from very strongly through moderately acid.

The 2R horizon is dominantly schist, granite, or gneiss bedrock. In places it is massive, but it dominantly has vertical and horizontal fractures in the upper 30 to 76 cm.

COMPETING SERIES: These are the <u>Chadakoin</u>, <u>Charlton</u>, <u>Maplecrest</u>, <u>Riverhead</u>, <u>Stinger</u>, and <u>Valois</u> series. Chadakoin, Maplecrest, and Valois soils formed in till derived primary from sedimentary rock parent materials and are greater than 100 cm to bedrock. Charlton soils formed in similar parent material to that of Chatfield but are greater than 150 cm to bedrock. Riverhead soils formed in glacial outwash deposits and are greater than 100 cm to bedrock. Stinger soils are not from Region R and have a paralithic contact.

GEOGRAPHIC SETTING: Chatfield soils are nearly level through very steep, and are on bedrock-controlled glaciated upland landscapes. The soils formed in a moderately thick mantle of melt-out till overlying granite, gneiss, or schist bedrock. Slope ranges from 0 to 70 percent. Mean annual precipitation ranges from 660 to 1270 mm, mean annual temperature ranges from 7 to 13 degrees C, and the frost free season ranges from 130 to 180 days. Elevation ranges from 0 to 305 meters above sea level.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the <u>Brimfield</u>, <u>Brookfield</u>, <u>Cardigan</u>, <u>Charlton</u>, <u>Hollis</u>, <u>Narragansett</u>, <u>Nipmuck</u>, and <u>Paxton</u> soils and their wetter associates on nearby landscapes where the soil mantle is deeper than 100 cm. Brimfield, Brookfield and Nipmuck soils formed in sulfur bearing parent materials and have a ratio of ammonium oxalate extractable iron to dithionite-citrate extractable iron less than 0.15 and have pedogenic iron contents greater than 1 percent throughout the pedon. Brookfield, Charlton, Narragansett, and Paxton soils are very deep soils. Cardigan soils are moderately deep soils that formed in till derived from phyllite, slate, shale, and schist. Hollis soils are shallow to bedrock and are on nearby ridge crests and areas adjacent to rock outcrops.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Well drained. Potential for surface runoff ranges from low to high. Saturated hydraulic conductivity is moderately high or high in the mineral soil.

USE AND VEGETATION: Most areas of Chatfield soils are in woodland. Major tree species include white and northern red oaks, sugar maple, beech, eastern hemlock, eastern white pine, eastern red cedar, and shagbark hickory. Some small cleared areas are used for pasture, are idle, or are sites for residential and recreational development.

DISTRIBUTION AND EXTENT: Connecticut, eastern New York, Massachusetts, New Jersey, and New Hampshire. MLRAs 142, 143, 144A and 145. The soils are of large extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts

SERIES ESTABLISHED: Orange County, New York, 1940.

REMARKS: Diagnostic horizons and features recognized in this pedon are: Ochric epipedon - the zone from 0 to 5 cm (Oi and A horizons). Cambic horizon - the zone from 5 to 76 cm (Bw1 and Bw2 horizons). Lithic contact - bedrock at 76 cm (2R horizon). Particle-size control section - the zone from 28 to 76 cm (part of the Bw1 horizon and all of the Bw2 horizon). Lithologic discontinuity - at a depth of 76 cm.

ADDITIONAL DATA: M.S. Thesis work by Shawn McVey, University of Connecticut, 2006. Full characterization data for pedons with User Pedon IDs of S1955NH015003, S1982CT007005, S1982CT007005, S1982NY061001, S1995NH013003, S1995NJ037003, S1998NY005001, S1999NY005004, S2000NY005002, S2000NY005004, S2000NY005008, S2000NY119002, S2000NY119003, S2002CT005007, and S2002CT005008. Pedons analyzed by the NSSL, Lincoln, NE. The laboratory characterization data for these pedons and similar soils is available through the National Cooperative Soil Survey Soil Characterization Database: http://ncsslabdatamart.sc.egov.usda.gov/

National Cooperative Soil Survey U.S.A.

Established Series Rev. MFF-SMF-SJM-DCP 05/2016

HOLLIS SERIES

The Hollis series consists of well drained and somewhat excessively drained soils formed in a thin mantle of till. They are shallow to bedrock. They are nearly level to very steep upland soils on bedrock-controlled hills and ridges. Slope ranges from 0 through 60 percent. Saturated hydraulic conductivity is moderately high or high. Depth to hard bedrock ranges from 25 to 50 cm. Mean annual temperature is about 9 degrees C, and mean annual precipitation is about 1205 mm.

TAXONOMIC CLASS: Loamy, mixed, superactive, mesic Lithic Dystrudepts

TYPICAL PEDON: Hollis gravelly fine sandy loam, 3 to 15 percent slopes, forested. (Colors are for moist soil.)

Oi--0 to 3 cm; slightly decomposed plant material.

Oa--3 to 5 cm; black (10YR 2/1) highly decomposed plant material; moderate fine granular structure; very friable; many fine and very fine roots; abrupt smooth boundary. (Combined thickness of the O horizons is 0 to 10 cm.)

A--5 to 18 cm; very dark grayish brown (10YR 3/2) gravelly fine sandy loam, light brownish gray (10YR 6/2) dry; weak fine granular structure; very friable; common fine, very fine, medium, and coarse roots; 10 percent gravel, 5 percent channers; very strongly acid; clear smooth boundary. (3 to 15 cm thick)

Bw1--18 to 25 cm; dark yellowish brown (10YR 4/4) gravelly fine sandy loam; moderate medium subangular blocky structure; friable; few very fine and fine roots, common medium roots; 10 percent gravel, 10 percent channers; strongly acid; clear wavy boundary.

Bw2--25 to 41 cm; yellowish brown (10YR 5/6) gravelly fine sandy loam; moderate medium and coarse subangular blocky structure; friable; few fine and very fine roots, common medium roots; 10 percent gravel, 5 percent channers; strongly acid; abrupt smooth boundary. (Combined thickness of the Bw horizons is 18 to 48 cm.)

2R--41 cm; schist bedrock.

TYPE LOCATION: Middlesex County, Connecticut, town of East Hampton, 1000 feet due west of Connecticut Route 196 and 3200 feet due north of Connecticut Route 151; USGS Moodus, CT topographic quadrangle, Latitude 41 degrees 31, minutes 28, seconds N., Longitude 72 degrees, 29 minutes, 48 seconds W., NAD 27.

RANGE IN CHARACTERISTICS: Thickness of the solum and depth to bedrock range from 25 to 50 cm. Rock fragments commonly range from 5 through 35 percent by volume, but some pedons have less than 5 percent rock fragments. The fragments are mostly subrounded gravel, except where the surface is stony. The soil has 20 percent or more silt in the particle-size control section. Unless limed, reaction ranges from extremely acid through moderately acid in the organic horizons and very strongly acid through moderately acid in the mineral

horizons.

The O horizon, where present, ranges from slightly decomposed to highly decomposed plant material,

The A horizon has hue of 7.5YR or 10YR, value of 2 to 4, and chroma of 1 to 3. It is sandy loam, fine sandy loam, or loam in the fine-earth fraction. Consistence is friable or very friable.

Some pedons have a BA horizon with colors similar to the A horizon and other properties similar to the Bw horizon.

The Bw horizon commonly has hue of 10YR or 2.5Y, and includes 7.5YR when a high ratio of ammonium oxalate extractable iron to dithionite-citrate extractable iron (greater than 0.15) exists, value of 4 or 5, and chroma of 4 through 8. It is sandy loam, fine sandy loam, or loam in the fine-earth fraction. The Bw horizon has granular or subangular blocky structure. Consistence is friable or very friable.

Some pedons have a thin BC or C horizon with color like the Bw horizon, except it includes hue of 5Y. Texture, structure, and consistence are similar to the Bw horizon.

Some pedons have a thin 2Cr horizon that is typically weathered schist and moderately cemented.

COMPETING SERIES: This is the <u>Holyoke</u> series. Holyoke soils formed in a thin mantle of till derived mainly from basalt and red sandstone, conglomerate, and shale, and typically overly basalt, red sandstone, conglomerate, or shale bedrock.

The <u>Cleveland</u>, <u>Kearsarge</u>, and <u>Brimfield</u> series are in closely related families. Cleveland soils have less than 20 percent silt in the particle-size control section and lack a 2R horizon. Kearsarge soils lack a 2R horizon and have rock fragments of phyllite, slate, or schist. Brimfield soils formed in parent materials derived from sulfur bearing schist and have a ratio of ammonium oxalate extractable iron to dithionite-citrate extractable iron of less than 0.15. They have pedogenic iron contents of greater than 1 percent throughout the pedon.

GEOGRAPHIC SETTING: Hollis soils are nearly level to very steep soils on bedrock controlled hills, modified by glacial processes. Slope ranges from 0 to 60 percent. The soils formed in a thin mantle of till derived from local bedrock of schist, granite, and gneiss. Mean annual temperature ranges from 7 to 13 degrees C and mean annual precipitation ranges from 910 to 1295 mm, but the range includes as low as 660 mm in some places east of Adirondack Mountains in the Champlain Valley of New York. The growing season ranges from 115 through 185 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the <u>Brimfield, Acton, Broadbrook, Brookfield,</u> <u>Canton, Charlton, Chatfield, Essex, Gloucester, Hibernia, Leicester, Montauk, Narragansett, Paxton, Rainbow,</u> <u>Ridgebury, Rockaway, Scituate, Sutton, Wapping, Whitman, and Woodbridge</u> soils on nearby landscapes. All are very deep upland soils formed in till except for the Brimfield and Chatfield soils. Acton, Rainbow, Rockaway, Scituate, Sutton, Wapping, and Woodbridge soils are moderately well drained. The Broadbrook, Brookfield, Canton, Charlton, Essex, Montauk, Narragansett, and Paxton soils are well drained. Chatfield soils have bedrock within a depth of 50 to 100 cm. Gloucester soils are somewhat excessively drained. Hibernia, Leicester, and Ridgebury soils are somewhat poorly drained or poorly drained soils in drainageways or low lying areas.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Well drained and somewhat excessively drained. Surface runoff is negligible to very high. Saturated hydraulic conductivity is moderately high or high.

USE AND VEGETATION: Mostly forested. Small areas with few rock outcrops are cleared of stones and used for cultivated crops, but most cleared areas are in hay or pasture. Scattered areas are used for community development. Common trees are northern red, white, black, and chestnut oak, hickory, eastern white pine, eastern hemlock, and gray and black birch.

DISTRIBUTION AND EXTENT: Glaciated uplands in Connecticut, Massachusetts, New Jersey, New Hampshire, and eastern New York. MLRAs 101, 142, 144A, and 145. The series is of large extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts.

SERIES ESTABLISHED: Nashua Area, New Hampshire, 1909.

REMARKS: Diagnostic horizons and features recognized in this pedon include:

- 1. Ochric epipedon the zone from 0 to 18 cm (O and A horizons).
- 2. Cambic horizon the zone from 18 to 41 cm (Bw1 and Bw2 horizons).
- 3. Lithic contact hard bedrock at 41 cm (2R horizon).
- 4. Particle-size control section the zone from 30 to 41 cm.

5. Loamy (coarse-loamy) particle-size class - the control section from 30 to 41 cm averages less than 35 percent clay in fine-earth fraction and the soil is in a Lithic subgroup.

6. Lithologic discontinuity - till with rock fragments from mixed sources overlying single kind of hard bedrock at 41 cm.

ADDITIONAL DATA: M.S. Thesis work by Shawn McVey, University of Connecticut, 2006. Full characterization data for sample no.1999CT005001, 2000CT007004, S2002CT005001, S2002CT005006, S1998NY061001, S2000NY119001. Partial characterization data for sample no. S99NY061003 and S99NY061003A-3D. Analyzed by the NSSL, Lincoln, NE.

National Cooperative Soil Survey U.S.A.

Established Series Rev. MFF-JTI-DHZ 05/2016

WOODBRIDGE SERIES

The Woodbridge series consists of moderately well drained loamy soils formed in lodgment till. They are very deep to bedrock and moderately deep to a densic contact. They are nearly level to moderately steep soils on hills, drumlins, till plains, and ground moraines. Slope ranges from 0 to 25 percent. Saturated hydraulic conductivity ranges from moderately high to high in the surface layer and subsoil and low or moderately low in the dense substratum. Mean annual temperature is about 9 degrees C., and mean annual precipitation is about 1168 mm.

TAXONOMIC CLASS: Coarse-loamy, mixed, active, mesic Aquic Dystrudepts

TYPICAL PEDON: Woodbridge fine sandy loam - grass field, at an elevation of about 177 meters. (Colors are for moist soil unless otherwise noted.)

Ap-0 to 18 cm; very dark grayish brown (10YR 3/2) fine sandy loam, light brownish gray (10YR 6/2) dry; moderate medium granular structure; friable; many fine and medium roots; few very dark brown (10YR 2/2) earthworm casts; 5 percent gravel; moderately acid; abrupt wavy boundary. (10 to 30 cm thick.)

Bw1--18 to 46 cm; dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine roots; few very dark brown (10YR 2/2) earthworm casts; 10 percent gravel; moderately acid; gradual wavy boundary.

Bw2--46 to 66 cm; dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine roots; few very dark brown (10YR 2/2) earthworm casts; 10 percent gravel; few medium prominent strong brown (7.5YR 5/6) masses of iron accumulation and light brownish gray (10YR 6/2) areas of iron depletion; moderately acid; gradual wavy boundary.

Bw3--66 to 76 cm; light olive brown (2.5Y 5/4) fine sandy loam; weak medium subangular blocky structure; friable; few fine roots; 10 percent gravel; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation and light brownish gray (10YR 6/2) areas of iron depletion; moderately acid; clear wavy boundary. (Combined thickness of the Bw horizons is 31 to 94 cm.)

Cd1--76 to 109 cm; light olive brown (2.5Y 5/4) gravelly fine sandy loam; weak thick plates of geogenic origin; very firm, brittle; 20 percent gravel; many medium prominent strong brown (7.5YR 5/8) masses of iron accumulation and light brownish gray (10YR 6/2) areas of iron depletion; moderately acid; gradual wavy boundary.

Cd2--109 to 165 cm; light olive brown (2.5Y 5/4) gravelly fine sandy loam; weak thick plates of geogenic origin; very firm, brittle; few fine prominent very dark brown (10YR 2/2) coatings on plates; 25 percent gravel; common fine prominent strong brown (7.5YR 5/8) masses of iron accumulation; moderately acid.

TYPE LOCATION: Tolland County, Connecticut; town of Mansfield, 0.75 mile south of the intersection of Connecticut Routes 275 and 195, and 0.25 mile east on the University of Connecticut Agronomy Farm, 800 feet north of the greenhouses near the corner of a brushy field. USGS Spring Hill, CT topographic quadrangle, Latitude 41 degrees, 47 minutes, 53.43 seconds N., Longitude 72 degrees, 13 minutes, 48.69 seconds W., WGS

1984.

RANGE IN CHARACTERISTICS: The thickness of the solum and depth to densic materials is 50 to 100 cm. Depth to bedrock is commonly more than 2 meters. Rock fragments commonly range from 0 to 35 percent. Except where the surface is stony, the fragments are mostly subrounded gravel and typically make up 60 percent or more of the total rock fragments. Unless limed, reaction ranges from very strongly acid to slightly acid.

Some pedons have an O horizon.

The Ap horizon has hue of 10YR, value of 3 or 4, and chroma of 2 to 4. Dry value is 6 or more. Undisturbed pedons have a thin A horizon commonly with hue of 7.5YR or 10YR but the range includes 2.5Y, value of 2 or 3 and chroma of 1 or 2. The Ap or A horizon is loam, fine sandy loam, or sandy loam in the fine-earth fraction.

Some pedons have a thin E horizon below the A horizon. It has hue of 10YR or 2.5Y, value of 4 to 6, and chroma of 1 to 3.

The upper part of the Bw horizon has hue of 7.5YR to 2.5Y, value of 3 to 6, and chroma of 3 to 8. The lower part of the Bw horizon has hue of 10YR or 2.5Y, value of 4 to 6, and chroma of 3 to 6. Iron depletions are within 60 cm. The Bw horizon is loam, fine sandy loam, or sandy loam with less than 65 percent silt plus very fine sand.

Some pedons have a thin BC horizon.

Some pedons have an E or E' horizon up to 8 cm thick below the B horizon. It has hue of 10YR to 5Y, value of 5 or 6, chroma of 2 or 3, and has redoximorphic features. Typically, it is coarser-textured than the overlying horizon.

Some pedons have a C horizon above the Cd horizon.

The Cd horizon has hue of 10YR to 5Y, value of 4 to 6, and chroma of 1 to 4. It commonly has redoximorphic features. Texture is loam, fine sandy loam, sandy loam, or coarse sandy loam in the fine-earth fraction. The structure is not pedogenetically derived, and appears in the form of medium to very thick plates, or it is massive. Consistence is firm or very firm.

COMPETING SERIES: These are the <u>Chautauqua</u>, <u>North Meadow</u>, <u>Pittstown</u>, <u>Pompton</u>, <u>Rainbow</u>, <u>Sutton</u>, <u>Wapping</u>, and <u>Wilbraham</u> series. Chautauqua, Pompton, Sutton, and Wapping soils do not have a dense substratum. North Meadow soils have a cap of human transported material 25 to 100 cm thick. Pittstown and Rainbow soils have more than 65 percent silt plus very fine sand in the solum. Wilbraham soils are poorly drained and developed from red parent materials (originating from reddish sandstone, shale, and conglomerate with some basalt).

GEOGRAPHIC SETTING: Woodbridge soils are nearly level to moderately steep and are on hills, drumlins, till plains, and ground moraines. Slope commonly is less than 8 percent, but the range includes 0 to 25 percent. The soils formed in acid till derived mostly from schist, gneiss, and granite. Mean annual temperature ranges from 7 to 13 degrees C and mean annual precipitation ranges from 940 to 1250 mm, and the growing season ranges from 115 to 180 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the competing <u>Rainbow</u>, <u>Sutton</u>, and <u>Wapping</u> soils and the <u>Bernardston</u>, <u>Broadbrook</u>, <u>Canton</u>, <u>Charlton</u>, <u>Charlton</u>, <u>Charfield</u>, <u>Georgia</u>, <u>Hollis</u>, <u>Leicester</u>, <u>Montauk</u>, <u>Paxton</u>, <u>Ridgebury</u>, <u>Scituate</u>, and <u>Whitman</u> soils on nearby landscapes. The well drained Paxton, somewhat poorly and poorly drained Ridgebury, and the very poorly drained Whitman soils are associated in a drainage sequence. Bernardston and Broadbrook soils are well drained and are finer textured. Canton and Charlton soils are well drained and do not have a dense substratum. Chatfield and Hollis soils have bedrock within depths of 50 to 100 and 25 to 50 cm, respectively. Georgia soils are calcareous within 200 cm. Leicester soils are poorly drained and do not have a dense substratum. Montauk soils are well drained and are coarser textured. Scituate soils have a loamy sand substratum.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Moderately well drained. The potential for surface runoff is moderate to very high. Saturated hydraulic conductivity is moderately high or high in the solum and low or moderately low in the dense substratum.

USE AND VEGETATION: Many areas are cleared and used for cultivated crops, hay, or pasture. Scattered areas are used for community development. Some areas are wooded. Common trees are red, white, and black oak, hickory, white ash, sugar maple, red maple, eastern hemlock, and eastern white pine.

DISTRIBUTION AND EXTENT: Glaciated uplands of Connecticut, Massachusetts, New Hampshire, eastern New York, and Rhode Island. MLRAs 144A, 145, and 149B. The series is of large extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts

SERIES ESTABLISHED: Essex County, Massachusetts, 1925.

REMARKS: Woodbridge soils were previously used in Maine. Soil temperature studies in Maine have resulted in the use of the frigid soil temperature regime for soils in areas formerly identified as mesic.

Diagnostic horizons and features recognized in this pedon include:

- 1. Ochric epipedon the zone from 0 to 18 cm (Ap horizon).
- 2. Cambic horizon the zone from 18 to 76 cm (Bw horizons).
- 3. Aquic feature low chroma areas of iron depletion within 60 cm (Bw2 horizon).
- 4. Densic materials the zone from 76 to 165 cm (Cd1 and Cd2 horizons).
- 5) Particle-size control section the zone from 18 to 76 cm (Bw horizons).

ADDITIONAL DATA: Full characterization data for pedons with User Pedon IDs of S2000CT013003, S1956NH017002, S1956NH017003, S1958CT013004, S1958MA015002, S1978NH011002, and S1991MA023007. Pedons analyzed by the NSSL, Lincoln, NE. The laboratory characterization data for these pedons and similar soils is available through the National Cooperative Soil Survey Soil Characterization Database: http://ncsslabdatamart.sc.egov.usda.gov/

National Cooperative Soil Survey U.S.A.

Established Series Rev. DAS-DCP-MCT-DHZ 05/2016

CANTON SERIES

The Canton series consists of very deep, well drained soils formed in a loamy mantle underlain by sandy till. They are on nearly level to very steep moraines, hills, and ridges. Slope ranges from 0 to 45 percent. Saturated hydraulic conductivity is moderately high or high in the solum and high or very high in the substratum. The mean annual temperature is about 9 degrees C and the annual precipitation is about 1205 mm.

TAXONOMIC CLASS: Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, mesic Typic Dystrudepts

TYPICAL PEDON: Canton fine sandy loam on a west-facing, convex, 8 percent slope in an extremely stony forested area at an elevation of about 210 meters. (Colors are for moist soil unless otherwise noted.)

Oi-- 0 to 5 cm; slightly decomposed plant material; (0 to 13 cm thick.)

A-- 5 to 13 cm; very dark grayish brown (10YR 3/2) fine sandy loam; weak fine granular structure; friable; common fine roots; 5 percent gravel; very strongly acid (pH 4.6); abrupt smooth boundary. (3 to 10 cm thick.)

Bw1-- 13 to 30 cm; yellowish brown (10YR 5/6) fine sandy loam; weak medium subangular blocky structure; friable; common fine and medium roots; 5 percent gravel; very strongly acid (pH 4.6); clear smooth boundary.

Bw2-- 30 to 41 cm; yellowish brown (10YR 5/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine and medium roots; 5 percent gravel; strongly acid (pH 5.1); clear smooth boundary.

Bw3-- 41 to 56 cm; yellowish brown (10YR 5/4) gravelly fine sandy loam; weak medium subangular blocky; friable; common fine and medium roots; 15 percent gravel; strongly acid (pH 5.1); abrupt smooth boundary. (Combined thickness of the Bw horizons is 43 to 84 cm.)

2C-- 56 to 170 cm; grayish brown (2.5Y 5/2) gravelly loamy sand; massive; friable; 25 percent gravel; moderately acid (pH 5.6).

TYPE LOCATION: Worcester County, Massachusetts; Town of Douglas; 150 feet south on Wallum Lake Road from the junction of Cedar and South West Main Streets, and 165 feet southwest of Wallum Lake Road. USGS Oxford, MA quadrangle; Latitude 42 degrees, 2 minutes, 43.2 seconds N., and Longitude 71 degrees, 45 minutes, 44.8 seconds W., NAD 83.

RANGE IN CHARACTERISTICS: Solum thickness is commonly 46 to 91 cm, but ranges to 36 cm. It corresponds closely to the depth to the sandy till. Rock fragment content consists of 0 to 20 percent gravel and 0 to 5 percent cobbles in the solum. Stones and boulders are 0 to 15 percent of the surface and solum. Gravel content is 10 to 30 percent, cobbles 5 to 10 percent, and stones 0 to 10 percent in the substratum. Rock fragments are dominantly granite, gneiss, and quartzite. The soil ranges from extremely acid to moderately acid.

The O horizons, where present, consist of slightly, moderately, and/or highly decomposed organic material.

The A horizon has hue of 7.5YR or 10YR, value of 2 to 4, and chroma of 1 to 3. Texture is sandy loam, fine sandy loam, loam, or very fine sandy loam in the fine-earth fraction. Some pedons have an Ap horizon with properties similar to the A horizon. It is up to 20 cm thick.

Some pedons have a thin E or AE horizon that has hue of 7.5YR or 10YR, value of 3 to 5 and chroma of 1 or 2 with similar textures to the A horizon. It is up to 8cm thick.

The upper Bw horizons commonly have hue of 10YR, and includes 7.5YR when a high ratio of ammonium oxalate extractable iron to dithionite-citrate extractable iron (greater than 0.15) exists, value of 4 or 5, and chroma of 4 to 8. The lower Bw horizons have hue of 10YR or 2.5Y, value of 4 to 7, and chroma of 4 to 8. Texture of the fine-earth fraction of the Bw horizons is commonly fine sandy loam and less commonly sandy loam, loam, and very fine sandy loam. Structure of the Bw horizons is granular or subangular blocky.

Some pedons have a Bs, Bh, or BC horizon with texture similar to the Bw horizons.

The 2C horizon typically has hue of 2.5Y or 5Y, value of 5 to 7, and chroma of 2 or 3. In some pedons hue is 10YR with chroma of 4 to 6. The texture of the fine-earth fraction is loamy fine sand or coarser. It is single grain or massive. Consistence is friable, very friable or loose. Thin lenses or small pockets of firm or very firm finer textured material are common below 91 cm.

COMPETING SERIES: There are no other soils currently in the same family.

The <u>Agawam</u>, <u>Barnstable</u>, <u>Branford</u>, <u>Brookfield</u>, <u>Charlton</u>, <u>Haven</u>, and <u>Narragansett</u> series are in closely related families. The Agawam, Branford, and Haven soils have stratified sand or sand and gravel in the series control section. In addition, the Branford soils have hues redder than 7.5YR throughout the B horizon. Barnstable soils formed in till over outwash and have less than 30 percent fine sand in the lower part of the Bw horizon. Brookfield soils formed in sulfur bearing parent materials and have a ratio of ammonium oxalate extractable iron to dithionite-citrate extractable iron less than 0.15 and have pedogenic iron contents greater than 1 percent throughout the pedon. Charlton soils lack a lithologic discontinuity of abrupt change in sand distribution. Narragansett soils have more than 55 percent silt and very fine sand in the solum.

GEOGRAPHIC SETTING: Canton soils are on moraines and glaciated upland hills and ridges. Slope ranges from 0 to 45 percent. The soils formed in an acid coarse loamy supraglacial melt out till over loose sandy till of Wisconsin age derived from gneiss, granite and schist along with some fine-grained sandstone in some pedons. The loamy mantle in some pedons is influenced or derived from eolian sources. The climate is humid temperate. The mean annual air temperature is 7 to 11 degrees C, and the mean annual precipitation ranges from 1016 to 1295 mm.

GEOGRAPHICALLY ASSOCIATED SOILS: The <u>Newfields</u> series is the moderately well drained member of the same toposequence. The <u>Agawam</u>, <u>Haven</u>, <u>Merrimac</u>, and <u>Warwick</u> soils are on nearby glacial outwash kames and plains. The <u>Barnstable</u>, <u>Brookfield</u>, <u>Charlton</u>, <u>Cheshire</u>, <u>Dutchess</u>, <u>Gloucester</u>, <u>Hollis</u>, <u>Montauk</u>, <u>Narragansett</u>, and <u>Paxton</u> soils are on nearby glaciated uplands. Brookfield, Charlton, Cheshire, Dutchess, Gloucester, Hollis, Montauk, and Paxton soils do not have a contrasting particle size in the control section.

DRAINAGE AND SATURATED HYDRAULIC CONDUCTIVITY: Well drained. Runoff is negligible to medium. Internal drainage is medium. Saturated hydraulic conductivity is moderately high or high in the solum and high or very high in the substratum.

USE AND VEGETATION: Mostly forested. Some areas have been cleared of surface stones and are used for crops and pasture. Native vegetation is forest composed of eastern white pine, northern red, white, and black oaks, hickory, red maple, sugar maple, gray birch, yellow birch, beech, eastern hemlock, and white ash.

DISTRIBUTION AND EXTENT: Glaciated uplands in Connecticut, Massachusetts, New Hampshire, eastern New York, and Rhode Island, also in the Massachusetts Coastal Islands; MLRAs 144A, 145, and 149B. The

series is of large extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Amherst, Massachusetts.

SERIES ESTABLISHED: Herkimer County, New York, 1969.

REMARKS:

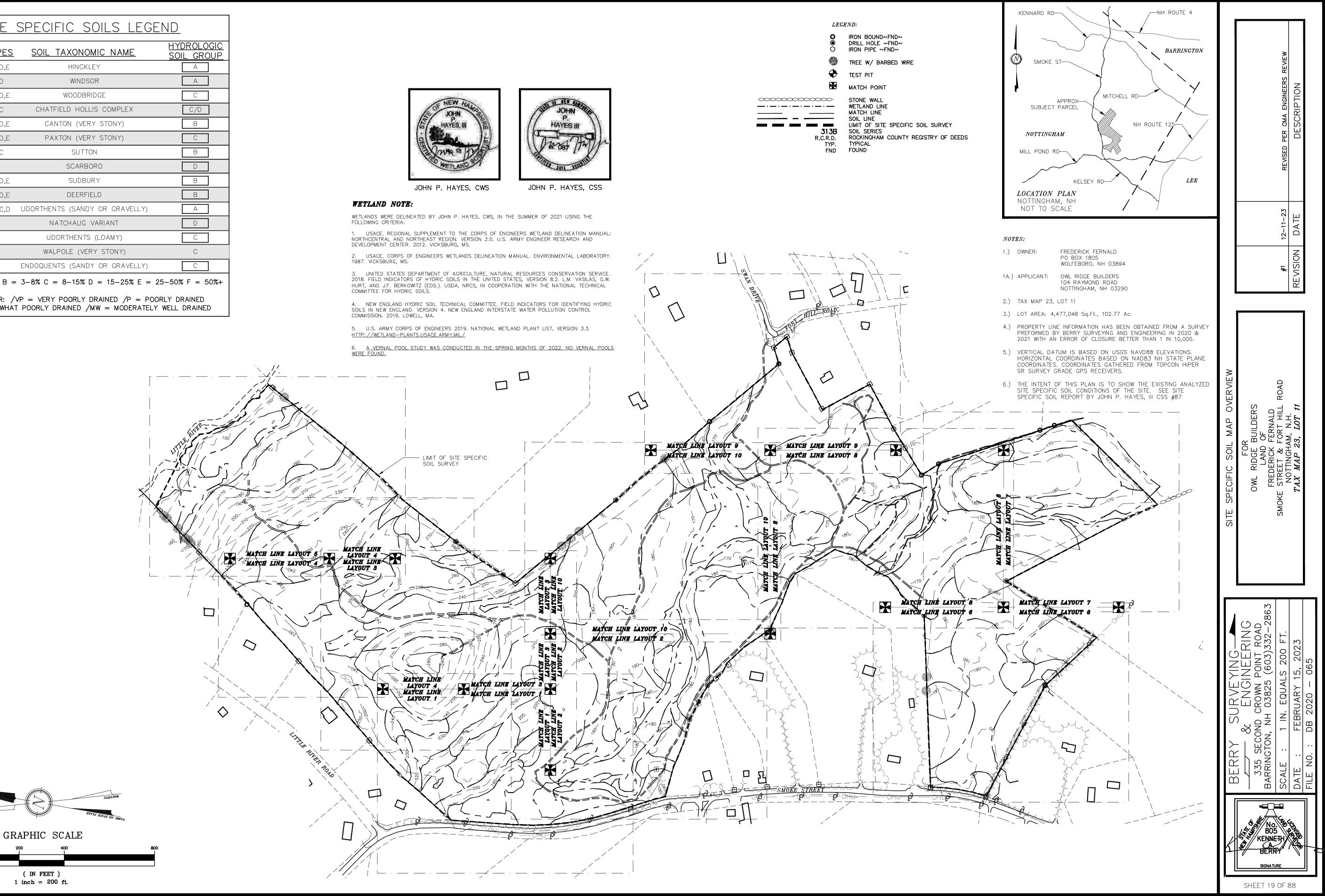
Diagnostic horizons and features recognized in this pedon are:

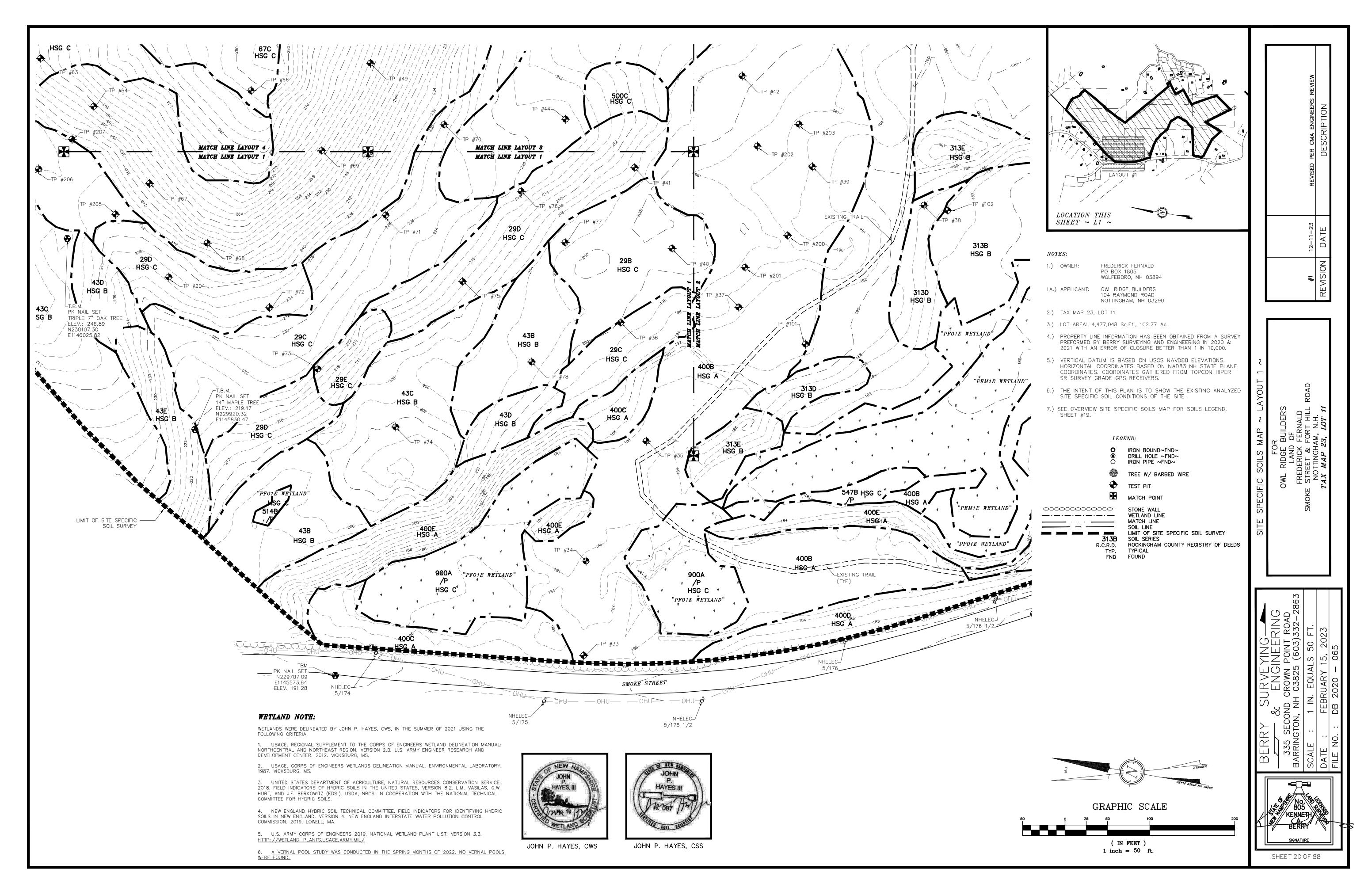
1) Ochric epipedon - the zone from 0 to 13 cm (Oi and A horizons).

2) Cambic horizon - the zone from 13 to 56 cm (Bw1, Bw2, and Bw3 horizons).

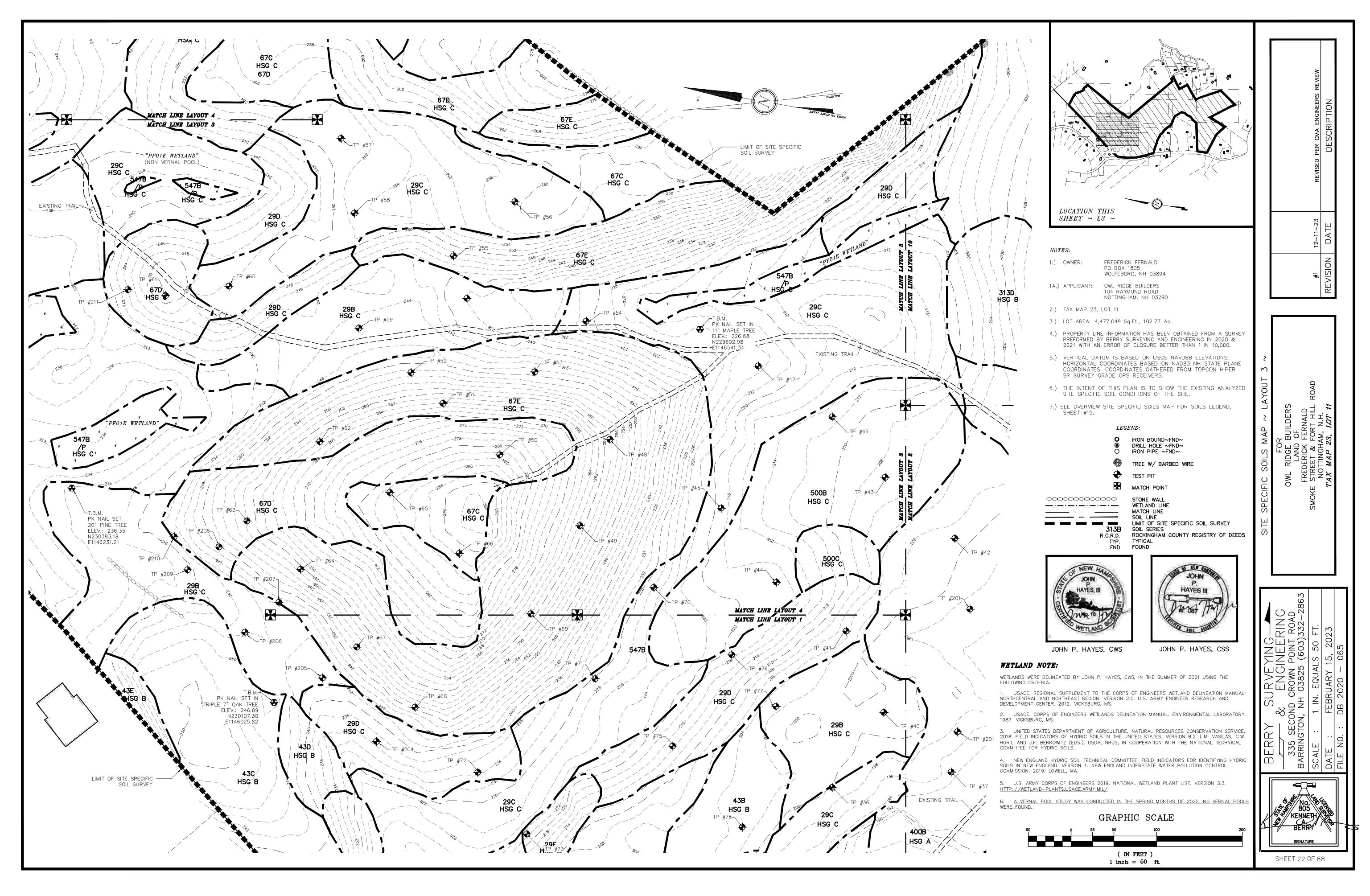
3) Contrasting particle size - the coarse-loamy material contains less than 50 percent fine sand or coarser, and the transition zone between the two parts of the particle-size control section is less than 12 cm thick. (Coarse-loamy over sandy or sandy skeletal).

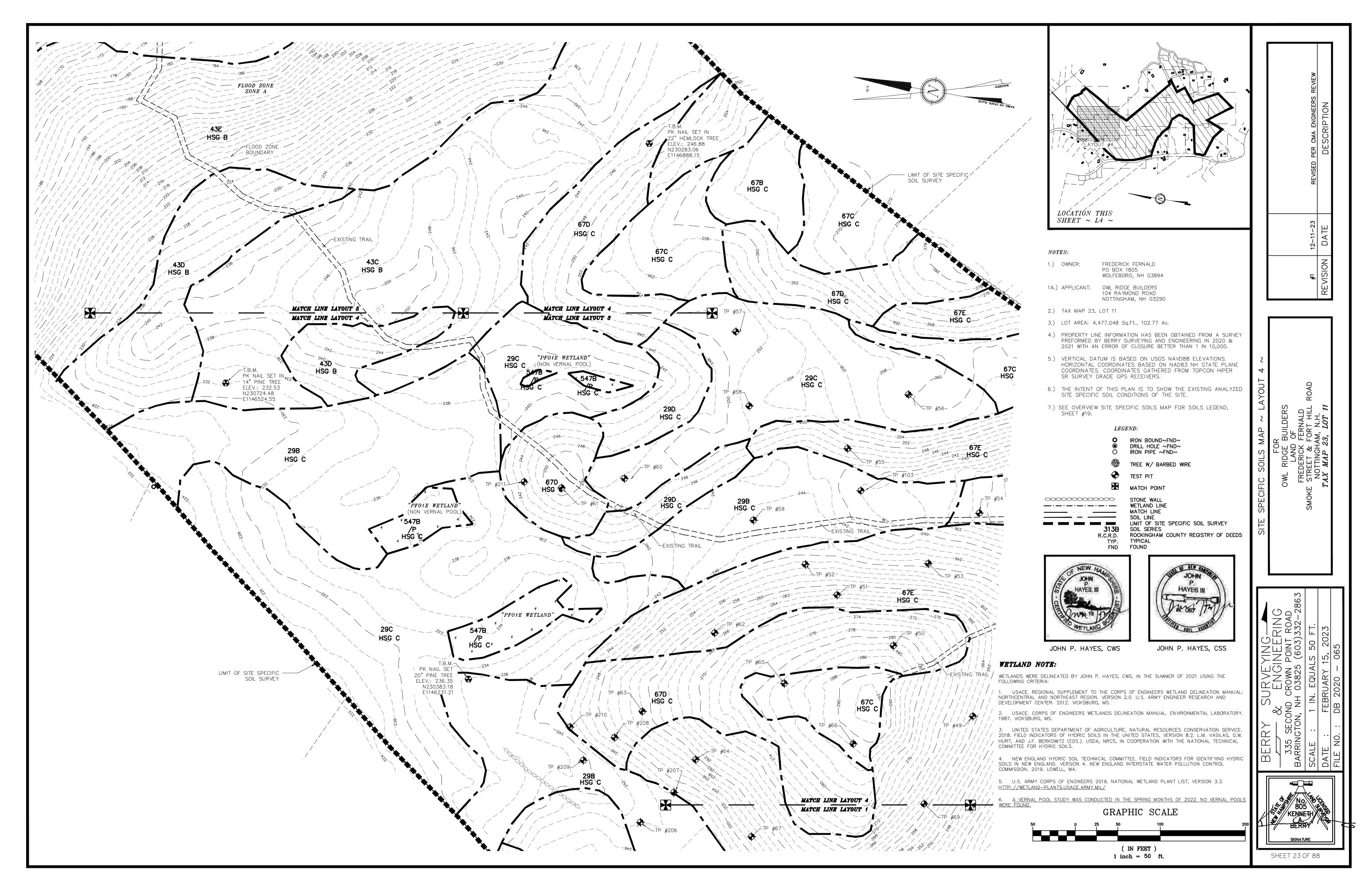
- 4) Lithologic discontinuity abrupt change in sand distribution at 56 cm (2C horizon).
- 6) Particle-size control section the zone from 30 to 105 cm (Bw1, Bw2, Bw3, and 2C horizons).

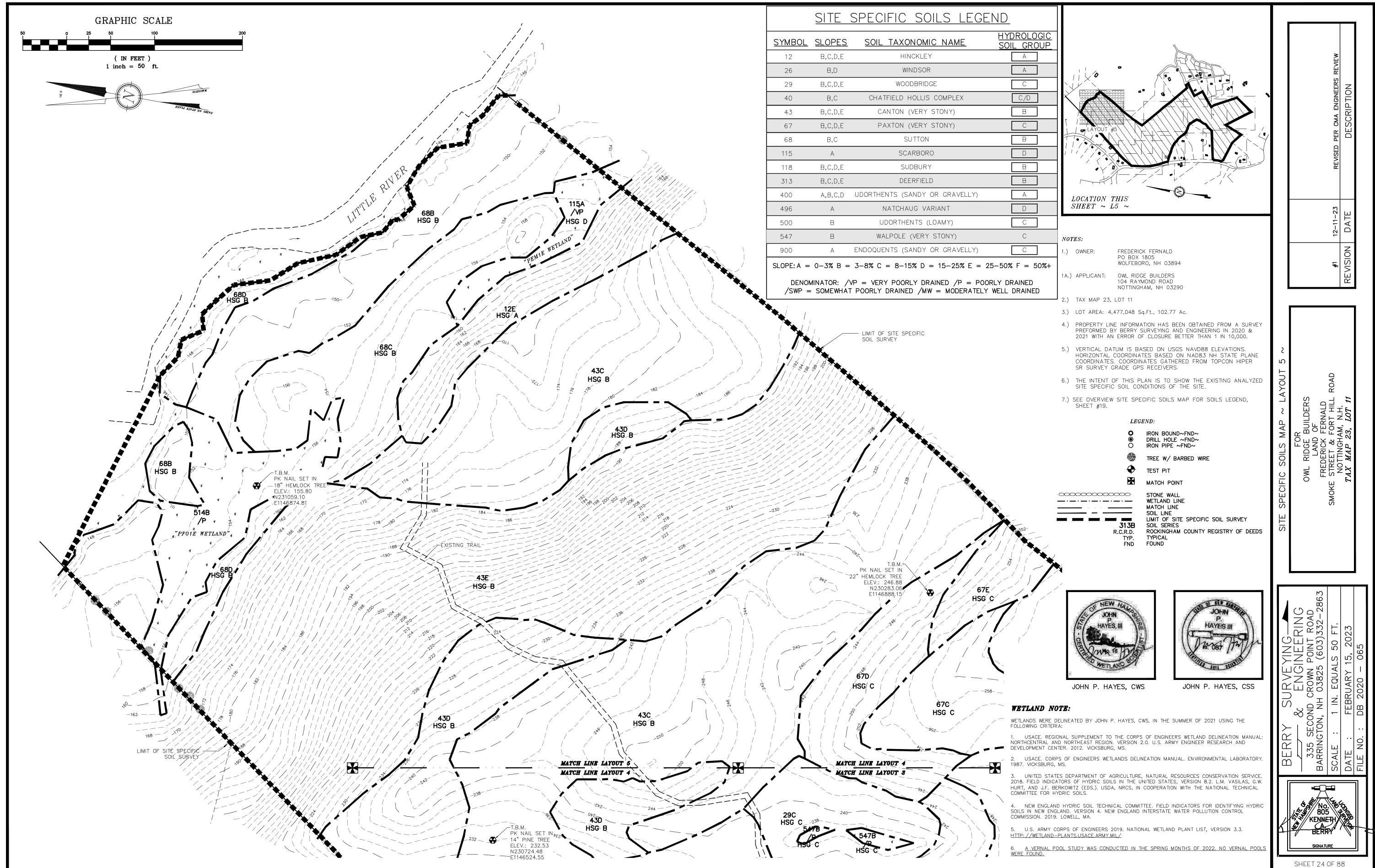

ADDITIONAL DATA: M.S. Thesis work by Shawn McVey, University of Connecticut, 2006. Full characterization data for sample no. S1982CT007001, S1999CT013001, S1999CT013004, S2000CT007003, S2004CT011003, and pedons of similar soils is available through the National Cooperative Soil Survey Soil Characterization Database: http://ncsslabdatamart.sc.egov.usda.gov/

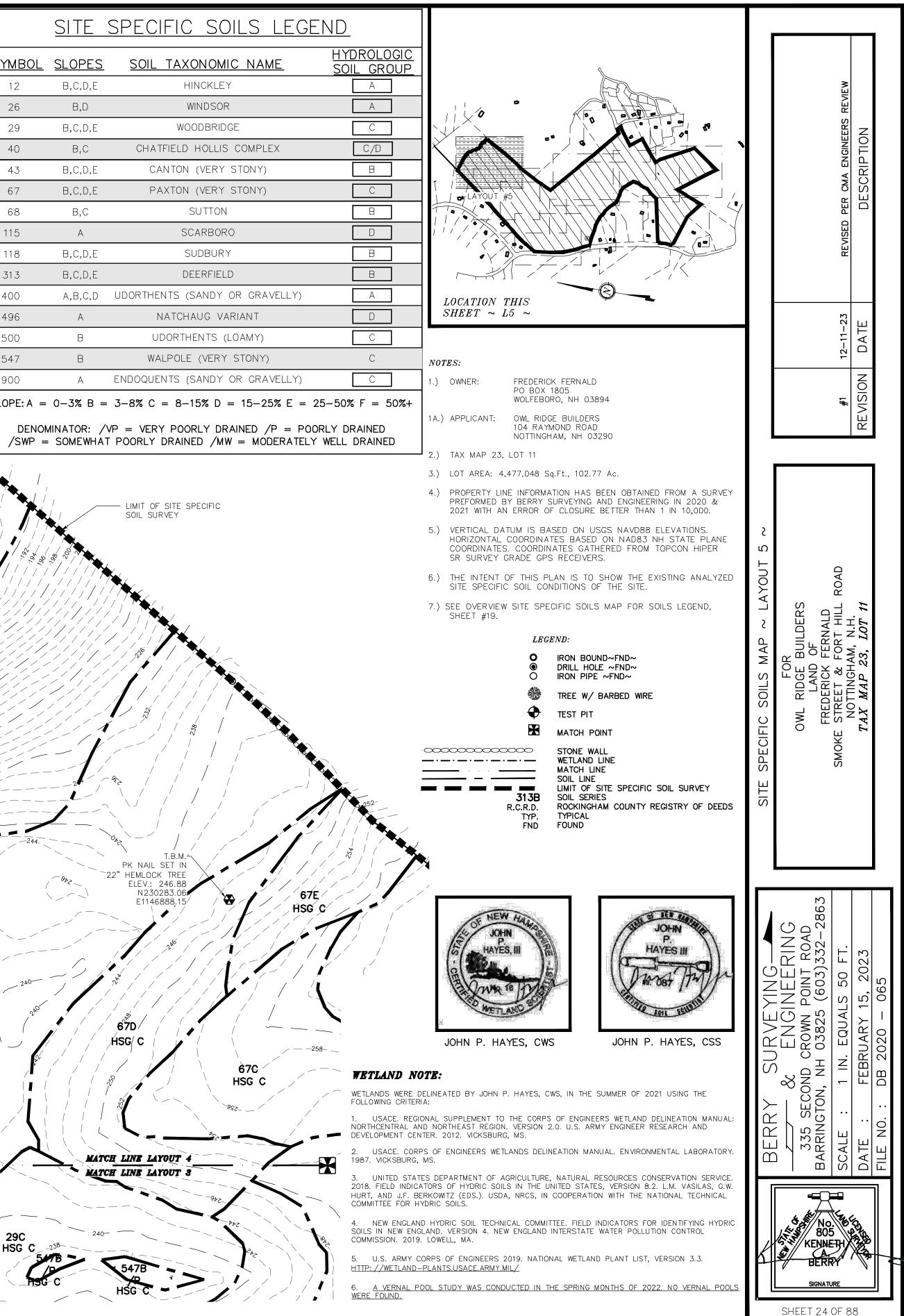

National Cooperative Soil Survey U.S.A.

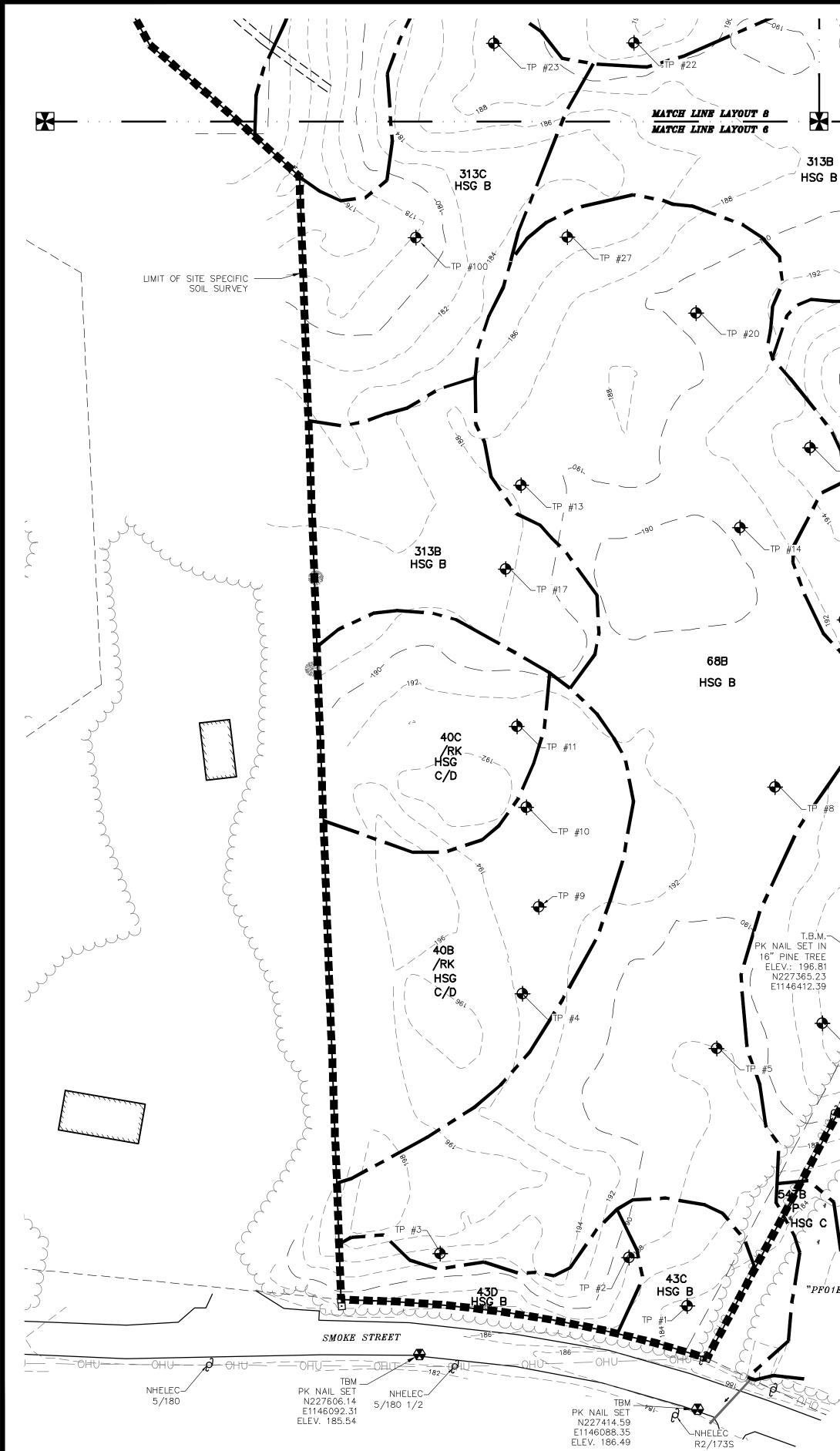

	<u>SITE</u>	<u>specific soils lege</u>	<u>end</u>
SYMBOL	<u>SLOPES</u>	SOIL TAXONOMIC NAME	HYDROLOGIC SOIL GROUF
12	B,C,D,E	HINCKLEY	A
26	B,D	WINDSOR	A
29	B,C,D,E	WOODBRIDGE	С
40	B,C	CHATFIELD HOLLIS COMPLEX	C/D
43	B,C,D,E	CANTON (VERY STONY)	В
67	B,C,D,E	PAXTON (VERY STONY)	С
68	B,C	SUTTON	В
115	А	SCARBORO	D
118	B,C,D,E	SUDBURY	В
313	B,C,D,E	DEERFIELD	В
400	A,B,C,D	UDORTHENTS (SANDY OR GRAVELLY)	A
496	А	NATCHAUG VARIANT	D
500	В	UDORTHENTS (LOAMY)	С
547	В	WALPOLE (VERY STONY)	С
900	А	ENDOQUENTS (SANDY OR GRAVELLY)	С
DENC	MINATOR: /\	3-8% C = $8-15%$ D = $15-25%$ E = $2%/P = VERY POORLY DRAINED /P = POOPOORLY DRAINED /MW = MODERATELY$	DRLY DRAINED



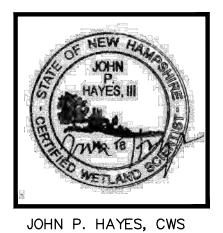

FOLLOWING CRITERIA:

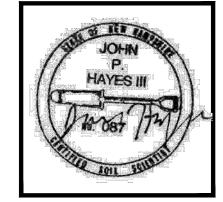






SYMBOL	SLOPES	SOIL TAXONOMIC NAME	HYDROLOG
STMDOL	<u> 3201 23</u>	SOIL TAXONOMIC NAME	<u>SOIL GROU</u>
12	B,C,D,E	HINCKLEY	A
26	B,D	WINDSOR	A
29	B,C,D,E	WOODBRIDGE	С
40	B,C	CHATFIELD HOLLIS COMPLEX	C/D
43	B,C,D,E	CANTON (VERY STONY)	В
67	B,C,D,E	PAXTON (VERY STONY)	С
68	B,C	SUTTON	В
115	А	SCARBORO	D
118	B,C,D,E	SUDBURY	В
313	B,C,D,E	DEERFIELD	В
400	A,B,C,D	UDORTHENTS (SANDY OR GRAVELLY)	A
496	А	NATCHAUG VARIANT	D
500	В	UDORTHENTS (LOAMY)	С
547	В	WALPOLE (VERY STONY)	С
900	А	ENDOQUENTS (SANDY OR GRAVELLY)	С
SLOPE: A =	0-3% B =	3-8% C = 8-15% D = 15-25% E = 3	25-50% F = 50%




SITE SPECIFIC SOILS LEGEND

<u>SYMBOL</u>	<u>SLOPES</u>	SOIL TAXONOMIC NAME	HYDROLOGI SOIL GROUF
12	B,C,D,E	HINCKLEY	A
26	B,D	WINDSOR	A
29	B,C,D,E	WOODBRIDGE	С
40	B,C	CHATFIELD HOLLIS COMPLEX	C/D
43	B,C,D,E	CANTON (VERY STONY)	В
67	B,C,D,E	PAXTON (VERY STONY)	С
68	B,C	SUTTON	В
115	А	SCARBORO	D
118	B,C,D,E	SUDBURY	В
313	B,C,D,E	DEERFIELD	В
400	A,B,C,D	UDORTHENTS (SANDY OR GRAVELLY)	A
496	А	NATCHAUG VARIANT	D
500	В	UDORTHENTS (LOAMY)	С
547	В	WALPOLE (VERY STONY)	С
900	А	ENDOQUENTS (SANDY OR GRAVELLY)	С
SLOPE: A =	= 0-3% B =	3-8% C = 8-15% D = 15-25% E =	25-50% F = $50%$

SLUPL: A = 0-3% B = 3-8% C = 8-15% D = 15-25% E = 25-50% F = 50%+

DENOMINATOR: /VP = VERY POORLY DRAINED /P = POORLY DRAINED/SWP = SOMEWHAT POORLY DRAINED /MW = MODERATELY WELL DRAINED

JOHN P. HAYES, CSS

WETLAND NOTE:

WETLANDS WERE DELINEATED BY JOHN P. HAYES, CWS, IN THE SUMMER OF 2021 USING THE FOLLOWING CRITERIA:

1. USACE. REGIONAL SUPPLEMENT TO THE CORPS OF ENGINEERS WETLAND DELINEATION MANUAL: NORTHCENTRAL AND NORTHEAST REGION. VERSION 2.0. U.S. ARMY ENGINEER RESEARCH AND DEVELOPMENT CENTER. 2012. VICKSBURG, MS.

2. USACE. CORPS OF ENGINEERS WETLANDS DELINEATION MANUAL. ENVIRONMENTAL LABORATORY. 1987. VICKSBURG, MS.

3. UNITED STATES DEPARTMENT OF AGRICULTURE, NATURAL RESOURCES CONSERVATION SERVICE. 2018. FIELD INDICATORS OF HYDRIC SOILS IN THE UNITED STATES, VERSION 8.2. L.M. VASILAS, G.W. HURT, AND J.F. BERKOWITZ (EDS.). USDA, NRCS, IN COOPERATION WITH THE NATIONAL TECHNICAL COMMITTEE FOR HYDRIC SOILS.

4. NEW ENGLAND HYDRIC SOIL TECHNICAL COMMITTEE. FIELD INDICATORS FOR IDENTIFYING HYDRIC SOILS IN NEW ENGLAND. VERSION 4. NEW ENGLAND INTERSTATE WATER POLLUTION CONTROL COMMISSION. 2019. LOWELL, MA.

5. U.S. ARMY CORPS OF ENGINEERS 2019. NATIONAL WETLAND PLANT LIST, VERSION 3.3. HTTP://WETLAND-PLANTS.USACE.ARMY.MIL/

6. A VERNAL POOL STUDY WAS CONDUCTED IN THE SPRING MONTHS OF 2022. NO VERNAL POOLS WERE FOUND.

"PF01E WETLAND"

MATCH LINE LAYOUT 7

1/

26B HSC.

680 HSG E

HSG

547B

"PF01E WETLAND"

LIMIT OF SITE SPECIFIC

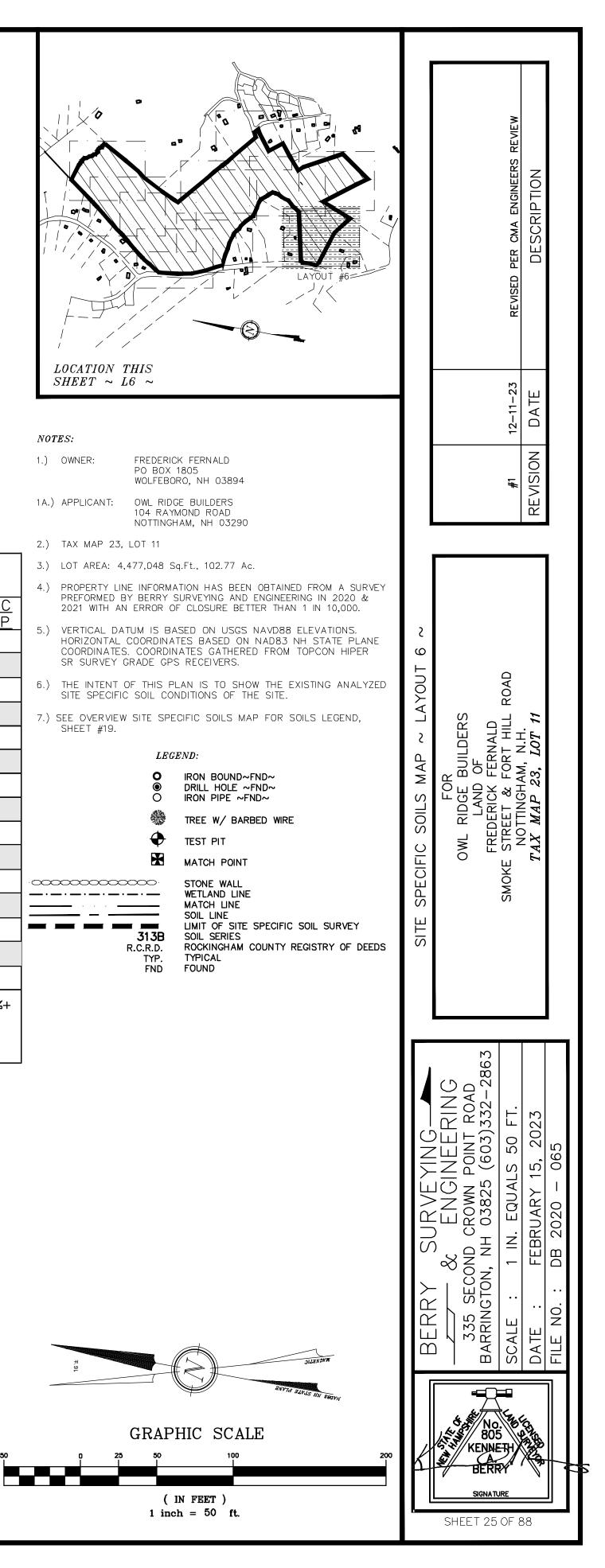
SOIL SURVEY

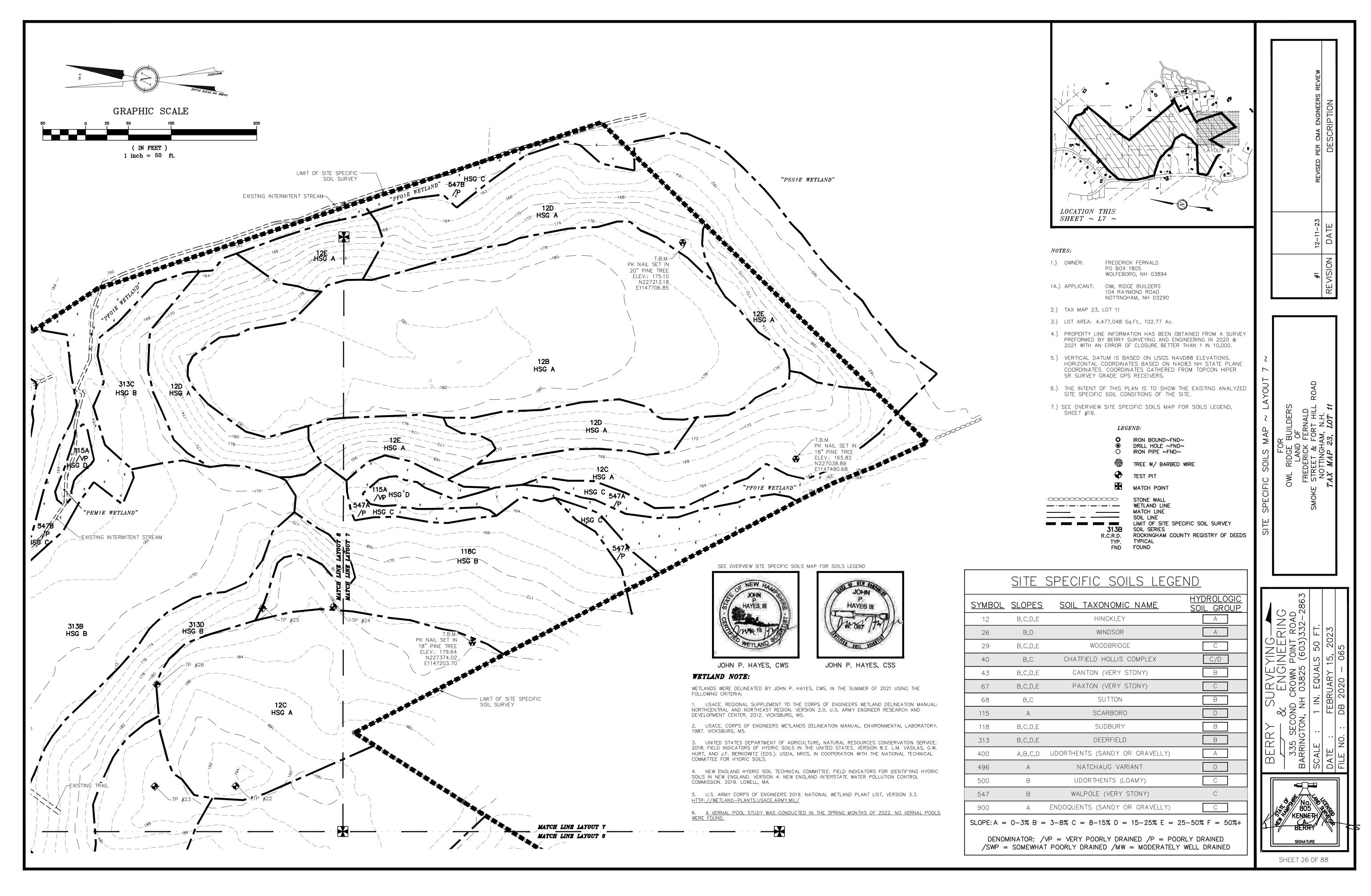
MATCH LINE LAYOUT 6

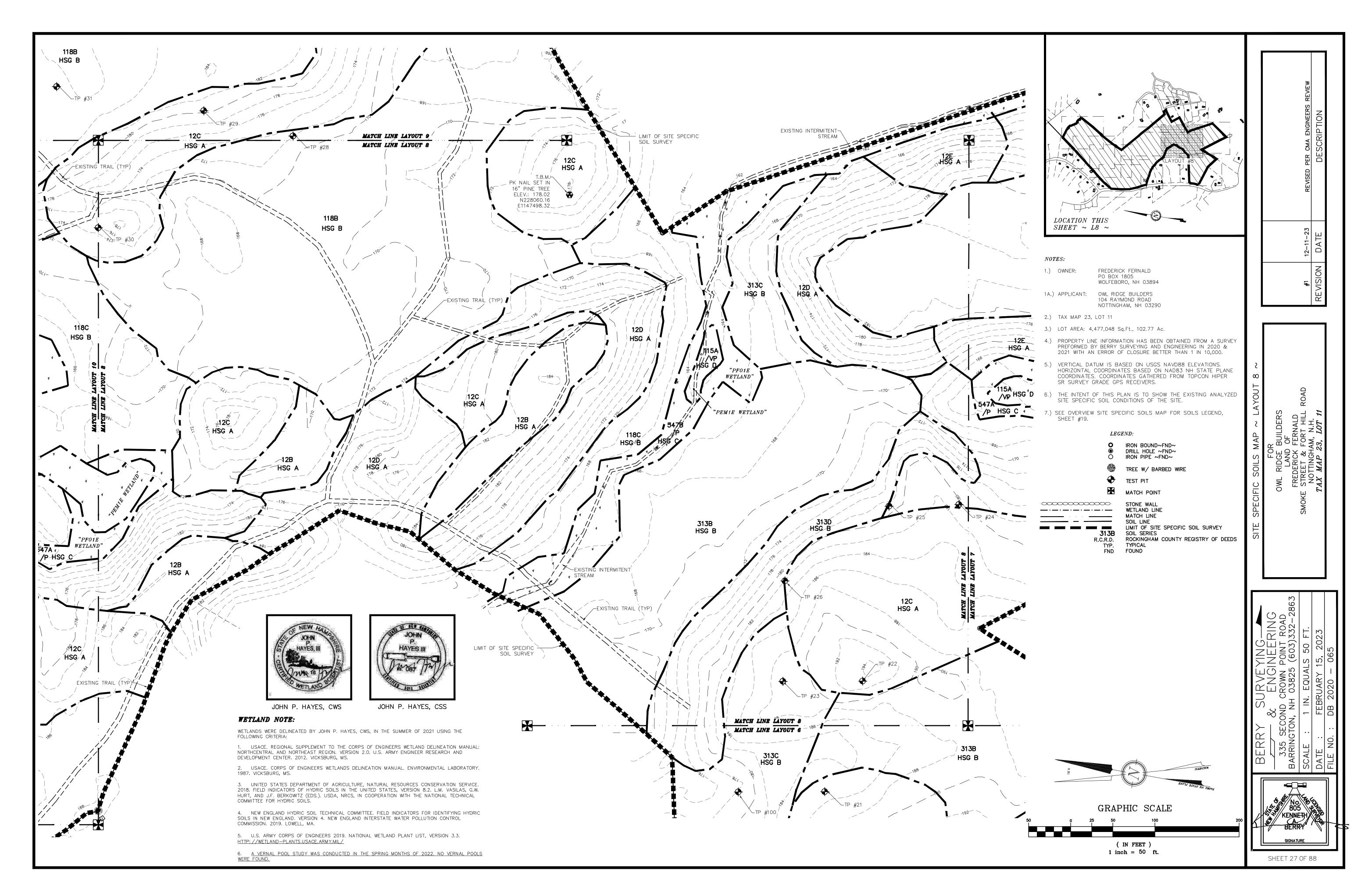
26D/

HSG A

/RK -


HSG


C/D


68C HSG B

Zan

TP #212

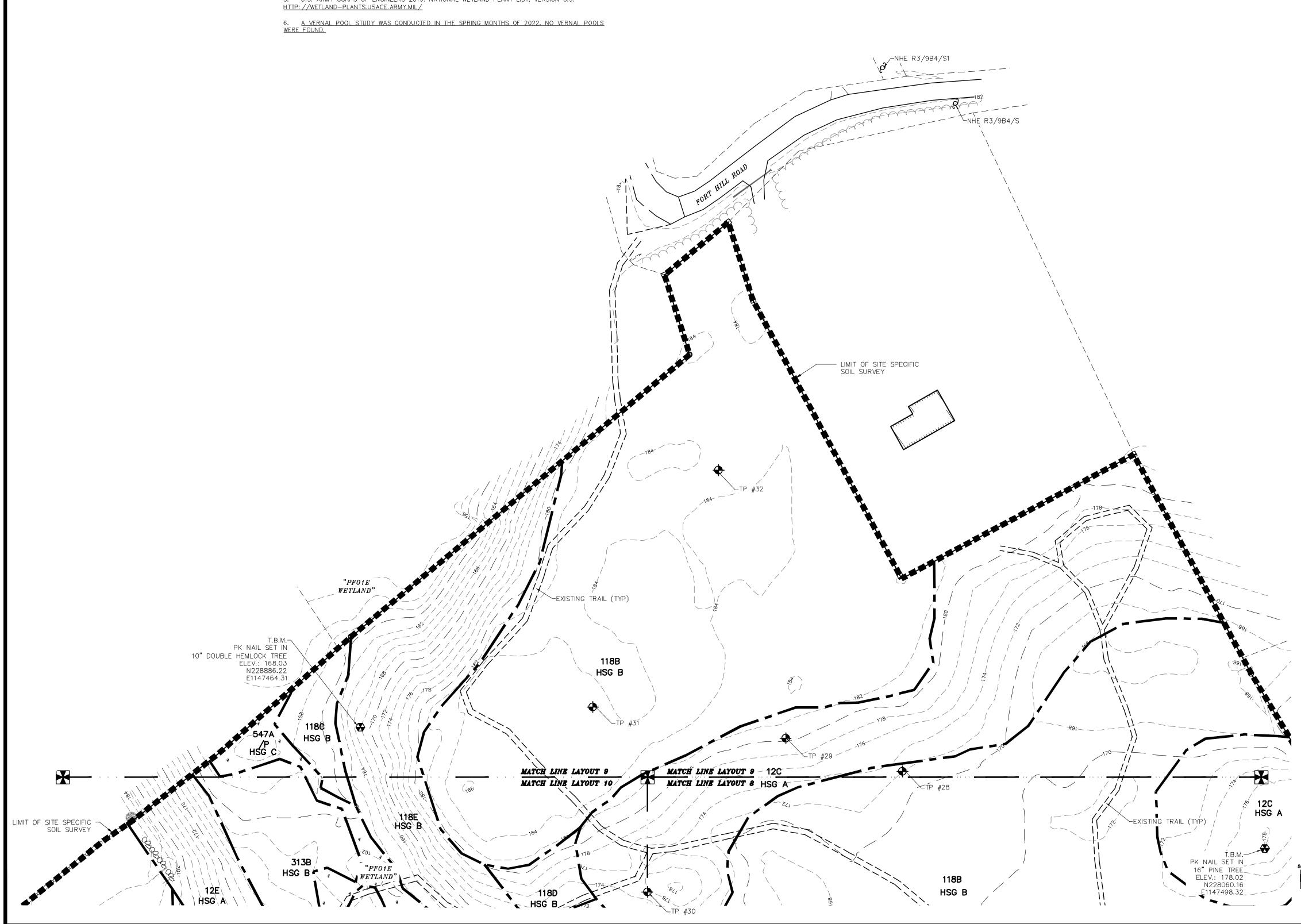
DI TU III JOHN HAYESI

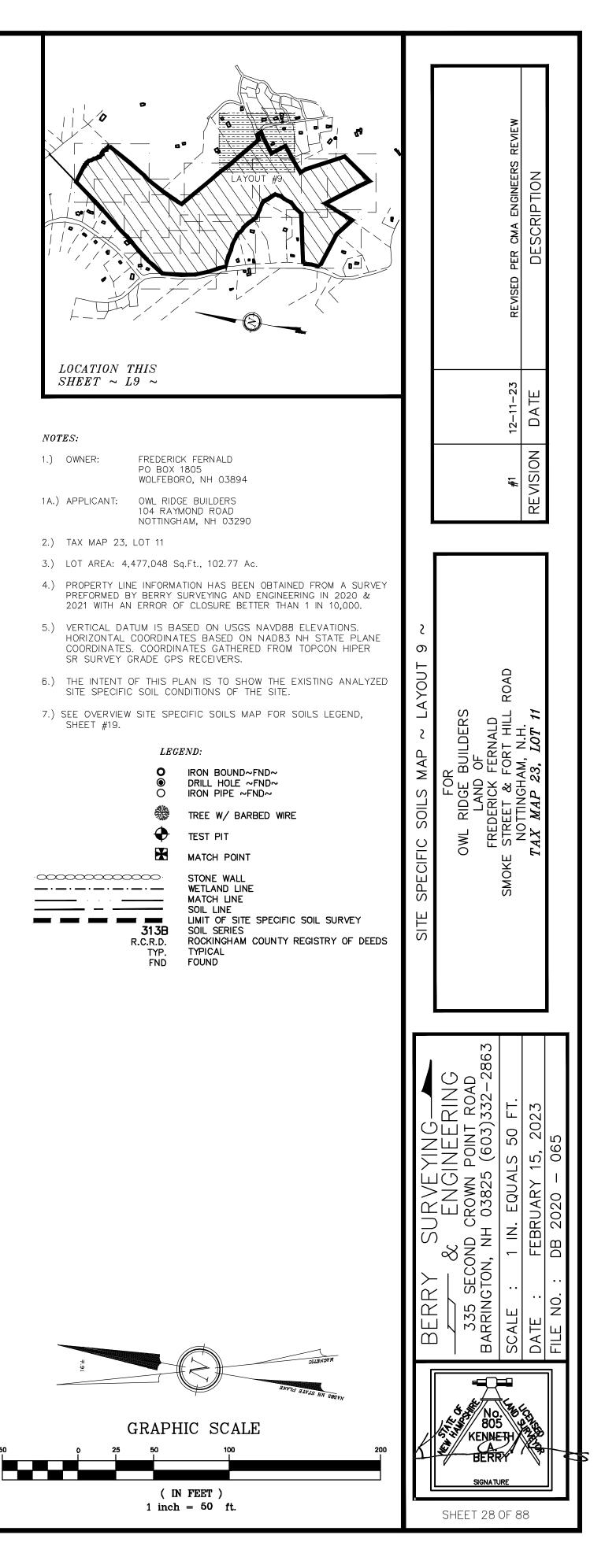
JOHN P. HAYES, CWS

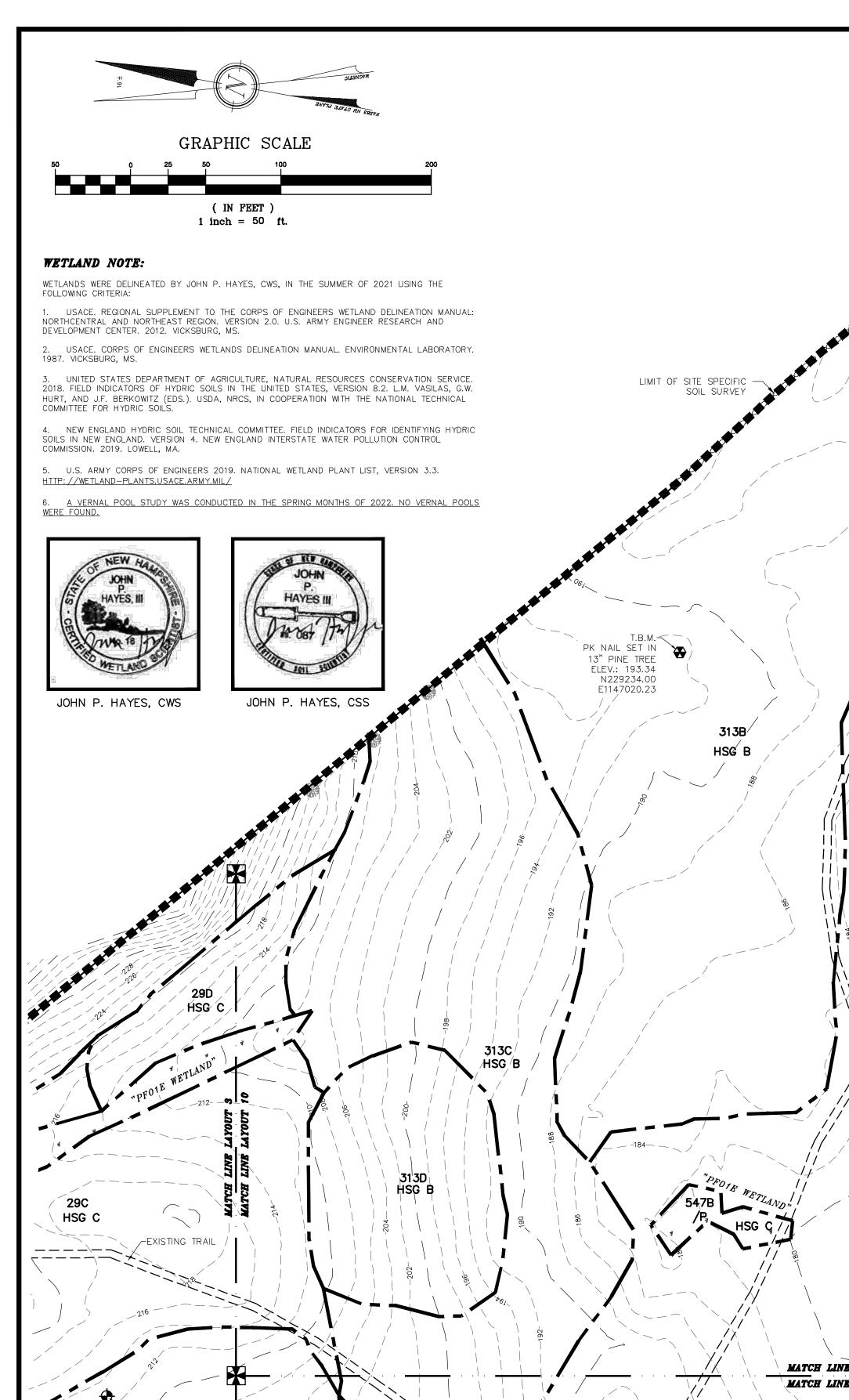
JOHN P. HAYES, CSS

WETLAND NOTE:

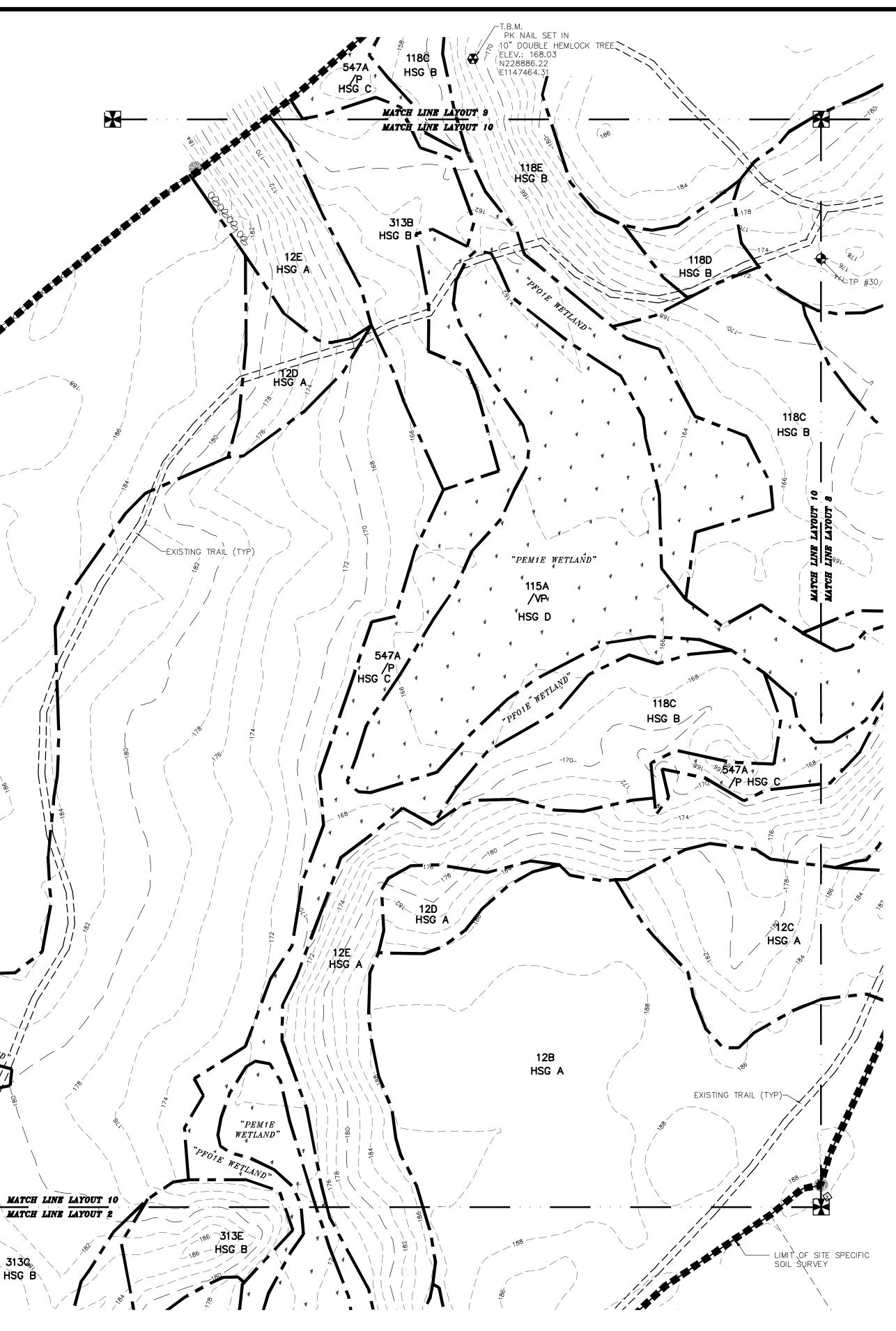
WETLANDS WERE DELINEATED BY JOHN P. HAYES, CWS, IN THE SUMMER OF 2021 USING THE FOLLOWING CRITERIA:

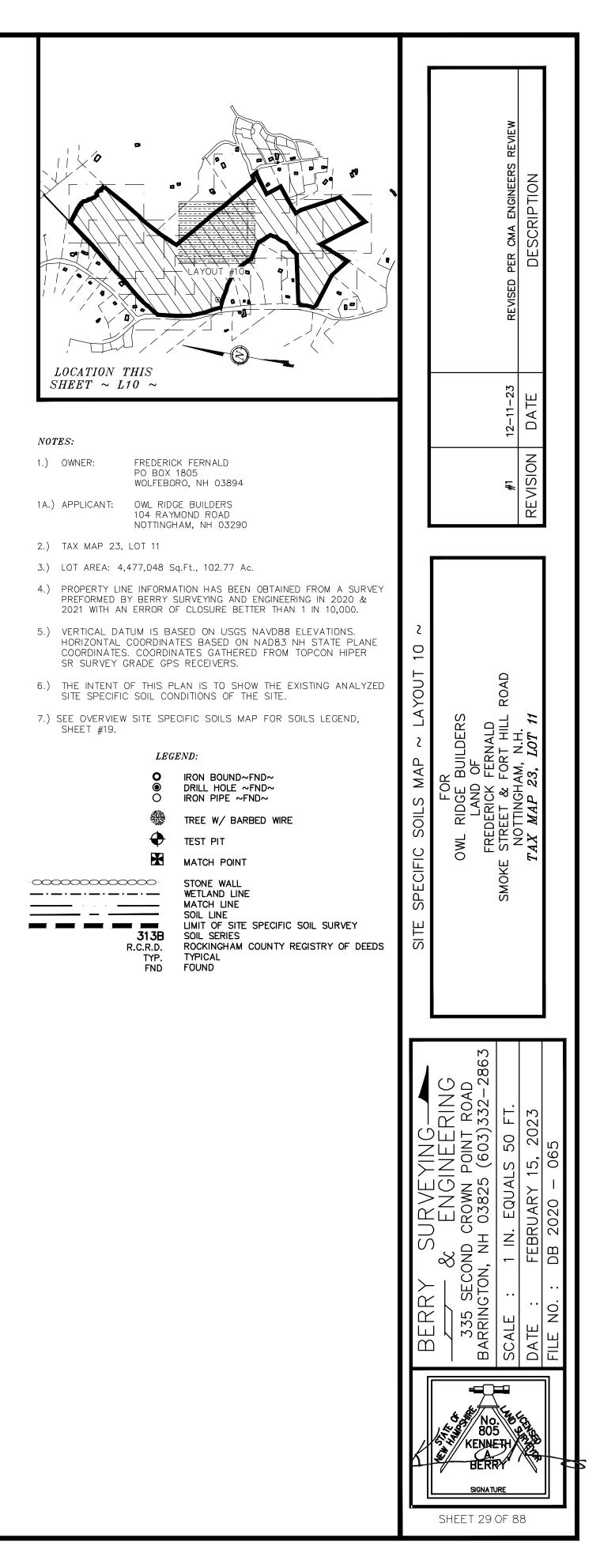

1. USACE. REGIONAL SUPPLEMENT TO THE CORPS OF ENGINEERS WETLAND DELINEATION MANUAL: NORTHCENTRAL AND NORTHEAST REGION. VERSION 2.0. U.S. ARMY ENGINEER RESEARCH AND DEVELOPMENT CENTER. 2012. VICKSBURG, MS.


2. USACE. CORPS OF ENGINEERS WETLANDS DELINEATION MANUAL. ENVIRONMENTAL LABORATORY. 1987. VICKSBURG, MS.


3. UNITED STATES DEPARTMENT OF AGRICULTURE, NATURAL RESOURCES CONSERVATION SERVICE. 2018. FIELD INDICATORS OF HYDRIC SOILS IN THE UNITED STATES, VERSION 8.2. L.M. VASILAS, G.W. HURT, AND J.F. BERKOWITZ (EDS.). USDA, NRCS, IN COOPERATION WITH THE NATIONAL TECHNICAL COMMITTEE FOR HYDRIC SOILS.

. NEW ENGLAND HYDRIC SOIL TECHNICAL COMMITTEE, FIELD INDICATORS FOR IDENTIFYING HYDRIC SOILS IN NEW ENGLAND. VERSION 4. NEW ENGLAND INTERSTATE WATER POLLUTION CONTROL COMMISSION. 2019. LOWELL, MA.


5. U.S. ARMY CORPS OF ENGINEERS 2019. NATIONAL WETLAND PLANT LIST, VERSION 3.3.



313G HSÇ

TEST PIT DATA: TEST PIT #1 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-14 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 14-26 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 26-40 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY FINE SANDY LOAM, GRANULAR, FRIABLE 40-75 2.5Y 5/2 GRAYISH BROWN, GRAVELLY LOAMY SAND WITH REDOX. FEAT. PRESENT, MASSIVE, FRIABLE E.S.H.W.T. @ 40" RESTRICTIVE LAYER @ N/A GROUND WATER @ 60" TERMINATED @ 75" REFUSAL @ N/A P = 4 MIN./IN.TEST PIT #2 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-14 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 14-28 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 28-40 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY FINE SANDY LOAM, GRANULAR, FRIABLE 40-72 2.5Y 5/2 GRAYISH BROWN, GRAVELLY LOAMY SAND WITH REDOX. FEAT. PRESENT, MASSIVE, FRIABLE E.S.H.W.T. @ 40" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 72" REFUSAL @ N/A P = 4 MIN./IN.TEST PIT #3 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-22 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 22-36 2.5Y 6/4 LIGHT YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 36-76 2.5Y 6/3 LIGHT YELLOWISH BROWN, GRAVELLY LOAMY SAND WITH REDOX. FEAT. PRESENT, MASSIVE, FRIABLE E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ N/A GROUND WATER 🞯 60" TERMINATED @ 76" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #4 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-18 7.5YR 5/6 STRONG BROWN, GRAVELLY FINE SANDY LOAM, GRANULAR, FRIABLE 18-30 10YR 5/4 YELLOWISH BROWN, GRAVELLY FINE SANDY LOAM, BLOCKY, FRIABLE E.S.H.W.T. @N/A RESTRICTIVE LAYER @ N/A GROUND WATER 🛛 N/A TERMINATED @ 30" REFUSAL @ 30" (DOES NOT PASS) P = 20 MIN./IN.TEST PIT #5 0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-24 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-36 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, BLOCKY, FRIABLE 36-50 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ 36" GROUND WATER @ 36" TERMINATED 🞯 50" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #6 0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-26 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 26-36 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, BLOCKY, FRIABLE 36-50 5Y 5/3 OLIVE, GRNVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ 36" GROUND WATER @ 38" TERMINATED 🞯 50" REFUSAL @ 50" P = 6 MIN./IN.TEST PIT #7 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-24 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-38 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, BLOCKY, FRIABLE 38-58 5Y 5/3 OLIVE, GRNVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ 38" GROUND WATER @ 42" TERMINATED @ 58" REFUSAL @ 58" P = 5 MIN./IN.TEST PIT #8 & 8A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-26 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 26-38 2.5Y 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 38-54 5Y 5/3 OLIVE, GRNVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 26" RESTRICTIVE LAYER @ N/A GROUND WATER @ 38" TERMINATED @ 54" REFUSAL @ 54" P = 14 MIN./IN.TEST PIT #9 & 9A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-22 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 22-34 2.5Y 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 34-50 5Y 5/3 OLIVE, GRNVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 34" RESTRICTIVE LAYER @ N/A GROUND WATER @ 40" TERMINATED @ 50" REFUSAL @ 50" P = 6 MIN./IN.TEST PIT #10 E.S.H.W.T. @ N/A RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 18" REFUSAL @ 18" (DOES NOT PASS) TEST PIT #11 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-28 7.5YR 5/6 STRONG BROWN, GRAVELLY FINE SANDY LOAM, GRANULAR, FRIABLE 28-36 10YR 5/4 YELLOWISH BROWN, GRAVELLY FINE SANDY LOAM, BLOCKY, FRIABLE E.S.H.W.T. @N/A RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 36" REFUSAL @ 36" (DOES NOT PASS) TEST PIT #12 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-18 10YR 5/6 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 18-24 10YR 5/4 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 24-70 2.5Y 6/2 LIGHT BROWNISH GRAY, GRAVELLY LOAMY SAND WITH REDOX. FEAT. PRESENT, MASSIVE, FRIABLE E.S.H.W.T. @ 24" RESTRICTIVE LAYER @ N/A ground water @ 30" TERMINATED @ 70" REFUSAL @ N/A P = 12 MIN./IN.

TEST PIT DATA: TEST PIT #13 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 6-26 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIAE 26-36 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, BLOCKY, FRIABLE 36-68 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PF E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ 36" GROUND WATER @ 60" TERMINATED @ 68" REFUSAL @ 68" P = 6 MIN./IN.TEST PIT #14 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 6-18 10YR 5/6 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 18–28 10YR 5/4 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 28- 62 2.5Y 6/2 LIGHT BROWNISH GRAY, SAND WITH REDOX. FEAT. PRESEN E.S.H.W.T. @ 28" RESTRICTIVE LAYER @ N/A GROUND WATER @ 36" TERMINATED @ 62" REFUSAL @ 62" P = 8 MIN./IN.TEST PIT #15 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 6-18 7.5YR 5/6 STRONG BROWN, FINE SANDY LOAM, GRANULAR, FRIABL 18-28 10YR 5/4 YELLOWISH BROWN, GRAVELLY FINE SANDY LOAM, BLOCK E.S.H.W.T. @ N/A RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 28" REFUSAL @ 28" (DOES NOT PASS) TEST PIT #16 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 6-20 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIAE 20-32 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, BLOCKY, FRIABLE 32- 50 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PF E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ 32" GROUND WATER @ N/A TERMINATED @ 50" REFUSAL @ 50" P = 8 MIN./IN.TEST PIT #17 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 6-16 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIAE 16-28 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIAE 28-38 2.5Y 5/4 YELLOWISH BROWN, GRAVELLY FINE SANDY LOAM, GRANU 38-50 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY LOAMY SAND WITH REDOX E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 50" REFUSAL @ 50" P = 6 MIN./IN.TEST PIT #18 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 6-24 7.SYR 5/6 STRONG BROWN, LOAMY SAND, GRANULAR, FRIABLE 24-36 10YR 5/4 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 36-48 2.SY 5/4 LIGHT OLIVE BROWN, SAND, GRANULAR, FRIABLE 48-70 2.5Y 6/3 LIGHT YELLOWISH BROWN, STRATIFIED SAND AND VERY F SINGLE GRAIN, LOOSE E.S.H.W.T. @ 48" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 70" REFUSAL @ 70" P = 4 MIN./IN.TEST PIT #19 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 6-16 7.5YR 5/6 STRONG BROWN, LOAMY SAND, GRANULAR, FRIABLE 16-24 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, 24-36 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABL 36-74 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ N/A GROUND WATER @ 44" TERMINATED @ 74" REFUSAL @ N/A P = 6 MIN./IN.test pit #20 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 6-20 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIAE 20-32 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, BLOCKY, FRIABLE 32- 74 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PR E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ 32" GROUND WATER @ N/A TERMINATED @ 74" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #21 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 6-20 7.5YR 4/6 STRONG BROWN, FINE SANDY LOAM, GRANULAR, FRIABLI 20-36 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, BLOCKY, FRIABLE 36-44 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PR E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ 36" GROUND WATER @ 36" TERMINATED @ 44" REFUSAL @ 44" (DOES NOT PASS) P = 12 MIN./IN.test pit #22 0-5 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 5-14 10YR 5/6 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 14-28 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, 28-38 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABL 38-72 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 72" REFUSAL © N/A P = 8 MIN./IN.TEST PIT #23 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANU 6-16 7.5YR 5/6 STRONG BROWN, LOAMY SAND, GRANULAR, FRIABLE 16-26 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, 26-38 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABL 38-70 2.5Y 5/3 LIGHT OLIVE BROWN, STRATIFIED SAND AND GRAVELLY SA SINGLE GRAIN, LOOSE E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ N/A GROUND WATER @ 44" TERMINATED @ 70"

REFUSAL @ 70"

P = 8 MIN./IN.

	TEST PIT DATA:	TEST PIT DATA:	
ANULAR, FRIABLE	TEST PIT #24 0-5 10yr 3/2 Very Dark grayish brown, fine sandy Loam, granular, friable	TEST PIT #32 0—8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE	
FRIABLE ABLE	5–18 7.5YR 5/6 STRONG BROWN, LOAMY SAND, GRANULAR, FRIABLE 18–28 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE	8–18 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 18–24 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE	
T. PRESENT, MASSIVE, FIRM	 28-38 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 38-76 2.5Y 5/3 LIGHT OLIVE BROWN, STRATIFIED SAND AND GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN. LOOSE 	24–36 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 36–52 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE	
	E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ N/A	52-74 2.5Y 6/3 LIGHT YELLOWISH BROWN, SAND WITH REDOX. FEAT. PRESENT, GRANULAR, FRIABLE E.S.H.W.T. @ 36"	VIEW
	GROUND WATER @ N/A TERMINATED @ 76"	RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A	S RE
ANULAR, FRIABLE	REFUSAL $@$ N/A P = 6 MIN./IN.	TERMINATED @ 74" REFUSAL @ N/A	DN
LE LE LE	TEST PIT #25 0-5 10yr 3/2 very dark grayish brown, fine sandy loam, granular, friable	P = 6 MIN./IN.	MA ENGINE CRIPTIO
RESENT, GRANULAR, FRIABLE	5–16 10YR 5/6 YELLOWSH BROWN, LOAMY SAND, GRANULAR, FRIABLE 16–26 10YR 5/4 YELLOWSH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE	TEST PIT #33 0-3 10YR 3/1 VERY DARK GRAY, SANDY LOAM, GRANULAR, FRIABLE	
	26–32 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 32–72 2.5Y 6/3 LIGHT YELLOWISH BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE	3–18 10YR 5/4 YELLOWISH BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 18–68 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE	ប ច
	E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ N/A	E.S.H.W.T. @ 18" (DOES NOT PASS) RESTRICTIVE LAYER @ N/A	PER
	GROUND WATER @ 44" TERMINATED @ 72"	GROUND WATER © 24" TERMINATED © 68"	SED
ANULAR, FRIABLE	REFUSAL O N/A P = 6 MIN./IN.	REFUSAL © N/A P = 20 MIN./IN.	REVI
IABLE .OCKY, FRIABLE	TEST PIT #25A	TEST PIT #34 0–3 10YR 3/2 VERY DARK GRAYISH BROWN, SANDY LOAM, GRANULAR, FRIABLE	
	0-5 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 5-18 10YR 5/6 YELLOWSH BROWN, LOAMY SAND, GRANULAR, FRIABLE	3–16 10YR 5/4 YELLOWISH BROWN, GRAVELLY SAND, SINGLE GRAIN, LOOSE 16–21 2.5Y 5/4 LIGHT OLIVE BROWN, VERY GRAVELLY SAND, SINGLE GRAIN, LOOSE	
	18–26 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 26–34 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 34–74 2.5Y 6/3 LIGHT YELLOWISH BROWN, GRAVELLY SAND WITH REDOX. FEAT, PRESENT, SINGLE GRAIN, LOOSE	21-76 2.5Y 5/3 LIGHT OLIVE BROWN, VERY GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 21" (DOES NOT PASS)	
	E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ N/A	RESTRICTIVE LAYER @ N/A GROUND WATER @ 28"	王 二 二
ANULAR, FRIABLE FRIABLE	GROUND WATER @ 44" TERMINATED @ 74"	TERMINATED @ 76" REFUSAL @ N/A	DA
RIABLE ABLE T. PRESENT, MASSIVE, FIRM	REFUSAL $@ N/A$ P = 6 MIN./IN.	P = 20 MIN./IN.	
I. PRESENT, MASSIVE, FIRM	TEST PIT #26	TEST PIT #35 0–3 10YR 3/1 VERY DARK GRAY, SANDY LOAM, GRANULAR, FRIABLE	SION
	0–6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6–16 7.5YR 5/6 STRONG BROWN, LOAMY SAND, GRANULAR, FRIABLE	3-1610YR 5/4 YELLOWISH BROWN, GRAVELLY SAND, GRANULAR, FRIABLE16-482.5Y 6/3 LIGHT YELLOWISH BROWN, COARSE SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE	* ⋝
	16–28 10YR 5/4 YELLOWISH BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 28–38 2.5Y 6/4 LIGHT YELLOWISH BROWN, GRAVELLY COARSE SAND, SINGLE GRAIN, LOOSE	48-72 2.5Y 5/3 LIGHT OLIVE BROWN, VERY GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 16" (DOES NOT PASS)	К П
	38-70 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 38"	RESTRICTIVE LAYER @ N/A GROUND WATER @ 28"	
ANULAR. FRIABLE FRIABLE	RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A	TERMINATED @ 72" REFUSAL @ N/A R = 20 MIN (N	
RIABLE RANULAR, FRIABLE	TERMINATED @ 70" REFUSAL @ N/A	P = 20 MIN./IN. TEST PIT #36	
EDOX. FEAT. PRESENT, MASSIVE, FRIABLE	P = 6 MIN./IN.	0–5 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 5–26 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE	
	TEST PIT #26A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-18 7.5YR 5/6 STRONG BROWN, LOAMY SAND, GRANULAR, FRIABLE	26–48 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE E.S.H.W.T. @ N/A	
	18–30 10YR 5/4 YELLOWISH BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 30–38 2.5Y 6/4 LIGHT YELLOWISH BROWN, GRAVELLY COARSE SAND, SINGLE GRAIN, LOOSE	RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A	<u>2</u>
	38-72 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 38"	TERMINATED © 48" REFUSAL © 38–48"	AD AD
ANULAR, FRIABLE	RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A	P = 20 MIN./IN.	ROA ROA
LE	TERMINATED @ 72" REFUSAL @ N/A	TEST PIT #37 & 37A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE	
RY FINE SAND WITH REDOX. FEAT. PRESENT	P = 6 MIN./IN.	6–12 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 12–32 10YR 5/6 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE	~ TES DERS VALD VALD V.H.L V.H.
	TEST PIT #27 N/A	32-42 10YR 5/4 YELLOWISH BROWN, COARSE SAND, SINGLE GRAIN, LOOSE 42-82 2.5Y 5/3 LIGHT OLIVE BROWN, VERY GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 42"	
	TEST PIT #28 0-10 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM. GRANULAR, FRIABLE	RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A	S ND CKD CKD CKD CKD CKD CKD CKD CKD CKD CK
	10–26 7.5YR 5/6 STRONG BROWN, LOAMY SAND, GRANULAR, FRIABLE 26–36 10YR 5/4 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE	TERMINATED @ 82" REFUSAL @ N/A	
ANULAR, FRIABLE	 36-42 2.5Y 5/4 LIGHT OLIVE BROWN, SAND, GRANULAR, FRIABLE 42-74 2.5Y 6/3 LIGHT YELLOWISH BROWN, STRATIFIED SAND AND VERY FINE SAND WITH REDOX. FEAT. PRESENT, 	P = 4 MIN./IN.	X A A
LAR, FRIABLE	SINGLE GRAIN, LOOSE E.S.H.W.T. @ 42"	TEST PIT #38 0–6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE	CIFIC OWL R TAX
RIABLE FEAT. PRESENT, SINGLE GRAIN, LOOSE	RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A	 6-22 10YR 5/6 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 22-34 10YR 5/4 YELLOWISH BROWN, SAND, GRANULAR, FRIABLE 34-72 2.5Y 5/3 LIGHT OLIVE BROWN, STRATIFIED SAND AND VERY FINE SAND WITH REDOX. FEAT. PRESENT, GRANULAR, 	ы б
	TERMINATED © 74" REFUSAL @ N/A P = 4 MIN./IN.	FRIABLE E.S.H.W.T. @ 34"	SM SF
	TEST PIT #29	RESTRICTIVE LAYER @ N/A GROUND WATER @ 40"	SIT
	0–8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8–22 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE	TERMINATED @ 72" REFUSAL @ N/A	
ANULAR, FRIABLE	22–36 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 36–54 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE	P = 6 MIN./IN. TEST PIT #38A	
RIABLE ABLE	54-70 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 54"	0–6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 6–20 10YR 5/6 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE	
T. PRESENT, MASSIVE, FIRM	RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A	20–34 10YR 5/4 YELLOWISH BROWN, SAND, GRANULAR, FRIABLE 34–70 2.5Y 5/3 LIGHT OLIVE BROWN, STRATIFIED SAND AND VERY FINE SAND WITH REDOX. FEAT. PRESENT, GRANULAR.	
	TERMINATED @ 70" REFUSAL @ N/A P = 4 MIN./IN.	FRIABLE E.S.H.W.T. @ 34"	M
	P = 4 min./in. TEST PIT #30	RESTRICTIVE LAYER © N/A GROUND WATER © 40"	86.
	0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM. GRANULAR, FRIABLE 8-22 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE	TERMINATED @ 70" REFUSAL @ N/A	
ANULAR, FRIABLE IABLE	 22-36 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 36-54 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 	P = 6 MIN./IN. TEST PIT #39	RIN R0, 23 23 23
IADLE ABLE T. PRESENT, MASSIVE, FIRM	54-72 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 54"	0-6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 6-18 10YR 5/4 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE	
, <u> </u>	RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A	18–26 10YR 5/4 YELLOWISH BROWN, SAND, GRANULAR, FRIABLE 26–44 10YR 6/2 LIGHT BROWNISH GRAY, SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LODSE	
	TERMINATED © 72" REFUSAL © N/A	44–72 2.5Y 5/3 LIGHT OLIVE BROWN, VERY GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 26"	
	P = 4 MIN./IN. TEST PIT #30A	RESTRICTIVE LAYER @ 44" GROUND WATER @ 36"	ZOZ 382
	0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-20 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE	TERMINATED @ 72" REFUSAL @ N/A	
ANULAR, FRIABLE LE AD EDIADLE	20–34 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 34–54 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE	P = 12 MIN / IN.	N/A DB DB DB
LAR, FRIABLE RIABLE TEAT. PRESENT, SINGLE GRAIN, LOOSE	54-70 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 54"	TEST PIT #39A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 6-16 10YR 5/4 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE	
L LUUSE	RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A	6–16 TUTR 3/4 TELLOWISH BROWN, LUAMT SAND, GRANULAR, FRIABLE 16–26 10YR 5/4 YELLOWISH BROWN, SAND, GRANULAR, FRIABLE 22–44 10YR 6/2 LIGHT BROWNISH GRAY, SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE	
	TERMINATED @ 70"	44-70 2.5Y 5/3 LIGHT OLIVE BROWN, VERY GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 26"	RRING ALE E NO
	REFUSAL @ N/A		
	P = 4 MIN./IN.	RESTRICTIVE LAYER @ 44" GROUND WATER @ 36"	
	P = 4 MIN./IN. TEST PIT #31 0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE	RESTRICTIVE LAYER @ 44" GROUND WATER @ 36" TERMINATED @ 70" REFUSAL @ N/A	
ANULAR, FRIABLE	P = 4 MIN./IN. TEST PIT #31	RESTRICTIVE LAYER @ 44" GROUND WATER @ 36" TERMINATED @ 70" REFUSAL @ N/A P = 12 MIN./IN.	
AR, FRIABLE RIABLE	P = 4 MIN./IN. TEST PIT #31 0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-16 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 16-24 10YR 5/4 YELLOWSH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE	RESTRICTIVE LAYER @ 44" GROUND WATER @ 36" TERMINATED @ 70" REFUSAL @ N/A P = 12 MIN./IN. TEST PIT #40 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE	
AR, FRIABLE	P = 4 MIN./IN. TEST PIT #31 0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-16 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 16-24 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 24-36 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 36-44 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE 44-74 2.5Y 6/3 LIGHT YELLOWISH BROWN, SAND WITH REDOX. FEAT. PRESENT, GRANULAR, FRIABLE E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ N/A	RESTRICTIVE LAYER @ 44" GROUND WATER @ 36" TERMINATED @ 70" REFUSAL @ N/A P = 12 MIN./IN. TEST PIT #40 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-22 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 22-28 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE	CONTRACTOR NOT NEW HAMO
AR, FRIABLE RIABLE	P = 4 MIN./IN. TEST PIT #31 0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-16 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 16-24 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 24-36 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 36-44 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE 44-74 2.5Y 6/3 LIGHT YELLOWISH BROWN, SAND WITH REDOX. FEAT. PRESENT, GRANULAR, FRIABLE E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 74"	RESTRICTIVE LAYER @ 44" GROUND WATER @ 36" TERMINATED @ 70" REFUSAL @ N/A P = 12 MIN./IN. TEST PIT #40 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-22 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 22-28 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 28-38 10YR 5/4 YELLOWISH BROWN, GRAVELLY FINE SANDY LOAM, MASSIVE, FRIABLE 38-78 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM	HIMINING NEW HAMAS
AR, FRIABLE RIABLE	P = 4 MIN./IN. TEST PIT #31 0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-16 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 16-24 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 24-36 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 36-44 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE 44-74 2.5Y 6/3 LIGHT YELLOWISH BROWN, SAND WITH REDOX. FEAT. PRESENT, GRANULAR, FRIABLE E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A	RESTRICTIVE LAYER @ 44" GROUND WATER @ 36" TERMINATED @ 70" REFUSAL @ N/A P = 12 MIN./IN. TEST PIT #40 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-22 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 22-28 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 28-38 10YR 5/4 YELLOWISH BROWN, GRAVELLY FINE SANDY LOAM, MASSIVE, FRIABLE	HIMINING NEW HAMAS
LAR, FRIABLE RIABLE	P = 4 MIN./IN. TEST PIT #31 0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-16 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 16-24 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 24-36 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRANULAR, FRIABLE 36-44 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE 44-74 2.5Y 6/3 LIGHT YELLOWISH BROWN, SAND WITH REDOX. FEAT. PRESENT, GRANULAR, FRIABLE E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 74" REFUSAL @ N/A	RESTRICTIVE LAYER © 44" GROUND WATER © 36" TERMINATED © 70" REFUSAL © N/A P = 12 MIN./IN. TEST PIT #40 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-22 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 22-28 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 28-38 10YR 5/4 YELLOWISH BROWN, GRAVELLY FINE SANDY LOAM, MASSIVE, FRIABLE 38-78 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. © 38" RESTRICTIVE LAYER © 38"	HIMINING NEW HAMSON

TEST PIT DATA: TEST PIT #41 & 41A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 6-18 10YR 4/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 18-28 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 28-64 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 28" RESTRICTIVE LAYER @ 28" GROUND WATER @ 48" TERMINATED @ 64" REFUSAL 🞯 N/A P = 8 MIN./IN.TEST PIT #42 0-3 10YR 2/2 VERY DARK BROWN, SANDY LOAM, GRANULAR, FRIABLE 3-12 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, SINGLE GRAIN, LOOSE 12-18 2.5Y 5/4 LIGHT OLIVE BROWN, VERY GRAVELLY SAND, SINGLE GRAIN, LOOSE 18-50 2.5Y 5/3 LIGHT OLIVE BROWN, VERY GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 18" (DOES NOT PASS) RESTRICTIVE LAYER @ N/A GROUND WATER @ 28" TERMINATED @ 50" REFUSAL @ N/A P = 16 MIN./IN.TEST PIT #42A 0-3 10YR 2/2 VERY DARK BROWN, SANDY LOAM, GRANULAR, FRIABLE 3-10 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, SINGLE GRAIN, LOOSE 10-18 2.5Y 5/4 LIGHT OLIVE BROWN, VERY GRAVELLY SAND, SINGLE GRAIN, LOOSE 18-50 2.5Y 5/3 LIGHT OLIVE BROWN, VERY GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE E.S.H.W.T. @ 18" (DOES NOT PASS) RESTRICTIVE LAYER @ N/A GROUND WATER @ 28" TERMINATED @ 50" REFUSAL @ N/A P = 16 MIN./IN.TEST PIT #43 0-3 10YR 2/2 VERY DARK BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 3-16 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-24 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-75 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 24" RESTRICTIVE LAYER @ 24" GROUND WATER @ 26" TERMINATED @ 75" REFUSAL @ N/A P = 12 MIN./IN. TEST PIT #43A 0-3 10YR 2/2 VERY DARK BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 3-14 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 14-24 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-72 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 24" RESTRICTIVE LAYER @ 24" GROUND WATER @ 26" TERMINATED @ 72" REFUSAL @ N/A P = 12 MIN./IN.TEST PIT #44 0-3 10YR 2/2 VERY DARK BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 3-16 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABFE 16-24 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 24-76 SY 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 24" RESTRICTIVE LAYER @ 24" GROUND WATER @ N/A TERMINATED @ 76" REFUSAL @ N/A P = 12 MIN./IN.TEST PIT #45 0-3 10YR 2/2 VERY DARK BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 3-16 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-24 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 24" RESTRICTIVE LAYER @ 24" GROUND WATER @ 40" TERMINATED @ 75" REFUSAL @ N/A P = 12 MIN./IN.TEST PIT #46 0-3 10YR 2/2 VERY DARK BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 3-14 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 14-20 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 20-64 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 24" RESTRICTIVE LAYER @ 24" GROUND WATER @ N/A TERMINATED @ 64" REFUSAL @ N/A P = 12 MIN./IN.TEST PIT #46A 0-3 10YR 2/2 VERY DARK BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 3-14 14-24 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-64 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 24" RESTRICTIVE LAYER @ 24" GROUND WATER @ N/A TERMINATED @ 64" REFUSAL @ N/A P = 12 MIN./IN.TEST PIT #47 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-16 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 22-34 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 34-80 2.5Y 5/2 GRAYISH BROWN, GRAVELLY LOAMY SAND WITH REDOX. FEAT. PRESENT, MASSIVE, FRIABLE E.S.H.W.T. @ 34" RESTRICTIVE LAYER @ N/A GROUND WATER @ 56" TERMINATED @ 80" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #47A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-18 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 18-30 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 30-78 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 30" RESTRICTIVE LAYER @ 30" GROUND WATER @ 34" TERMINATED @ 78" REFUSAL @ N/A P = 8 MIN./IN.

TEST PIT DATA: TEST PIT #48 0-3 10YR 2/2 VERY DARK BROWN, FINE SAN 10YR 5/6 YELLOWISH BROWN, FINE SAN 3-18 18-28 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SAN 28-64 5Y 5/3 OLIVE, GRAVELLY FINE SANDY L E.S.H.W.T. @ 28" RESTRICTIVE LAYER @ 28" GROUND WATER @ 46" TERMINATED @ 64" REFUSAL @ N/A P = 10 MIN./IN.test pit #48A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, 6-24 10YR 4/6 DARK YELLOWISH BROWN, FINE 24-40 2.SY 5/4 LIGHT OLIVE BROWN, FINE SAN 40-80 5Y 5/3 OLIVE, GRAVELLY FINE SANDY L E.S.H.W.T. @ 40" RESTRICTIVE LAYER @ 40" GROUND WATER @ N/A TERMINATED @ 80" REFUSAL © N/A P = 4 MIN./IN.TEST PIT #49 0-6 10YR 3/2 VERY DARK GRAYISH BROWN. 6-22 10YR 4/6 DARK YELLOWISH BROWN, FINE 22-38 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SAN 38-78 5Y 5/3 OLIVE, GRAVELLY FINE SANDY L E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ 38" GROUND WATER @ N/A TERMINATED @ 78" REFUSAL @ 78" P = 6 MIN./IN.TEST PIT #50 0-6 10YR 3/2 VERY DARK GRAYISH BROWN 6-22 10YR 4/6 DARK YELLOWISH BROWN, FINE 22-38 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SAN 38-78 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LO E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ 38" GROUND WATER @ N/A TERMINATED @ 78" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #51 0-6 10YR 3/2 VERY DARK GRAYISH BROWN 6-24 10YR 4/6 DARK YELLOWISH BROWN, FIN 24-40 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SAN 40-88 5Y 5/3 OLIVE, GRAVELLY FINE SANDY L E.S.H.W.T. @ 40" RESTRICTIVE LAYER @ 40" GROUND WATER @ N/A TERMINATED @ 88" REFUSAL © N/A P = 6 MIN./IN.TEST PIT #52 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, 10YR 4/6 DARK YELLOWISH BROWN, FINE 6-24 24-40 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SAN 40-88 5Y 5/3 OLIVE, GRAVELLY FINE SANDY L F.S.H.W.T. @ 40" RESTRICTIVE LAYER @ 40" GROUND WATER @ N/A TERMINATED @ 88" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #53 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, 6-24 10YR 4/6 DARK YELLOWISH BROWN, FINE 24-40 2.SY 5/4 LIGHT OLIVE BROWN, FINE SAN 40-80 5Y 5/3 OLIVE, GRAVELLY FINE SANDY E.S.H.W.T. @ 40" RESTRICTIVE LAYER @ 40" GROUND WATER @ N/A TERMINATED @ 80" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #54 0-6 10YR 3/2 VERY DARK GRAYISH BROWN. 6-18 10YR 4/6 DARK YELLOWISH BROWN, FINE 18-30 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SAN 30-78 5Y 5/3 OLIVE, GRAVELLY FINE SANDY L E.S.H.W.T. @ 30" RESTRICTIVE LAYER @ 30" GROUND WATER @ 34" TERMINATED @ 78" REFUSAL @ N/A P = 8 MIN./IN.TEST PIT #55 & 55A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, 6-24 10YR 4/6 DARK YELLOWISH BROWN, FINE 24-38 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SAN 38-80 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LO E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ 38" GROUND WATER @ 53" TERMINATED @ 80" REFUSAL © N/A P = 4 MIN./IN.TEST PIT #56 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, 6-24 10YR 4/6 DARK YELLOWISH BROWN, FIN 24-38 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SAN 38-80 5Y 5/3 OLIVE, GRAVELLY FINE SANDY L E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ 38" GROUND WATER @ N/A TERMINATED @ 78" REFUSAL @ N/A P = 4 MIN./IN.TEST PIT #56A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, 6-22 10YR 4/6 DARK YELLOWISH BROWN, FIN 22-38 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SAN 38-80 5Y 5/3 OLIVE, GRAVELLY FINE SANDY L F.S.H.W.T. @ 38" RESTRICTIVE LAYER @ 38" GROUND WATER @ N/A TERMINATED @ 78" REFUSAL @ N/A P = 4 MIN./IN.

NDY LOAM, Andy loam,	GRANULAR, FRIABLE GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM
NE SANDY L ANDY LOAM,	DY LOAM, GRANULAR, FRIABLE LOAM, GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM
NE SANDY L Andy Loam,	DY LOAM, GRANULAR, FRIABLE LOAM, GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM
NE SANDY L ANDY LOAM,	DY LOAM, GRANULAR, FRIABLE LOAM, GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM
NE SANDY L ANDY LOAM,	DY LOAM, GRANULAR, FRIABLE LOAM, GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM
NE SANDY L Andy Loam,	DY LOAM, GRANULAR, FRIABLE LOAM, GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM
NE SANDY L Andy Loam,	DY LOAM, GRANULAR, FRIABLE LOAM, GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM
NE SANDY L Andy Loam,	DY LOAM, GRANULAR, FRIABLE LOAM, GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM
NE SANDY L Andy Loam,	DY LOAM, GRANULAR, FRIABLE LOAM, GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM
NE SANDY L Andy Loam,	DY LOAM, GRANULAR, FRIABLE LOAM, GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM
NE SANDY L Andy Loam,	DY LOAM, GRANULAR, FRIABLE LOAM, GRANULAR, FRIABLE MASSIVE, FRIABLE REDOX. FEAT. PRESENT, MASSIVE,	FIRM

TEST PIT DATA:

TEST PIT #57

0-6

10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-18 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 18-36 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM 36-72 E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ 36" GROUND WATER @ N/A TERMINATED @ 72" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #57A 0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE B-20 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 20-36 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 36-74 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM ESHWT QO.36" RESTRICTIVE LAYER @ 36" GROUND WATER O N/A TERMINATED @ 74" REFUSAL 🞯 N/A P = 6 MIN./IN.TEST PIT #58 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-18 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 18-36 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 36-72 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ 36" GROUND WATER 🞯 N/A TERMINATED @ 72" REFUSAL @ N/A $P = 6 MIN_{,}/IN_{,}$ TEST PIT #59 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-16 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-36 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 36-80 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 36" RESTRICTIVE LAYER @ 36" GROUND WATER O N/A TERMINATED @ 80" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #60 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-16 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-32 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 32-70 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ 32" GROUND WATER 🛛 N/A TERMINATED @ 70" REFUSAL @ N/A P = 8 MIN./IN.TEST PIT #61 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 0-6 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-24 24-38 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 38-70 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ 38" GROUND WATER @ 53" TERMINATED @ 70" REFUSAL 🛛 N/A P = 8 MIN./IN.TEST PIT #62 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 0 - 66-24 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-38 2.5Y 5/4 LIGHT OLIVE BROWN. FINE SANDY LOAM. MASSIVE, FRIABLE 38-70 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 42" RESTRICTIVE LAYER @ 42" GROUND WATER ON /A TERMINATED @ 78" REFUSAL @ N/A P = 4 MIN./IN.TEST PIT #63 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-16 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-28 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 28-68 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX, FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 28" RESTRICTIVE LAYER @ 28" GROUND WATER 🞯 N/A TERMINATED @ 68" REFUSAL @ N/A $P = 6 MIN_{,}/IN_{,}$ TEST PIT #63A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-24 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-38 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 38-70 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 42" RESTRICTIVE LAYER @ 42" GROUND WATER 🞯 N/A TERMINATED @ 78" REFUSAL @ N/A P = 4 MIN./IN.TEST PIT #64 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-16 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-36 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 36-70 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ 32" GROUND WATER 🛛 N/A TERMINATED @ 70" REFUSAL @ N/A P = 4 MIN./IN.TEST PIT #64A 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 0 - 66-24 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-38 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 38-70 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 42" RESTRICTIVE LAYER @ 42" GROUND WATER 🞯 N/A TERMINATED @ 78" REFUSAL @ N/A P = 2 MIN./IN.

10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE

TEST PIT DATA

 TEST PIT #65

 0-6 10YR 3/2 V

 6-16 10YR 4/6 D

 16-36 2.5Y 5/4 L

 36-78 5Y 5/3 OLN

 E.S.H.W.T.
 @ 36"

 RESTRICTIVE LAYER
 @ 3

 GROUND WATER @ N/A

 TERMINATED
 @ 78"

 REFUSAL
 @ N/A

 P
 6 MIN./IN.

 TEST PIT #66

 0-6
 10YR 3/2 W

 6-24
 10YR 4/6 D

 24-38
 2.5Y 5/4 LI

 38-72
 5Y 5/3 OLIV

 E.S.H.W.T.
 @ 38"

 RESTRICTIVE LAYER @ 3

 GROUND WATER @ N/A

 TERMINATED @ 72"

 REFUSAL @ N/A

 P = 4 MIN./IN.

 TEST PIT #67

 0-6
 10YR 3/2 W

 6-16
 10YR 4/6 D

 16-36
 2.5Y 5/4 LI

 36-72
 5Y 5/3 OLIVE

 E.S.H.W.T.
 @ 38"

 RESTRICTIVE LAYER
 @ 38

 GROUND WATER
 @ N/A

 TERMINATED
 @ 80"

 REFUSAL
 @ N/A

 P = 4 MIN./IN.

TEST PIT #67A 0-6 10YR 3/2 V 6-24 10YR 4/6 D 24-38 2.5Y 5/4 LI 38-84 5Y 5/3 OLIV E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ 3 GROUND WATER @ N/A TERMINATED @ 84" REFUSAL @ N/A P = 4 MIN./IN.

 TEST PIT #68

 0-6
 10YR 3/2 W

 6-24
 10YR 4/6 D

 24-38
 2.5Y 5/4 LI

 38-80
 5Y 5/3 OLIVE

 E.S.H.W.T.
 @ 38"

 RESTRICTIVE LAYER
 @ 38

 GROUND WATER
 @ N/A

 TERMINATED
 @ 80"

 REFUSAL
 @ N/A

 P = 4 MIN./IN.

TEST PIT #68A 0-6 10YR 3/2 V 6-24 10YR 4/6 D 24-38 2.5Y 5/4 LI 38-84 5Y 5/3 OLIV E.S.H.W.T. @ 38" RESTRICTIVE LAYER @ 3 GROUND WATER @ N/A TERMINATED @ 84" REFUSAL @ N/A P = 4 MIN./IN.

 TEST PIT #69

 0-6
 10YR 3/2 V

 6-24
 10YR 4/6 D

 24-38
 2.5Y 5/4 LI

 38-84
 5Y 5/3 OLIV

 E.S.H.W.T.
 @ 38"

 RESTRICTIVE LAYER
 @ 3

 GROUND WATER
 @ N/A

 TERMINATED
 @ 84"

 REFUSAL
 @ N/A

 P = 4
 MIN./IN.

TEST PIT #70 0-6 10YR 3/2 V 6-14 10YR 4/4 D 14-32 2.5Y 5/4 LI 32-80 5Y 5/3 OLIV E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ 3 GROUND WATER @ 46" TERMINATED @ 80" REFUSAL @ N/A P = 8 MIN./IN.

 TEST PIT #71

 0-6 10YR 3/2 W

 6-24 10YR 4/6 D

 24-40 2.5Y 5/4 LI

 40-78 5Y 5/3 OLINE

 E.S.H.W.T.
 @ 40"

 RESTRICTIVE LAYER
 @ 4

 GROUND WATER
 @ N/A

 TERMINATED
 @ 78"

 REFUSAL
 @ N/A

 P = 4 MIN./IN.

 TEST PIT #72

 0-6
 10YR 3/2 V

 6-14
 10YR 4/4 D

 14-26
 2.5Y 5/4 LI

 26-72
 5Y 5/3 OLIVE

 E.S.H.W.T.
 @ 26"

 RESTRICTIVE LAYER
 @ 2

 GROUND WATER
 N/A

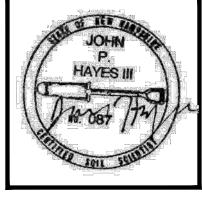
 TERMINATED
 @ 72"

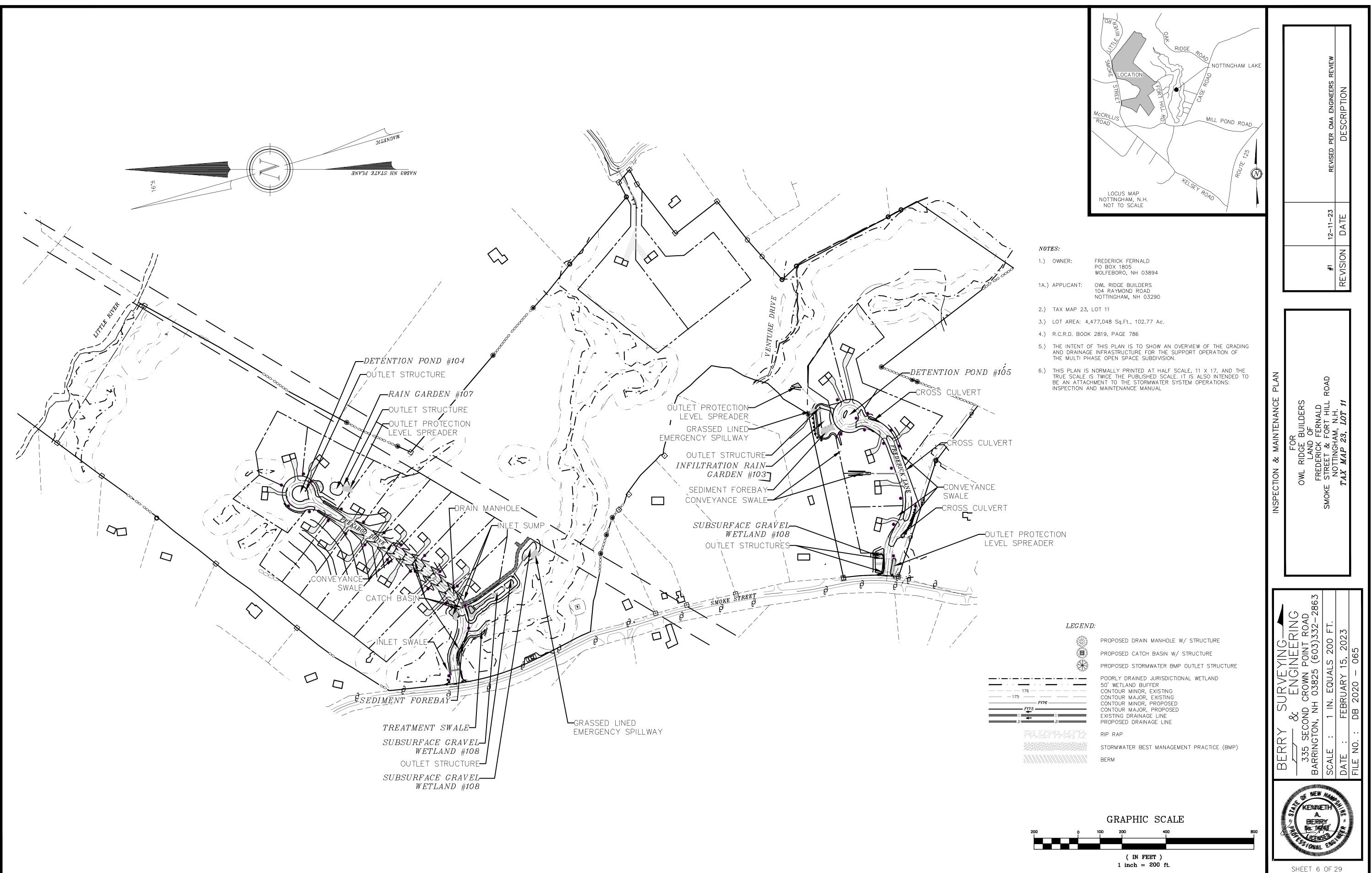
 REFUSAL
 N/A

 P = 10 MIN./IN.

1:				
VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE IGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE VE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM 36" YERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE				
DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE IGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE VE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM 38" VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE				
DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE IGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE VE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM 38"		50-11-01 50-	DATE	
VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE IGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE VE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM 38"		L#	REVISION	
VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE IGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE VE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM 38"	T PITS 2~	ROAD		
VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE IGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE VE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM 38"	FIC SOILS MAP ~TES		NOTTINGHAM, N.H. TAX MAP 23, LOT 11	
VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE IGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE VE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM 38"	SITE SPECIFIC	SMOKE		
VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE IGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE VE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FILM 32"		63		
VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE IGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE VE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM 40"	IRVEYING.	ENGINEERING CROWN POINT ROAD 03825 (603)332-28	RUARY 15,	2020 - 065
VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE IGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE VE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM 26"	RFRRY SI	335 SECOND &	DATE :	FILE NO. : DB
HAYES III		HILLING NEW HA		
THUR TON THE THE		TIMINSS/ONAL EN	MINININ'	

SHEET 31 OF 88


TEST PIT DATA: test pit #72A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-12 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 12-26 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 26-74 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 26" RESTRICTIVE LAYER @ 26" GROUND WATER @ N/A TERMINATED @ 74" REFUSAL © N/A P = 12 MIN./IN.TEST PIT #73 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-14 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 14-28 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 28-64 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 28" RESTRICTIVE LAYER @ 28" GROUND WATER @ N/A TERMINATED @ 64" REFUSAL © N/A P = 6 MIN./IN.test pit #73A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR. FRIABLE 6-16 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-32 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 32-80 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ 32" GROUND WATER @ 46" TERMINATED @ 80" REFUSAL © N/A P = 4 MIN./IN.TEST PIT #74 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-24 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-48 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 48-80 2.5Y 5/2 GRAYISH BROWN, GRAVELLY SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FRIABLE E.S.H.W.T. @48" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 80" REFUSAL © N/A P = 2 MIN./IN.TEST PIT #74A 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-24 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-48 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 48-80 2.5Y 5/2 GRAYISH BROWN, GRAVELLY SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FRIABLE E.S.H.W.T. @ 48" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 80" REFUSAL © N/A P = 2 MIN./IN.TEST PIT #75 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6–16 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-32 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 32-80 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ 32" GROUND WATER @ 46" terminated @ 80" REFUSAL © N/A P = 4 MIN./IN.TEST PIT #76 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6–16 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-32 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 32-78 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ 32" GROUND WATER @ 58" TERMINATED @ 78" REFUSAL © N/A P = 4 MIN./IN.TEST PIT #77 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-14 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 14-30 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 30-80 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 30" RESTRICTIVE LAYER @ 30" ground water @ 44" TERMINATED @ 80" REFUSAL © N/A P = 8 MIN./IN.TEST PIT #78 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-20 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 20-40 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MASSIVE, FRIABLE 40- 76 2.5Y 5/2 GRAYISH BROWN, GRAVELLY LOAMY SAND WITH REDOX. FEAT. PRESENT, MASSIVE, FRIABLE E.S.H.W.T. @ 40" RESTRICTIVE LAYER @ N/A ground water @ 48" TERMINATED @ 76" REFUSAL © N/A P = 4 MIN./IN.TEST PIT #100 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-20 7.5YR 4/6 STRONG BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 20-36 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, BLOCKY, FRIABLE 36-44 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 24" RESTRICTIVE LAYER @ 36" GROUND WATER @ 36" TERMINATED @ 44" REFUSAL @ 44" P = 12 MIN./IN.TEST PIT #101 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE 6-12 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 12-32 10YR 5/6 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE 32-42 10YR 5/4 YELLOWISH BROWN, COARSE SAND, SINGLE GRAIN, LOOSE 42-82 2.5Y 5/3 LIGHT OLIVE BROWN, VERY GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LODSE E.S.H.W.T. @ 42" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 82" REFUSAL @ N/A P = 4 MIN./IN.


TEST PIT DATA: TEST PIT #102 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, 6-22 10YR 5/6 YELLOWISH BROWN, LOAMY SAND, GRANULAR 22-34 10YR 5/4 YELLOWISH BROWN, SAND, GRANULAR, FRIAB 34-72 2.5Y 5/3 LIGHT OLIVE BROWN, STRATIFIED SAND AND GRANULAR, FRIABLE E.S.H.W.T. @ 34" RESTRICTIVE LAYER @ N/A GROUND WATER @ 40" TERMINATED @ 72" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #103 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY L 6-18 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAN 18-30 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, MAS 30-78 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM WITH REDO E.S.H.W.T. @ 30" RESTRICTIVE LAYER @ 30" GROUND WATER @ 34" TERMINATED @ 78" REFUSAL @ N/A P = 8 MIN./IN.TEST PIT #200 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, 6-16 10YR 5/4 YELLOWISH BROWN, GRAVELLY LOAMY SAND, 16-24 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY SAND, GRAN 24-62 2.5Y 5/3 LIGHT OLIVE BROWN, GRAVELLY SAND WITH E.S.H.W.T. @ 24" RESTRICTIVE LAYER @ N/A GROUND WATER @ 38" TERMINATED @ 62" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #201 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, 6-14 7.5YR 5/6 STRONG BROWN, GRAVELLY LOAMY SAND, 14-24 10YR 5/6 YELLOWISH BROWN, GRAVELLY LOAMY SAND, 24-34 10YR 5/4 YELLOWISH BROWN, GRAVELLY SAND, SINGLE 34-64 2.5Y 5/3 LIGHT OLIVE BROWN, VERY GRAVELLY SAND E.S.H.W.T. 🞯 34" RESTRICTIVE LAYER @ N/A GROUND WATER @ N/A TERMINATED @ 64" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #202 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-16 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-24 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-60 2.5Y 5/3 LIGHT OLIVE BROWN, FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. 🞯 24" RESTRICTIVE LAYER @ 24" GROUND WATER @ 32" TERMINATED @ 60" REFUSAL @ N/A P = 12 MIN,/IN. TEST PIT #203 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-18 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 18-32 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 32-64 2.5Y 5/3 LIGHT OLIVE BROWN, FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. 🞯 32" RESTRICTIVE LAYER @ 32" GROUND WATER @ 42" TERMINATED @ 64" REFUSAL @ N/A P = 12 MIN /IN. TEST PIT #204 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-16 10YR 4/6 DARK YELLOWISH BROWN FINE SANDY LOAM CRANIILAR FRIABL 16-28 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 28-64 5Y 5/3 OLIVE, FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. 🞯 28" RESTRICTIVE LAYER @ 28" GROUND WATER @ N/A TERMINATED @ 64" REFUSAL @ N/A P = 4 MIN./IN.TEST PIT #205 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-20 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 20-32 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 32-64 5Y 5/3 OLIVE, FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 32" RESTRICTIVE LAYER @ 32" GROUND WATER @ N/A TERMINATED @ 64" REFUSAL @ N/A P = 6 MIN./IN.TEST PIT #206 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-18 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 18-28 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 28-62 5Y 5/3 OLIVE, FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. 🞯 28" RESTRICTIVE LAYER @ 28" GROUND WATER @ 50" TERMINATED @ 62" REFUSAL @ N/A P = 4 MIN./IN.TEST PIT #207 0-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-16 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-30 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 30-64 5Y 5/3 OLIVE, FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. 🞯 30" RESTRICTIVE LAYER @ 30" GROUND WATER @ N/A TERMINATED @ 64" REFUSAL @ N/A P = 4 MIN./IN.TEST PIT #208 0-8 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-20 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 20-30 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 30-65 5Y 5/3 OLIVE, FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. 🞯 30" RESTRICTIVE LAYER @ 30" GROUND WATER @ N/A TERMINATED @ 65" REFUSAL @ N/A

P = 6 MIN./IN.

	TEST PIT DATA:
D, GRANULAR, FRIABLE _AR, FRIABLE IABLE D VERY FINE SAND WITH REDOX. FEAT. PRESENT,	TEST PIT #209 D-B 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-14 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 14-20 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 20-60 5Y 5/3 OLIVE, FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 20" (DOES NOT PASS) RESTRICTIVE LAYER @ 20" GROUND WATER @ N/A TERMINATED @ 60" REFUSAL @ N/A P = 8 MIN./N.
′ LOAM, GRANULAR, FRIABLE AM, GRANULAR, FRIABLE MASSIVE, FRIABLE EDOX. FEAT. PRESENT, MASSIVE, FIRM	TEST PIT #210 D-B 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 8-16 10YR 4/4 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-24 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 24-60 5Y 5/3 OLIVE, FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 24" RESTRICTIVE LAYER @ 24" GROUND WATER @ N/A TERMINATED @ 60" REFUSAL @ N/A P = 6 MIN./IN.
ID, GRANULAR, FRIABLE ND, GRANULAR, FRIABLE ANULAR, FRIABLE H REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE	TEST PIT #211 D-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-22 10YR 4/6 DARK YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 22-34 2.5Y 5/4 LIGHT OLIVE BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 34-60 5Y 5/3 OLIVE, FINE SANDY LOAM WITH REDOX. FEAT. PRESENT, MASSIVE, FIRM E.S.H.W.T. @ 34" RESTRICTIVE LAYER @ 34" GROUND WATER @ N/A TERMINATED @ 60" REFUSAL @ N/A P = 8 MIN./IN.
D, GRANULAR, FRIABLE , GRANULAR, FRIABLE ND, GRANULAR, FRIABLE GLE GRAIN, LOOSE D WITH REDOX. FEAT. PRESENT, GRANULAR, FRIABLE	TEST PIT #212 D-6 10YR 3/2 VERY DARK GRAYISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 6-16 10YR 5/6 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 16-26 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE 26-34 2.5Y 5/4 LIGHT OLIVE BROWN, GRAVELLY FINE SANDY LOAM, GRANULAR, FRIABLE 34-60 5Y 5/3 OLIVE, GRAVELLY LOAMY SAND WITH REDOX. FEAT. PRESENT, MASSIVE, FRIABLE E.S.H.W.T. © 34" RESTRICTIVE LAYER © 34" GROUND WATER © N/A TERMINATED © 60" REFUSAL © N/A P = 6 MIN./IN.

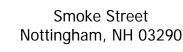
		GINEERS REVIEW TION
		REVISED PER CMA ENGINEERS REVIEW DESCRIPTION
		12-11-23 DATE
		#1 REVISION
	SITE SPECIFIC SOILS MAP ~TEST PITS 3~	Some Street & Fort Hill Road Dotting N.H. TAX MAP 23, LOT 11
		ScaleScaleScale335Second crown point road335Second crown point roadScaleN/AScaleN/ADateFEBRUARY 15, 2023FILE NO. :DB 2020 - 065
Trank		SHEET 32 OF 88

BERRY SURVEYING & ENGINEERING

335 Second Crown Point Road Barrington, NH 03825 Phone: (603) 332-2863 Fax: (603) 335-4623 www.BerrySurveying.Com

Stormwater System Management:

Inspection and Maintenance Manual

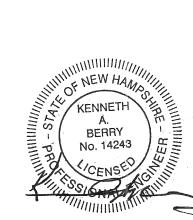

Prepared for:

Owl Ridge Builders 104 Raymond Road Nottingham, NH 03290

Land of:

Frederick Fernald PO Box 1805 Wolfeboro, NH 03894

LOCATION


Tax Map 23, Lot 11

Prepared by:

Berry Surveying & Engineering 335 Second Crown Point Road Barrington, NH 03825

File Number DB2020-065

February 15, 2023 Revised: December 11, 2023

Table of Contents

Introduction w/ Practice Inventory	Page 2
Conveyance Swales, Cross Culverts & Roadside Ditches	Page 4
Treatment Swales	Page 4
Sediment Forebays	Page 5
Subsurface Gravel Wetland	Page 6
Rain Garden (Bio-Retention)	Page 7
In-ground Infiltration Pond	Page 8
Rain Garden with Infiltration	Page 9
Outlet Protection, Emergency Spillway & Level Spreader	Page 10
Street Sweeping	Page 11
Control of Invasive Species	Page 11
Snow Removal and Winter Maintenance	Page 12
Annual Report	Page 13
Inspection & Maintenance Manual Checklist	Page 14
Inspection & Maintenance Log Sheet	Page 18
Deicing Log Sheet	Page 19
Owner Certification	Page 20
Inspection & Maintenance Plan	Attached – 2 Pages
Control of Invasive Plants, NH Department of Agriculture NHDES Green SnoPro Utilization Chart	Attached – 4 Pages Attached – 1 Page
UNHSC Checklist for Inspection of Gravel Wetland	Attached – 2 Pages

Introduction

The Best Management Practices (BMP) described in this manual are specified in more detail within the plan set giving design details and specifications. The <u>New Hampshire</u> <u>Stormwater Manual, Volume 2, Post-Construction Best Management Practices Selection & Design</u> (December 2008, NHDES) and US EPA NPDES CGP is included by reference to this manual. Additional details, construction specifications, and example drawings are provided within this reference. (<u>http://des.nh.gov/organization/divisions/water/stormwater/</u>) See also, additional references for the University of New Hampshire Stormwater Center regarding maintenance of the Subsurface Gravel Wetlands. <u>https://www.unh.edu/unhsc/design-and-maintenance-subsurface-gravel-wetlands</u> <u>https://www.unh.edu/unhsc/sites/default/files/media/unhsc_gravel_wetland_spec_6-2016.pdf</u>

The BMP's are covered below in the general order in which the storm water flows. Each BMP has a design intent, description and maintenance consideration listed. A Check List table is provided after the narrative to summarize the maintenance responsibilities and schedule. A Log Form is also provided for the owners use.

For details regarding the design of the Storm Water System see also <u>Drainage Analysis</u> <u>& Sediment and Erosion Control Plan</u> also published by Berry Surveying & Engineering originally dated February 15, 2023, as revised. See also plan set completed for Owl Ridge Builders, LLC. originally dated February 15, 2023, as revised.

Owl Ridge Builders, LLC, Owner and Managing Member Joe Fernald, is responsible for the periodic inspection and required maintenance, , who is responsible for the Stormwater System Operation, Inspection, and Maintenance defined and described herein. A significant step in this responsibility is the Inspection and Maintenance of each component of the system. Ongoing, semi-annual, and annual inspection and maintenance requirement are documented below and must be taken seriously. Failure of any component of the system can result in surface water run-off ponding and/or freezing in the roadway and parking lots, leaving the developed site untreated, and/or causing violations to issued permits. The owner must maintain, and have available, plans of the Stormwater System in order properly inspect and maintain the system. (Reduced copies attached.) The Owner and Managing Member, Joe Fernald, as the Operator, is responsible to ensure that any subsequent owner, tenant, or subcontractor have copies of the Log Form and Annual Report records and fully understands the responsibilities of this plan. The grantor owner will ensure this document is provided to the grantee owner by duplicating the Ownership Responsibility Sheet which is found

toward the back of this document, which will be maintained with the Inspection & Maintenance Logs, provided to the Town of Nottingham, Planning Department, with the Annual Report.

The applicant of Tax Map 23, Lot 11, Owl Ridge Builders, is proposing to develop the property on Smoke Street. The site is currently wooded vacant land. The proposal for development includes 25 single family houses on 2 cul-de-sac roads consisting of a total of 2,740 feet of roadway. The proposal is supported by multiple practices including subsurface gravel wetlands, rain gardens, detention ponds, and infiltration ponds.

The following drainage features will all require periodic inspections and maintenance based on this manual in addition to deep sump catch basins throughout:

Conveyance Swales, cross culverts, and roadside ditches

Treatment Swale

Detention Ponds (P-104, P105) w/ Outlet Structure

Sediment Forebays

Subsurface Gravel Wetland P-102 and P-108 w/ Outlet structures, and emergency spillway.

Rain Garden with Infiltration (P-103) w/ Outlet Structured and Emergency Spillway

Rain Garden (P-107) w/ Underdrain, Outlet Structure and Emergency Spillway

Infiltration Pond w/ Emergency Spillway

Outlet Protection and Level Spreader

Conveyance Swales, Cross Culverts, & Roadside Ditches

<u>Project Intent</u>: The swales are individually designed in the drainage analysis and specified on the design plans. Temporary check dams will be installed as specified and removed upon completion of the project. Conveyance swales will be lined with rolled erosion control blanket (R.E.C.B.) as specified on the E&SC Plan. Roadside ditches and cross culverts will be installed according to the Grading & Drainage Plan and Profile Plans to properly route the surface water runoff.

<u>Description:</u> Conveyance swales are stabilized channels designed to convey runoff at non-erosive velocities. They may be stabilized using vegetation, riprap, or a combination, or with an alternative lining designed to accommodate design flows while protecting the integrity of the sides and bottom of the channel. Conveyance channels may provide incidental water quality benefits, but are not specifically designed to provide treatment. Conveyance swales are not considered a Treatment or Pretreatment Practice under the AoT regulations, unless they are also designed to meet the requirements of an acceptable Treatment/Pretreatment Practice as described elsewhere in this Chapter. See New Hampshire Stormwater Manual (SWM) Volume 2, 4-6.3 Conveyance Practices, Conveyance Swale, page 166. A conveyance swale will be designed so that there is the capacity to convey the 50-year 24-hour storm event.

<u>Maintenance Considerations</u>: Grassed channels should be inspected periodically (at least annually) for sediment accumulation, erosion, and condition of surface lining (vegetation or riprap). Repairs, including stone or vegetation replacement, should be made based on this inspection. Remove sediment and debris annually, or more frequently as warranted by inspection. Mow vegetated channels based on frequency specified by design. Mowing at least once per year is required to control establishment of woody vegetation. It is recommended to cut grass no shorter than 4 inches. Any damage to the vegetation will be repaired and woody vegetation and invasive vegetation will be removed. Any damage to the channel due to erosion will be repaired and R.E.C.B. reinstalled. Roadside swales and cross culverts will be cleared of excess woody brush and sedimentation to allow proper drainage.

Treatment Swale

<u>Description:</u> Treatment swales are designed to promote sedimentation by providing a minimum hydraulic residence time within the channel under design flow conditions (Water Quality Flow). This BMP may also provide some infiltration, vegetative filtration, and vegetative uptake. Conventional grass channels and ditches are primarily designed for conveyance. Treatment swales, in contrast, are designed for hydraulic residence

time and shallow depths under water quality flow conditions. As a result, treatment swales provide higher pollutant removal efficiencies. Pollutants are removed through sedimentation, adsorption, biological uptake, and microbial breakdown. Treatment swales also differ from practices such as underdrained swales (for example, "dry swales" and "bioretention swales"), which are essentially filtration practices, and "wet swales," which are similar in function to pocket ponds. See SWM Volume 2, 4-3.5, Treatment Practices, Treatment Swales, page 123.

<u>Maintenance Considerations:</u> Inspect annually for erosion, sediment accumulation, vegetation loss, and presence of invasive species. Perform periodic mowing; frequency depends on location and type of grass. Do not cut shorter than Water Quality Flow depth (maximum 4-inches). Remove debris and accumulated sediment, based on inspection. Repair eroded areas, remove invasive species and dead vegetation, and reseed with applicable grass mix as warranted by inspection.

Sediment Forebay

<u>Design Intent</u>: A Sediment Forebay is designed to pre-treat surface water runoff from the paved surfaces and compact gravel surfaces. The two Subsurface Gravel Wetlands and single Infiltration Pond will be preceded by a Sediment Forebay.

<u>Description:</u> A sediment forebay is an impoundment, basin, or other storage structure designed to dissipate the energy of incoming runoff and allow for initial settling of coarse sediments. Forebays are used for pretreatment of runoff prior to discharge into the primary water quality treatment BMP. In some cases, forebays may be constructed as separate structures but often, they are integrated into the design of larger stormwater management structures. See SWM Volume 2, 4-4.1 Pre-treatment Practices, Sediment Forebay, page 140.

<u>Maintenance Considerations</u>: Forebays help reduce the sediment load to downstream BMPs, and will therefore require more frequent cleaning. Inspect at least annually; Conduct periodic mowing of embankments (generally two times per year) to control growth of woody vegetation on embankments; Remove debris from outlet structures at least once annually; Remove and dispose of accumulated sediment based on inspection; Install and maintain a staff gauge or other measuring device, to indicate depth of sediment accumulation and level at which clean-out is required. reaches half the height of the check dam. Erosion or other damage to the basin will be repaired and revegetated. (See Outlet Protection below.)

Subsurface Gravel Wetland

<u>Design Intent</u>: There are two Subsurface Gravel Wetlands (P-101 and P-102) designed to manage and treat surface water runoff from the site. Runoff is routed to the BMP's through conveyance swales.

<u>Description</u>: The gravel wetland system consists of one or more flow-through constructed wetland cells, preceded by a forebay. The cells are filled with a gravel media, supporting an organic substrate that is planted with wetland vegetation. During low-flow storm events, the system is designed to promote subsurface horizontal flow through the gravel media, allowing contact with the root zone of the wetland vegetation. The gravel and planting media support a community of soil microorganisms. Water guality treatment occurs through microbial, chemical, and physical processes within this media. Treatment may also be enhanced by vegetative uptake. To accommodate higher flows, the system is designed to permit inundation of the wetland surface, and the system would function similar to other constructed wetland systems. Overflow from the wetland is provided by an outlet structure designed for this "extended detention" condition. Following such an event, remaining water on the surface of the wetland would infiltrate into the gravel media, and flow horizontally through the media as in the low flow condition. The outlet of the wetland system is designed to keep the media submerged, to provide the hydrology to support the wetland plant community. The gravel media consists of either crushed rock or processed gravel. An organic soil layer is placed on top of this material, and the wetland plants are rooted in the media where they can directly take up pollutants. The system can be designed to integrate some stormwater storage, and also to provide infiltration. With these features, the practice would not only remove pollutants, but also contribute to the attenuation of peak rates through temporary storage and reduction in runoff volume.

During smaller rain events, the surface water runoff is intended to pass from the forebay, into the gravel media through perforated pipes and structures where it passes through an anaerobic environment where the Water Quality Volume will have 24-72 hours of contact time. The forebay is required to contain 10% of the WQV and each of the two cells must contain 45% of the WQV. During larger storm events, the system works as a detention pond. See SWM Volume 2, 4-3.2d, Treatment Practices, Gravel Wetland, page 78.

<u>Maintenance Considerations:</u> Monitoring and replanting, as warranted, of wetland vegetation. Removal of debris from inlet and outlet structures. Inspection and removal of sediment accumulation in the gravel bed. Depending on sediment accumulation, bed may require periodic replacement and replanting. Inspection and repair of containment structure (if applicable), inlet and outlet structures, and appurtenances. Debris will need to be removed from the inlet and outlet structures as well as any buildup of sediment.

The surface of the ponded area is intended to have wetland plants which may require periodic replanting, depending on the sediment loading. The outlet configuration of the anaerobic subsurface gravel consists of a small discharge orifice that is located in a threaded cap within Outlet Structure A. This goose-neck feature is designed to be disassembled to allow cleaning. This structure has a drain manhole frame and cover requiring tools to open for inspection and maintenance. Outlet Structure B is a multi-stage discharge device consisting of a concrete structure with a top and variable outlet orifices, all protected by trash racks. Sediment buildup in the forebay must be removed to maintain the minimum required volume. Trash racks will be cleaned and orifices inspected. See also 9 and 10 of the attached UNHSC Subsurface Gravel Wetland Design Specifications 2009, and / or UNHSC Subsurface Gravel Wetland Design Specifications 2016 with Maintenance Guidelines and Checklist. See also Design and Maintenance of Subsurface Gravel Wetlands, (for NHDOT) by UNHSC. (Check List, Page 24 & 25, Attached). All 2:1 side slopes within the BMP will be maintained via weedwhacker.

Bio-Retention System (Rain-Garden)

<u>Description:</u> A bioretention system (sometimes referred to as a "rain garden") is a type of filtration BMP designed to collect and filter moderate amounts of stormwater runoff using conditioned planting soil beds, gravel beds and vegetation within shallow depressions. The bioretention system may be designed with an underdrain, to collect treated water and convey it to discharge, or it may be designed to infiltrate the treated water directly to the subsoil. Bioretention cells are capable of reducing sediment, nutrients, oil and grease, and trace metals. Bioretention systems should be sited in close proximity to the origin of the stormwater runoff to be treated. The major difference between bioretention systems and other filtration systems is the use of vegetation. A typical surface sand filter is designed to be maintained with no vegetation, whereas a bioretention cell is planted with a variety of shrubs and perennials whose roots assist with pollutant uptake. The use of vegetation allows these systems to blend in with other landscaping features. See SWM Volume 2, 4-3.4c, Treatment Practices, Bio-Retention System, page 110.

<u>Construction Considerations:</u> After the stone and bio-media has been installed, Filtrexx Silt Soxx or approved equal, will be installed at the toe of slope intersection between the berm and bio-media and will remain until the slopes of the berm are stable.

<u>Maintenance Considerations:</u> Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection. Pretreatment measures should be inspected at least twice annually, and cleaned of accumulated sediment as warranted by inspection, but no less than once annually. Trash and debris should be removed at each inspection. At least once annually, system should be inspected for drawdown time. If bioretention system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to

determine measures required to restore filtration function or infiltration function (as applicable), including but not limited to removal of accumulated sediments or reconstruction of the filter media. Vegetation should be inspected at least annually, and maintained in healthy condition, including pruning, removal and replacement of dead or diseased vegetation, and removal of invasive species. All 2:1 side slopes within the BMP will be maintained via weedwhacker.

In-Ground Infiltration Basin

Description: Infiltration basins are impoundments designed to temporarily store runoff, allowing all or a portion of the water to infiltrate into the ground. An infiltration basin is designed to completely drain between storm events. An infiltration basin is specifically designed to retain and infiltrate the entire Water Quality Volume. Some infiltration basins may infiltrate additional volumes during larger storm events, but many will be designed to release stormwater exceeding the water quality volume from the larger storms. In a properly sited and designed infiltration basin, water quality treatment is provided by runoff pollutants binding to soil particles beneath the basin as water percolates into the subsurface. Biological and chemical processes occurring in the soil also contribute to the breakdown of pollutants. Infiltrated water is used by plants to support growth or it is recharged to the underlying groundwater. As with all impoundment BMPs, surface infiltration basins should be designed with an outlet structure to pass peak flows during a range of storm events, as well as with an emergency spillway to pass peak flows around the embankment during extreme storm events that exceed the combined infiltration capacity and outlet structure capacity of the facility. See SWM Volume 2, 4-3.3b, Treatment Practices, In-Ground Infiltration Basin, page 88.

<u>Maintenance Considerations:</u> Removal of debris from inlet and outlet structures. Removal of accumulated sediment. Inspection and repair of outlet structures and appurtenances. Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection. Inspection of pretreatment measures at least twice annually, and removal of accumulated sediment as warranted by inspection, but no less than once annually. Periodic mowing of embankments. Removal of woody vegetation from embankments. Inspection and repair of embankments and spillways. If an infiltration system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore infiltration function, including but not limited to removal of accumulated sediments or reconstruction of the infiltration trench. All 2:1 side slopes within the BMP will be maintained via weedwhacker.

Rain-Garden with Infiltration (Bio-Retention System)

<u>Design Intent</u>: A Rain Garden with Infiltration (P-103) is designed and located to intercept surface water runoff from compacted gravel surfaces discharging from roadside swales and conveyance swales.

<u>Description:</u> A bioretention system (sometimes referred to as a "rain garden") is a type of filtration BMP designed to collect and filter moderate amounts of stormwater runoff using conditioned planting soil beds, gravel beds and vegetation within shallow depressions. The bioretention system may be designed with an underdrain, to collect treated water and convey it to discharge, or it may be designed to infiltrate the treated water directly to the subsoil. (In this case it is designed to infiltrate.) Bioretention cells are capable of reducing sediment, nutrients, oil and grease, and trace metals. Bioretention systems should be sited in close proximity to the origin of the stormwater runoff to be treated. The major difference between bioretention systems and other filtration systems is the use of vegetation. A typical surface sand filter is designed to be maintained with no vegetation, whereas a bioretention cell is planted with a variety of shrubs and perennials whose roots assist with pollutant uptake. The use of vegetation allows these systems to blend in with other landscaping features. See SWM Volume 2, 4-3.4c, Treatment Practices, Bio-Retention System, page 110.

<u>Construction Considerations</u>: After the stone and bio-media has been installed, Filtrexx Silt Soxx, or approved equal, will be installed at the toe of slope, at the intersection between the berm and bio-media. This will remain until the slopes of the berm are stable. This specification is intended to protect the bio-media.

<u>Maintenance Considerations:</u> Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection. Pretreatment measures should be inspected at least twice annually, and cleaned of accumulated sediment as warranted by inspection, but no less than once annually. Trash and debris should be removed at each inspection. At least once annually, system should be inspected for drawdown time. If bioretention system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore filtration function or infiltration function (as applicable), including but not limited to removal of accumulated sediments or reconstruction of the filter media. Vegetation should be inspected at least annually, and maintained in healthy condition, including pruning, removal and replacement of dead or diseased vegetation, and removal of invasive species. All 2:1 side slopes within the BMP will be maintained via weedwhacker.

Outlet Protection, Emergency Spillways & Level Spreaders

<u>Design Intent</u>: Each of the Subsurface Gravel Wetlands and the Infiltration Pond, will be installed with a rip rap emergency spillway, outlet pipes will be protected by outlet protection, and BMP discharge will be converted to sheet flow by level spreaders.

Outlet Protection

<u>Description</u>: Outlet protection is typically provided at stormwater discharge conduits from structural best management practices to reduce the velocity of concentrated stormwater flows to prevent scour and minimize the potential for downstream erosion. Outlet protection is also provided where conduits discharge runoff into an in-ground stormwater management practice (e.g., pond or swale) to prevent scour where flow enters the BMP. See SWM Volume 2, 4-6.6 Conveyance Practices, Outlet Protection, page 172.

<u>Maintenance Considerations</u>: Inspect the outlet protection annually for damage and deterioration. Repair damages immediately.

Stone Berm Level Spreader

<u>Description:</u> A stone berm level spreader is an outlet structure constructed at zero percent grade across a slope used to convert concentrated flow to "sheet flow." It disperses or "spreads" flow thinly over a receiving area, usually consisting of undisturbed, vegetated ground. The conversion of concentrated flow to shallow, sheet flow allows runoff to be discharged at non-erosive velocities onto natural ground. To stabilize the spreader outlet, a stone berm is provided to dissipate flow energy, and help disperse flows along the length of the spreader. Level spreaders are not designed to remove pollutants from stormwater; however, some suspended sediment and associated phosphorous, nitrogen, metals and hydrocarbons will settle out of the runoff through settlement, filtration, infiltration, absorption, decomposition and volatilization. See SWM Volume 2, 4-6.6 Conveyance Practices, Stone Berm Level Spreader, page 162.

<u>Maintenance Considerations</u>: Inspect at least once annually for accumulation of sediment and debris and for signs of erosion within approach channel, spreader channel or down-slope of the spreader. Remove debris whenever observed during inspection. Remove sediment when accumulation exceeds 25% of spreader channel depth. Mow as required by landscaping design. At a minimum, mow annually to control woody vegetation within the spreader. Snow should not be stored within or down-slope of the level spreader or its approach channel. Repair any erosion and re-grade or replace stone berm material, as warranted by

inspection. Reconstruct the spreader if down-slope channelization indicates that the spreader is not level or that discharge has become concentrated, and corrections cannot be made through minor re-grading.

Emergency Spillway

<u>Description</u>: A rip rap trapezoidal open water outlet to a Best Management Practice pond or basin. The elevation of the spillway is normally set six-inches below the top of the embankment or berm set so that the 25-year 24-hour storm event does not overtop the embankment. The rip rap stone size will be designed to prevent erosion of the spillway and the depth of the rip rap will be the same as that of outlet protection.

<u>Maintenance Considerations</u>: The spillway will be inspected to ensure that the rip rap has not been relocated by runoff, that it is clear of vegetation, and clear of all trash and gross solids.

Street Sweeping

Description:

Street sweeping is a pollution prevention practice that removes sediment, debris and trash that accumulates along streets and roads from winter sanding practices and everyday use. Street sweeping is often performed to improve aesthetics and to reduce the export of sand to the drainage network and receiving waters. In addition to sediment, debris and trash, other pollutants that may be minimized through street sweeping include some nutrients, oxygen-demanding substances and trace metals. See SWM Volume 2, 4-2, Source Control BMPS, Street Sweeping, page 52.

<u>Maintenance Considerations</u>: Inspect and maintain street sweeping equipment in accordance with manufacturer's recommendations.

Control of Invasive Species

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as

"hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

Snow Removal & Winter Maintenance

<u>Description</u>: Drainage and stormwater systems need to be maintained during the winter months so that surface water runoff from a rain storm does not become a impounding and icing problem. Sand and salt should be used at the rate that prevents sedimentation problems or excess salt deposited but yet enough to allow for protection for pedestrians and vehicles.

<u>Maintenance Considerations</u>: The edge of pavement where surface water sheet flow is designed to leave the paved area, the edge of pavement and shoulder need to be plowed to allow runoff to leave the pavement. Snow is to piled in designated areas and removed from the site when the on-site storage locations have been exceeded. At the end of the winter season, sediment is to be swept from the paved surfaces and removed from the drainage system. (Sumps if provided, sediment forebays, swale lines.) NHDES offers training (Green SnowPro Certification) for contractors and owners. <u>https://www.des.nh.gov/land/roads/road-salt-reduction/green-snowpro-certification</u> Please find attached NHDES Green SnoPro Utilization Chart which is required to be used.

Feb. 15, 2023/Rev: Dec. 11, 2023 Page 13 of 20

Annual Report

Description: The owner is responsible to keep an **I & M Activity Log** that documents inspection, maintenance and repairs to the storm water management system, and a **Deicing Log** to track the amount and type of deicing material applied to the site. The original owner is responsible to ensure that any subsequent owner (s) have copies of the <u>Stormwater System Operation: Inspection & Maintenance Manual</u>, copies of past logs and check lists. This includes any owner association for potential condominium conversion of the property. The Annual Report will be prepared and submitted to the Town of Nottingham, Department of Public Works, Engineering Department with copies of both logs and check lists no later than December 15th of each year and made available to NHDES upon request. Upon an ownership change, the Annual Report will include the Transfer of Ownership Responsibility Forms duplicated from the form found below.

The plans that accompany this manual includes a plan sheet, "Inspection & Maintenance Plan" and copies of the Stormwater Treatment Design Sheets. The owner will also maintain a complete set of the approved original design plans.

Respectfully BERRY SURVEYING & ENGINEERING

Kenneth A. Berry, PE, LLS CPSWQ, CPESC, CESSWI Principal, VP – Technical Operations

Christopher R. Berry, SIT Principal President Design Engineer

STORMWATER SYSTEM OPERATIONS: INSPECTION & MAINTENANCE MANUAL

Inspection & Maintenance Manual Checklist

Ŋ	Date BMP / System		Minimum Minimum Inspection Inspection Frequency Requirements		Maintenance / Cleanout Threshold		
		Pavement Sweeping	Three Times Per Year	Clean Pavement	Pavement areas will be swept and sedimentation removed so the surface is clean		
	Litter/Trash Removal		Routinely	Inspect dumpsters, outdoor waste receptacles area, and yard areas.	Parcel will be free of litter/trash.		
		Deicing Agents	N/A	N/A	Use salt as the primary agent for roadway safety during winter.		
		Invasive Species	Two times per year.	Inspect for Invasive Species	Remove and dispose invasive species.		
		Drainage Pipes / Outlet Structures	1 time per 2 years	Check for sediment accumulation & clogging.	Less than 2" sediment depth		

Owl Ridge Builders, LLC 104 Raymond Road, Nottingham, NH 03290 Smoke Street, Nottingham, Tax Map 23, Lot 11

Feb. 15, 2023/Rev: Dec. 11, 2023 Page 15 of 20

☑ Date		BMP / System	Minimum Inspection Frequency	Minimum Inspection Requirements	Maintenance / Cleanout Threshold
		Outlet Structure	2 times per year	Check for sediment accumulation & clogging.	Any accumulated Sediment or debris.
		Subsurface Gravel Wetland / Infiltration Pond	2 times per year	Check for sediment and debris accumulation buildup.	Remove sediment & debris when required. Remove Invasive Species
		Rain Garden with Infiltration / Rain Garden	Annually	Drain completely with 72 hours	Evaluate the surface of the Infiltration Pond for sedimentation and clogging. Remove clogging and restore the pond surface to original conditions.
		Subsurface Gravel Wetland	See Attached NHDOT Checklist	See Attached NHDOT Checklist	See Attached NHDOT Checklist
		Riprap Outlet Protection	Annually	Check for sediment buildup and structure damage.	Remove excess sediment and repair damage.
		Winter Maintenance	Ongoing	Remove snow as directed.	Ongoing

Feb. 15, 2023/Rev: Dec. 11, 2023 Page 16 of 20

	Post Winter Maintenance	Annually	Remove excess sand, gross solids, and repair vegetation and plantings	Parcel will be free of excess sand, litter/trash.
	Annual Report	1 time per year	Submit Annual Report to Nottingham Planning Dept. and kept on file by the owner.	Report to be submitted on or before December 15th each year.

See also attached, UNHSC Regular Inspection and Maintenance Guidance for Gravel Wetland Stormwater Management Device.

Inspection Check List: Page 3

The following drainage features will all require periodic inspections and maintenance based on this manual in addition to deep sump catch basins throughout:

Conveyance Swales, cross culverts, and roadside ditches

Treatment Swale

Detention Ponds (P-104, P105) w/ Outlet Structure

Sediment Forebays

Subsurface Gravel Wetland P-102 and P-108 w/ Outlet structures, and emergency spillway.

Rain Garden with Infiltration (P-103) w/ Outlet Structured and Emergency Spillway

Rain Garden (P-107) w/ Underdrain, Outlet Structure and Emergency Spillway

Infiltration Pond w/ Emergency Spillway

Outlet Protection and Level Spreader

Feb. 15, 2023/Rev: Dec. 11, 2023 Page 17 of 20

Reference is also made to the UNHSC / NHDOT <u>Design and Maintenance of Subsurface</u> <u>Gravel Wetlands</u>, (attached) which includes specific Inspection and Maintenance Guidance in Attachment B, Page 23.

Snow Removal and Winter Maintenance

Inspection Notes: (Add pages as required.)

Feb. 15, 2023/Rev: Dec. 11, 2023 Page 18 of 20

STORMWATER SYSTEM OPERATIONS: INSPECTION & MAINTENANCE MANUAL

Inspection & Maintenance Manual Log Form

Owl Ridge Builders, LLC 104 Raymond Road, Nottingham, NH 03290 Smoke Street, Nottingham, Tax Map 23, Lot 11

BMP / System	Date Inspected	Inspector	Cleaning/Repair (List Items & Comments)	Repair Date	Performed By:

See also attached Checklist for Inspection of Gravel Wetland

STORMWATER SYSTEM OPERATIONS: INSPECTION & MAINTENANCE MANUAL

Deicing Log Form

Owl Ridge Builders, LLC 104 Raymond Road, Nottingham, NH 03290 Smoke Street, Nottingham, Tax Map 23, Lot 11

Amount Applied	Performed By:	Date	Amount Applied	Performed By:
		Amount Applied Performed By: - - - </td <td>Amount Applied Performed By: Date Image: I</td> <td>Amount AppliedPerformed By:DateAmount AppliedImage: AppliedImage: Applied</td>	Amount Applied Performed By: Date Image: I	Amount AppliedPerformed By:DateAmount AppliedImage: AppliedImage: Applied

STORMWATER SYSTEM OPERATION & MAINTENANCE PLAN CERTIFICATION

	Owner	Responsibility
Name:	Owl Ridge Builders, LLC Joe Fernald	The owner is responsible for the conduct of all construction activities,
Address: Telephone	104 Raymond Road Nottingham, NH 03290 e: 1-207-337-4320	and ultimate compliance with all the provisions of the Stormwater System Operation & Maintenance Plan and the
E-mail:	owlridgebuilders@gmail.com	implementation of the Inspection and Maintenance Manual.

OWNER CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signed:	 Date
Jigneu.	 Date

Printed Name:

Representing:

Infiltration Feasibility Report

Prepared for:

Owl Ridge Builders 104 Raymond Road Nottingham, NH 03290

Land of:

Frederick Fernald PO Box 1805 Wolfeboro, NH 03894

LOCATION

Smoke Street Nottingham, NH 03290

Tax Map 23, Lot 11

Prepared by:

File Number DB2020-066

February 15, 2023 Rev: December 11, 2023

Table of Contents

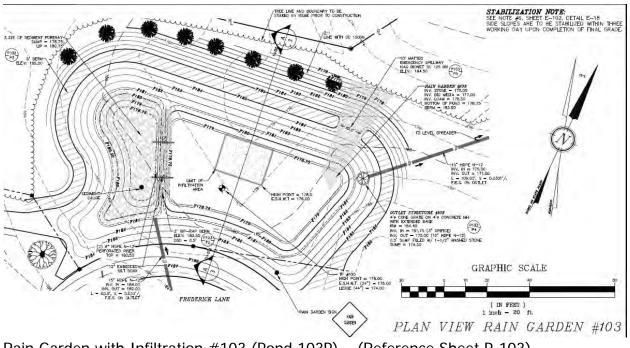
1.0	Location of Practice	Page 2
2.0	Existing Topography at Location of Practice	Page 2
3.0	Test Pit Location	Page 2
4.0	Seasonal High Water Table and Bedrock Elevations	Page 5
5.0	Profile Descriptions	Page 7
6.0	Soil Plan	Page 8
7.0	Summary of Infiltration Rates	Page 9

1.0 Location of Practice:

The project proposes infiltration for ground water recharge as well as channel flow protection purposes via Rain Garden with Infiltration #103 and Infiltration Pond #106.

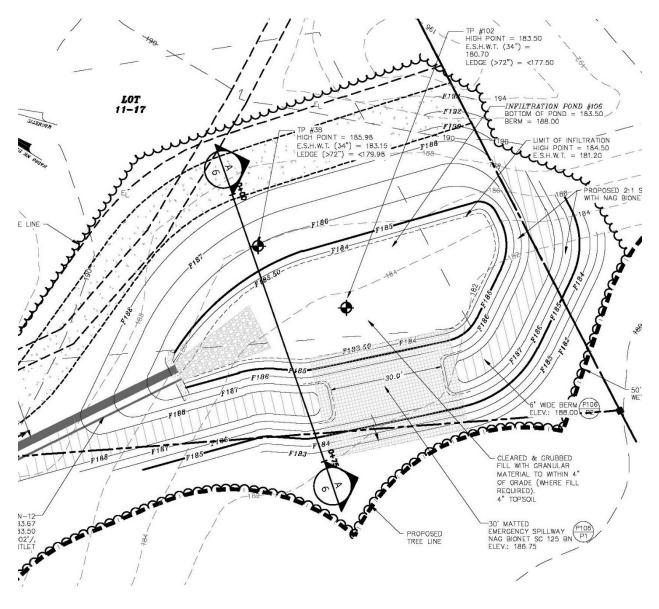
Rain Garden with Infiltration #103 (Pond 103P) – This Rain Garden is in the southern portion of the property adjacent to Lot 12-4, Tax Map 23. This land area is currently forested and has a slope of 7% generally to the north.

Infiltration Pond #106 (Pond 106P) is centrally located on the norther portion of the property.


2.0 Existing Topography at the Location of the Practice

Rain Garden with Infiltration #103 (Pond 103P) – This land area is currently forested and has a slope of 7% generally to the north.

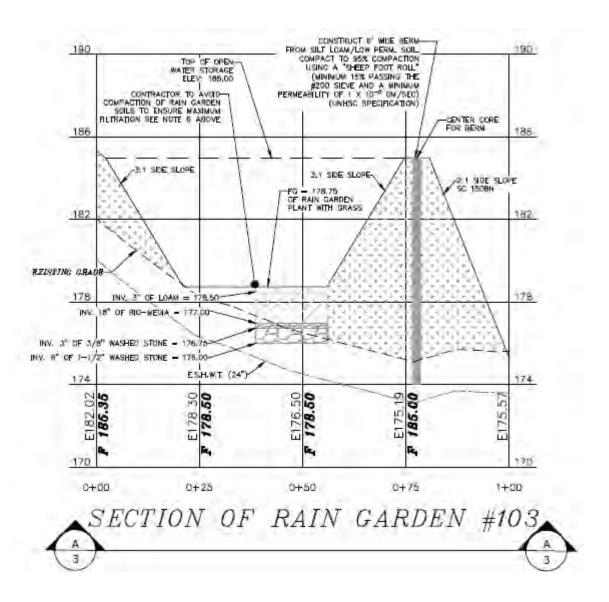
Infiltration Pond #106 (Pond 106P) – This land area is currently forested and has of slope of 9% generally to the south.


3.0 Test Pit Locations

Rain Garden with Infiltration #103 (Pond 103P) – The practice has a surface area of 2,695 SF and infiltration area of 400 SF. The practice is located over test pit #100. See test pit profiles below. See test pit locations on Sheet P-103, Proposed Rain Garden (with Infiltration) #103 Detail Plan. The test holes were completed in March 2022, (See Site Specific Soil Map Report by John P Hayes III). The soil in the vicinity of this practice is Deerfield (313C), considered to be HSG B soil where the most restrictive published Ksat is 6 inches per hour. This practice was designed using 3 in. / hr.

Rain Garden with Infiltration #103 (Pond 103P) – (Reference Sheet P-103)

Infiltration Pond #106 (Pond 106P) – The practice has a surface area of 1,844 SF. The practice is located over test pit #102. See test pit profiles below. See test pit locations on Sheet P-106, Proposed Infiltration Pond #106 Detail Plan.

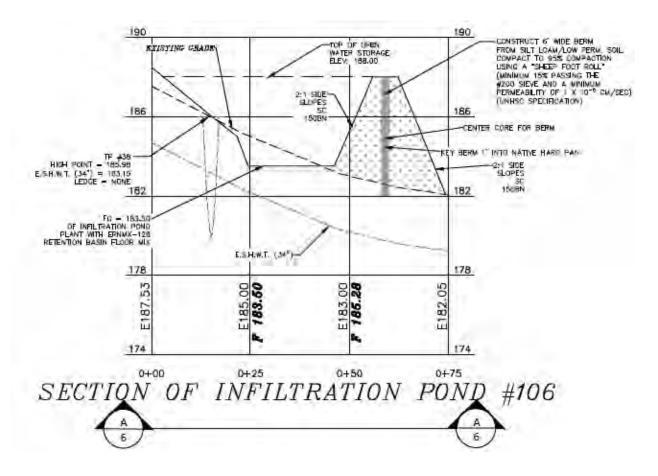

PLAN VIEW INFILTRATION POND #106

4.0 Seasonal High Water Table (SHWT) and Bedrock Elevations

TP#100:	Existing Surface Elevation of TP =	178.00′
	SHWT 24-Inches	176.00′
	Bedrock 44-Inches	174.00′
	Ground Water = N/A	
	Deepest Elevation of TP =	174.00′

Rain Garden w/ Infiltration #103 (Pond 103P): Inv. Biomedia = 177.00'

See cross sections below.



Infiltration Feasibility ReportFebruary 15, 2023/Rev: December 11, 2023Owl Ridge Builders, Smoke Street, Nottingham NH Tax Map 23, Lot 11Page 6 of 9

TP#102:	Existing Surface Elevation of TP =	183.50′
	SHWT 34-Inches	180.70′
	Bedrock >72-Inches	<177.50′
	Ground Water = N/A	
	Deepest Elevation of TP =	177.50′

Infiltration Pond #106 (Pond 106P): Inv. Pond = 183.50'

See cross sections below.

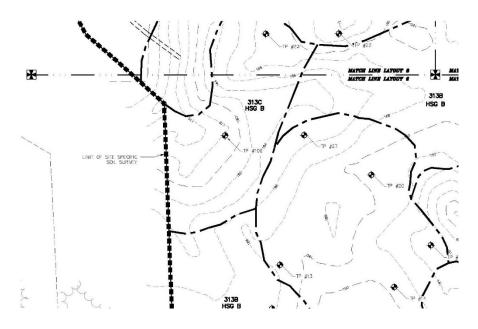
5.0 **Profile descriptions**

The following test pit data was collected, see profile below.

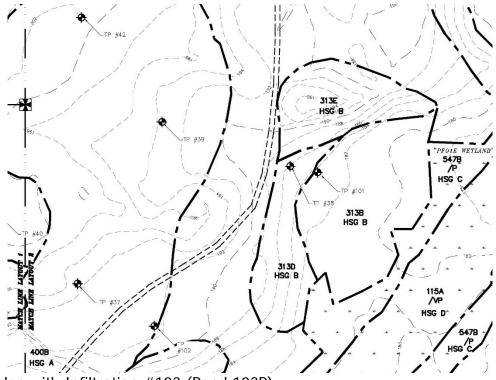
TEST PIT #100

0-6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE
6-20 7.5YR 4/6 STRONG BROWN, FINE SANDY LOAM, GRANULAR, FRIABLE
20-36 10YR 5/4 YELLOWISH BROWN, FINE SANDY LOAM, BLOCKY, FRIABLE
36-44 5Y 5/3 OLIVE, GRAVELLY FINE SANDY LOAM, WITH REDOX. FEATUR. PRESENT, MASSIVE, FIRM

E.S.H.W.T. @ 24 INCHES RESTRICTIVE LAYER @ 36 INCHES GROUND WATER @ 36 INCHES TERMINATED @ 44 INCHES REFUSAL @ 44 INCHES


TEST PIT #102

0-6 10YR 3/2 VERY DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE
6-22 10YR 5/6 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE
22-34 10YR 5/4 YELLOWISH BROWN, SAND, GRANULAR, FRIABLE
34-72 2.5Y 5/3 LIGHT OLIVE BROWN, STRATIFIED SAND AND VERY FINE SANDY
LOAM, WITH REDOX. FEATUR. PRESENT, GRANULAR, FRIABLE


E.S.H.W.T. @ 34 INCHES RESTRICTIVE LAYER @ N/A GROUND WATER @ 40 INCHES TERMINATED @ 72 INCHES REFUSAL @ N/A

6.0 Soil Plan in the Area of the Constructed Practice

Rain Garden with Infiltration #103 (Pond 103P) is located over Deerfield See Test Pit #100.

Infiltration Pond#106 (Pond 106P) is located over Deerfield See Test Pit #102

Rain Garden with Infiltration #103 (Pond 103P)

7.0 Summary of Infiltration Rate

Rain Garden with Infiltration #103 and #106 are located over Deerfield (313), considered to be HSG B, soil area as mapped by Site Specific Soil Survey by John P. Hayes III, CSS, with a documented Ksat of 6 inches per hour. The design exfiltration rate for the rain garden is 3 inches per hour.

Amoozemeter testing was not conducted on site and the alternate method of using the USDA / NRCS published values was employed. Reference is made to K Sat Values for New Hampshire Soils (Including Hydrologic and DES Soil Lot Sizing Groups, sponsored by the Society of Soil Scientists of Norther New England, Publication #5 dated September 2009.

Respectfully submitted:

BERRY SURVEYING & ENGINEERING

Christopher R. Berry, SIT Principal, President Senior Design Engineer

Kenneth A. Berry, PE, LLS CPSWQ, CPESC, CESSWI Principal, VP – Technical Operations

2020/2022	NHRIV600030703-04	DUDLEY BROOK - UNNAMED BROOK	RAYMOND, DEERFIELD, NOTTINGHAM	4.340	MILES	Aquatic Life Integrity	Oxygen, Dissolved	5-P			Non-ORW
2020/2022	NHRIV600030703-04	DUDLEY BROOK - UNNAMED BROOK	RAYMOND, DEERFIELD, NOTTINGHAM	4.340	MILES	Aquatic Life Integrity	рН	5-M			Non-ORW
2020/2022	NHRIV600030703-05	LAMPREY RIVER	RAYMOND	2.647	MILES	Aquatic Life Integrity	рН	5-M			Non-ORW
2020/2022	NHRIV600030703-07-02	LAMPREY RIVER - CARROLL LAKE BEACH	RAYMOND	0.020	MILES	Primary Contact Recreation	Escherichia coli	4A-P	9/21/2010 NEW HAMPSHIRE STATEWIDE BACTERIA	39276	Non-ORW
2020/2022	NHRIV600030703-09	LAMPREY RIVER	RAYMOND	2.295	MILES	Aquatic Life Integrity	pH	5-M			Non-ORW
2020/2022	NHRIV600030703-10	LAMPREY RIVER	RAYMOND	0.558	MILES	Aquatic Life Integrity	рН	5-M			Non-ORW
2020/2022	NHRIV600030703-11	LAMPREY RIVER	EPPING, RAYMOND	3.270	MILES	Aquatic Life Integrity	Aluminum	5-M			Non-ORW
2020/2022	NHRIV600030703-11	LAMPREY RIVER	EPPING, RAYMOND	3.270	MILES	Aquatic Life Integrity	рН	5-M			Non-ORW
2020/2022	NHRIV600030703-14	PAWTUCKAWAY RIVER - UNNAMED BROOK	NOTTINGHAM, EPPING, RAYMOND	6.751	MILES	Aquatic Life Integrity	Dissolved oxygen saturation	5-P			Non-ORW
2020/2022	NHRIV600030703-14	PAWTUCKAWAY RIVER - UNNAMED BROOK	NOTTINGHAM, EPPING, RAYMOND	6.751	MILES	Aquatic Life Integrity	Oxygen, Dissolved	5-P			Non-ORW
2020/2022	NHRIV600030703-14	PAWTUCKAWAY RIVER - UNNAMED BROOK	NOTTINGHAM, EPPING, RAYMOND	6.751	MILES	Aquatic Life Integrity	pH	5-M			Non-ORW
2020/2022	NHRIV600030703-15	LAMPREY RIVER	EPPING	4.692	MILES	Aquatic Life Integrity	Dissolved oxygen saturation	5-M			Non-ORW
2020/2022	NHRIV600030703-15	LAMPREY RIVER	EPPING	4.692	MILES	Aquatic Life Integrity	Oxygen, Dissolved	5-P			Non-ORW
2020/2022	NHRIV600030703-15	LAMPREY RIVER	EPPING	4.692	MILES	Aquatic Life Integrity	pH	5-M			Non-ORW
2020/2022	NHRIV600030703-15	LAMPREY RIVER	EPPING	4.692	MILES	Primary Contact Recreation	Escherichia coli	4A-P	9/21/2010 NEW HAMPSHIRE STATEWIDE BACTERIA	39272	Non-ORW
2020/2022	NHRIV600030703-17	UNNAMED BROOK - TO LAMPREY RIVER	EPPING	3.280	MILES	Aquatic Life Integrity	pH	5-M	STELLED NEW HAWI SHIRE STATEWISE BACTERIA	55272	Non-ORW
2020/2022	NHRIV600030703-18	LAMPREY RIVER	EPPING	3.247	MILES	Aquatic Life Integrity	рп	5-M			Non-ORW
2020/2022	NHRIV600030703-18	LAMPREY RIVER	EPPING	3.247	MILES	Primary Contact Recreation	Escherichia coli	4A-M	9/21/2010 NEW HAMPSHIRE STATEWIDE BACTERIA	39272	Non-ORW
2020/2022	NHRIV600030703-20	RUM BROOK	EPPING	4.791	MILES	Aquatic Life Integrity	pH	5-M	3/21/2010 New HAMPSHIKE STATEWIDE BACTERIA	55272	Non-ORW
2020/2022	NHRIV600030704-02	BACK CREEK - UNNAMED BROOK	DEERFIELD	6.449	MILES		-	5-M			
•						Aquatic Life Integrity	pH				Non-ORW
2020/2022	NHRIV600030704-04	BACK CREEK - UNNAMED BROOK	DEERFIELD, NOTTINGHAM	8.064	MILES	Aquatic Life Integrity	pH	5-M			Non-ORW
2020/2022	NHRIV600030704-06	ROUND POND BROOK	NOTTINGHAM	3.701	MILES	Aquatic Life Integrity	pH Disasterial annual antipation	5-M			Non-ORW
2020/2022	NHRIV600030704-07	MOUNTAIN BROOK - UNNAMED BROOKS	NOTTINGHAM, DEERFIELD	6.199	MILES	Aquatic Life Integrity	Dissolved oxygen saturation	5-M			Non-ORW
2020/2022	NHRIV600030704-07 NHRIV600030704-07	MOUNTAIN BROOK - UNNAMED BROOKS	NOTTINGHAM, DEERFIELD	6.199	MILES	Aquatic Life Integrity	Oxygen, Dissolved	5-P			Non-ORW
2020/2022		MOUNTAIN BROOK - UNNAMED BROOKS	NOTTINGHAM, DEERFIELD	6.199	MILES	Aquatic Life Integrity	pH	5-P			Non-ORW
2020/2022	NHRIV600030704-08		NOTTINGHAM	1.706	MILES	Aquatic Life Integrity	рН	5-M			Non-ORW
2020/2022	NHRIV600030704-10	MOUNTAIN BROOK - BETWEEN MOUNTAIN POND AND	NOTTINGHAM	0.179	MILES	Aquatic Life Integrity	рН	5-M			Non-ORW
	NULDIN/CO0022724-42										
2020/2022	NHRIV600030704-13	FUNDY BROOK	NOTTINGHAM	0.422	MILES	Aquatic Life Integrity	pH	5-P			Non-ORW
2020/2022	NHRIV600030704-14	WHITE GROVE BROOK - TO PAWTUCKAWAY POND	NOTTINGHAM	0.179	MILES	Aquatic Life Integrity	pH	5-M			Non-ORW
2020/2022	NHRIV600030705-13	NORTH RIVER	NOTTINGHAM	8.109	MILES	Aquatic Life Integrity	pH	5-M			Non-ORW
2020/2022	NHRIV600030706-02	NORTH RIVER	NOTTINGHAM, EPPING, LEE	8.000	MILES	Aquatic Life Integrity	Dissolved oxygen saturation	5-M			Non-ORW
2020/2022	NHRIV600030706-02	NORTH RIVER	NOTTINGHAM, EPPING, LEE	8.000	MILES	Aquatic Life Integrity	Oxygen, Dissolved	5-M			Non-ORW
2020/2022	NHRIV600030706-02	NORTH RIVER	NOTTINGHAM, EPPING, LEE	8.000	MILES	Aquatic Life Integrity	рН	5-P			Non-ORW
2020/2022	NHRIV600030706-02	NORTH RIVER	NOTTINGHAM, EPPING, LEE	8.000	MILES	Primary Contact Recreation	Escherichia coli	4A-P	9/21/2010 NEW HAMPSHIRE STATEWIDE BACTERIA	39273	Non-ORW
2020/2022	NHRIV600030707-01	PERKINS BROOK - THRU ROUND POND TO MENDUMS POND	BARRINGTON, NOTTINGHAM	0.158	MILES	Aquatic Life Integrity	рН	5-P			Non-ORW
2020/2022	NHRIV600030707-02	HOWE BROOK	BARRINGTON	0.153	MILES	Aquatic Life Integrity	Dissolved oxygen saturation	5-M			Non-ORW
2020/2022	NHRIV600030707-02	HOWE BROOK	BARRINGTON	0.153	MILES	Aquatic Life Integrity	Oxygen, Dissolved	5-M			Non-ORW
2020/2022	NHRIV600030707-02	HOWE BROOK	BARRINGTON	0.153	MILES	Aquatic Life Integrity	pH	5-P			Non-ORW
2020/2022	NHRIV600030707-03	LITTLE RIVER	NOTTINGHAM, BARRINGTON	10.315	MILES	Aquatic Life Integrity	pH	5-M			Non-ORW
2020/2022	NHRIV600030707-07	LITTLE RIVER	LEE, NOTTINGHAM	7.225	MILES	Aquatic Life Integrity	Aluminum	5-M			Non-ORW
2020/2022	NHRIV600030707-07	LITTLE RIVER	LEE, NOTTINGHAM	7.225	MILES	Aquatic Life Integrity	Lead	5-M			Non-ORW
2020/2022	NHRIV600030707-07	LITTLE RIVER	LEE, NOTTINGHAM	7.225	MILES	Aquatic Life Integrity	pH	5-M			Non-ORW
2020/2022	NHRIV600030707-07	LITTLE RIVER	LEE, NOTTINGHAM	7.225	MILES	Primary Contact Recreation	Escherichia coli	4A-M	9/21/2010 NEW HAMPSHIRE STATEWIDE BACTERIA	39273	Non-ORW
2020/2022	NHRIV600030707-13	MCDANIAL BROOK - TO MENDUMS POND	BARRINGTON	2.606	MILES	Aquatic Life Integrity	pH	5-P			Non-ORW
2020/2022	NHRIV600030708-01	PISCASSIC RIVER	FREMONT	4.960	MILES						ORW
2020/2022	NULDIN/C00020700 02		EPPING, BRENTWOOD, EXETER,	10.024	N 411 EC						0.011/
2020/2022	NHRIV600030708-02	PISCASSIC RIVER - UNNAMED BROOK	FREMONT, NEWFIELDS	10.024	MILES						ORW
2020/2022	NHRIV600030708-07	PISCASSIC RIVER	NEWMARKET, NEWFIELDS	7.385	MILES	Aquatic Life Integrity	Dissolved oxygen saturation	5-P			Non-ORW
2020/2022	NHRIV600030708-07	PISCASSIC RIVER	NEWMARKET, NEWFIELDS	7.385	MILES	Aquatic Life Integrity	Oxygen, Dissolved	5-P			Non-ORW
2020/2022	NHRIV600030708-07	PISCASSIC RIVER	NEWMARKET, NEWFIELDS	7.385	MILES	Aquatic Life Integrity	pH	5-M			Non-ORW
2020/2022	NHRIV600030708-11	FRESH RIVER - BEECH HILL BROOK - UNNAMED BROOK	EXETER, EPPING, NEWFIELDS	3.542	MILES						Review OneStop GIS
2020/2022	NHRIV600030708-13	UNNAMED BROOK	FREMONT	0.225	MILES						ORW
2020/2022	NHRIV600030708-14	BROWN BROOK - TO PISCASSIC RIVER	FREMONT, BRENTWOOD, EPPING	9.088	MILES	Aquatic Life Integrity	Dissolved oxygen saturation	5-M			ORW
2020/2022	NHRIV600030708-14	BROWN BROOK - TO PISCASSIC RIVER	FREMONT, BRENTWOOD, EPPING	9.088	MILES	Aquatic Life Integrity	Oxygen, Dissolved	5-P			ORW
2020/2022	NHRIV600030708-14	BROWN BROOK - TO PISCASSIC RIVER	FREMONT, BRENTWOOD, EPPING	9.088	MILES	Aquatic Life Integrity	рН	5-M			ORW
2020/2022	NHRIV600030708-16	UNNAMED BROOK	EPPING	0.070	MILES						ORW
2020/2022	NHRIV600030709-01	LAMPREY RIVER	EPPING	3.479	MILES	Aquatic Life Integrity	Oxygen, Dissolved	3-ND	1/30/2001 LAMPREY RIVER	9801	Non-ORW
2020/2022	NHRIV600030709-01	LAMPREY RIVER	LEE, EPPING	6.354	MILES	Aquatic Life Integrity	pH	5-M	,,==================================	5001	Non-ORW
2020/2022	NHRIV600030709-07	LAMPREY RIVER	LEE, EPPING	6.354	MILES	Primary Contact Recreation	Escherichia coli	4A-M	9/21/2010 NEW HAMPSHIRE STATEWIDE BACTERIA	39273	Non-ORW
2020/2022	NHRIV600030709-08	LAMPREY RIVER	LEE	1.674	MILES	Aquatic Life Integrity	pH	5-M	., ,	55275	Non-ORW
2020/2022	NHRIV600030709-09	LAMPREY RIVER	DURHAM	1.164	MILES	Aquatic Life Integrity	рн	5-M			Non-ORW
2020/2022	NHRIV600030709-13	MOONLIGHT BROOK	NEWMARKET	0.778	MILES	Aquatic Life Integrity	рн	5-M			Non-ORW
2020/2022	NHRIV600030801-01	FORDWAY BROOK	RAYMOND, CANDIA, CHESTER	3.401	MILES	Aquatic Life Integrity	ph Hq	5-M			Non-ORW
2020/2022	NHRIV600030801-01	FORDWAY BROOK	RAYMOND, CHESTER	14.294	MILES	Aquatic Life Integrity	Benthic-Macroinvertebrate Bioassessments (Streams)	5-P			Non-ORW
2020/2022	NHRIV600030801-05	FORDWAY BROOK - UNNAMED BROOK	RAYMOND, CHESTER	14.294 14.294	MILES	Aquatic Life Integrity	Dissolved oxygen saturation	5-P 5-M			Non-ORW
2020/2022	NHRIV600030801-05	FORDWAY BROOK - UNNAMED BROOK	RAYMOND, CHESTER	14.294 14.294	MILES	Aquatic Life Integrity	Oxygen, Dissolved	5-IVI 5-P			Non-ORW
2020/2022	NHRIV600030801-05	FORDWAY BROOK - UNNAMED BROOK	RAYMOND, CHESTER	14.294 14.294	MILES	Aquatic Life Integrity	pH	5-P 5-M			Non-ORW
2020/2022	NHRIV600030802-03	EXETER RIVER	SANDOWN, CHESTER	3.866	MILES	Aquatic Life Integrity	pn pH	5-IVI 5-M			Non-ORW
2020/2022	NHRIV600030802-03	EXETER RIVER	SANDOWN, CHESTER	3.866	MILES	Primary Contact Recreation	pn Escherichia coli	4A-P	9/21/2010 NEW HAMPSHIRE STATEWIDE BACTERIA	39272	Non-ORW
2020/2022	NHRIV600030802-03	TOWLE BROOK - TO PANDOLPIN DAM	CHESTER, SANDOWN	5.800 7.407	MILES	Primary Contact Recreation	Escherichia coli	4A-P 4A-P	9/21/2010 NEW HAMPSHIRE STATEWIDE BACTERIA 9/21/2010 NEW HAMPSHIRE STATEWIDE BACTERIA	39272	Non-ORW
2020/2022					IVITLES	i innary contact Recreation	Escheriellia con		SIZIZOTO INEN IMINI SIINE SIMIEVIDE DACIENIA	37213	
2020/2022	NHRIV600030802-16	UNNAMED BROOK - TO SOUTHWEST INLET OF PHILLIPS POND	HAMPSTEAD, SANDOWN	3.801	MILES	Aquatic Life Integrity	рН	5-M			Non-ORW
2020/2022			RAYMOND EDEMONIT	2 4 4 5	MULES		Ponthic Macroinvortabrata Piacessements (Charges-1)				Non OBW
2020/2022	NHRIV600030803-01		RAYMOND, FREMONT	2.445	MILES	Aquatic Life Integrity	Benthic-Macroinvertebrate Bioassessments (Streams)	5-P			Non-ORW
2020/2022	NHRIV600030803-01		RAYMOND, FREMONT	2.445	MILES	Aquatic Life Integrity	Habitat Assessment (Streams)	4C-P			Non-ORW
2020/2022	NHRIV600030803-01	EXETER RIVER	RAYMOND, FREMONT	2.445	MILES	Aquatic Life Integrity	pH Fachariakia aali	5-M		20272	Non-ORW
2020/2022	NHRIV600030803-01	EXETER RIVER	RAYMOND, FREMONT	2.445	MILES	Primary Contact Recreation	Escherichia coli	4A-M	9/21/2010 NEW HAMPSHIRE STATEWIDE BACTERIA	39273	Non-ORW
2020/2022	NHRIV600030803-05	EXETER RIVER	BRENTWOOD	5.000	MILES	Aquatic Life Integrity	Benthic-Macroinvertebrate Bioassessments (Streams)	5-M			Non-ORW
2020/2022	NHRIV600030803-05	EXETER RIVER	BRENTWOOD	5.000	MILES	Aquatic Life Integrity	Dissolved oxygen saturation	5-P			Non-ORW
2020/2022	NHRIV600030803-05	EXETER RIVER	BRENTWOOD	5.000	MILES	Aquatic Life Integrity	pH	5-M			Non-ORW
2020/2022	NHRIV600030803-05	EXETER RIVER	BRENTWOOD	5.000	MILES	Primary Contact Recreation	Escherichia coli	5-M			Non-ORW
2020/2022	NHRIV600030803-07	LITTLE RIVER - UNNAMED BROOK	KINGSTON, BRENTWOOD	3.985	MILES	Aquatic Life Integrity	Benthic-Macroinvertebrate Bioassessments (Streams)	5-M			Non-ORW
2020/2022	NHRIV600030804-06	DUDLEY BROOK - UNNAMED BROOK	BRENTWOOD, EXETER, FREMONT	13.218	MILES	Aquatic Life Integrity	Benthic-Macroinvertebrate Bioassessments (Streams)	5-P			Non-ORW
2020/2022	NHRIV600030804-06	DUDLEY BROOK - UNNAMED BROOK	BRENTWOOD, EXETER, FREMONT	13.218	MILES	Aquatic Life Integrity	Dissolved oxygen saturation	5-P			Non-ORW
2020/2022	NHRIV600030804-06	DUDLEY BROOK - UNNAMED BROOK	BRENTWOOD, EXETER, FREMONT	13.218	MILES	Aquatic Life Integrity	Oxygen, Dissolved	5-P			Non-ORW

Each Watershed Report Card covers a single 12-digit Hydrologic Unit Code (HUC12), on average a 34 square mile area. Each Watershed Report Card has three components;

- REPORT CARD A one page card that summarizes the overall use support for Aquatic Life Integrity, Primary Contact (i.e. Swimming), and Secondary Contact (i.e. Boating) Designated Uses on every Assessment Unit ID (AUID) within the HUC12.
- 2. HUC 12 MAP A map of the watershed with abbreviated labels for each AUID within the HUC12.
- 3. ASSESSMENT DETAILS Anywhere from one to forty pages with the detailed assessment information for each and every AUID in the Report Card and Map.

How are the Surface Water Quality Assessment determinations made?

All readily available data with reliable Quality Assurance/Quality Control is used in the biennial surface water quality assessments. For a full understanding of how the Surface Water Quality Standards (Env-Wq 1700) are translated into surface water quality assessments we urge the reader to review the 2020 <u>Consolidated Assessment and Listing Methodology</u> (CALM).

Where can I find more advanced mapping resources?

GIS files are available by assessment cycle at the NHDES FTP site.

I'd like to see the more raw water quality data?

The <u>web mapping tool</u> allows you to download the data used in the assessment of the primary contact and aquatic life designated uses by clicking on the "Data Access Waterbody Data (Aquatic Life and Swimming Uses)" link for any assessment unit.

How are assessments coded in the report card?

Assessment outcomes are displayed on a color scale as well as an alpha numeric scale that provides additional distinctions for the designated use and parameter level assessments as outlined in the table below.

		Severe	Poor	Likely Bad	No	Likely	Marginal	Good
					Data	Good		
		Not Supporting, Severe	Not Supporting, Marginal	Insufficient Information – Potentially Not Supporting	No Data	Insufficient Information – Potentially Full Supporting	Full Support, Marginal	Full Support, Good
CATEGORY	Description							
Category 2	Meets standards						2-M or 2-OBS	2-G
Category 3	Insufficient Information			3-PNS	3-ND	3-PAS		
Category 4	Does not Meet Standards;							
4A	TMDL* Completed	4A-P	4A-M or 4A-T					
4B	Other enforceable measure will correct the issue.	4B-P	4B-M or 4B-T					
4C	Non-pollutant (i.e. exotic weeds)	4С-Р	4C-M					
Category 5	TMDL* Needed	5-P	5-M or 5-T					

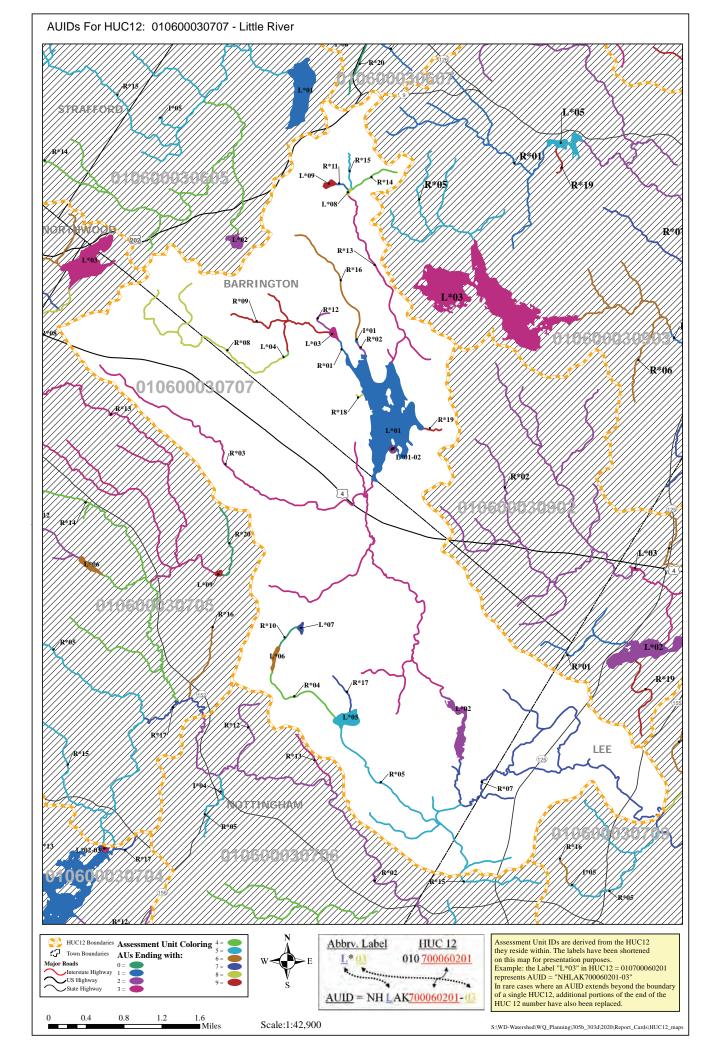
* TMDL stands for Total Maximum Daily Load studies

r Report:
Summary
Assessment
305(b)
Watershed

HUC 12: 010600030707

HUC 12 Name: Little River

(Locator map on next page only applies to this HUC12)


Assessment Cycle: Draft 2020

Good	Meets water quality standards/thresholds by a relatively large margin.
Marginal	Meets water quality standards/thresholds but only marginally.
Likely Good	Limited data available, however, the data that is available suggests that the parameter is Potentially Attaining Standards (PAS).
No Current Data	Insufficient information to make an assessment decision.
Likely Bad	Limited data available, however, the data that is available suggests that the parameter is Potentially Not Supporting (PNS) water quality standards.
Poor	Not meeting water quality standards/thresholds. The impairment is marginal.
Severe	Not meeting water quality standards/thresholds. The impairment is more severe and causes poor water quality.

Assessment Unit ID	Map Label	Assessment Unit Name	Aquatic Life	Fish Consump.	Swimming	Boating
NHIMP600030707-01	1*01	Trib To Mendums Pond		4A-M	3-ND	3-ND
NHLAK600030707-01	L*01	Mendums Pond	5-Р	4A-M	3-PAS	3-ND
NHLAK600030707-01-02	L*01-02	Mendums Pond - Unh Rec Area	3-ND	4A-M	3-ND	3-ND
NHLAK600030707-02	L*02	Nottingham Lake	3-ND	4A-M	3-ND	3-ND
NHLAK600030707-03	L*03	Round Pond	3-ND	4A-M	3-ND	3-ND
NHLAK600030707-04	L*04	Unnamed Pond	3-ND	4A-M	3-ND	3-ND
NHLAK600030707-05	L*05	Cedar Waters	3-ND	4A-M	3-ND	3-ND
NHLAK600030707-06	L*06	Langley Pond	3-ND	4A-M	3-ND	3-ND
NHLAK600030707-07	L*07	Cyrus Pond	3-ND	4A-M	3-ND	3-ND
NHLAK600030707-08	L*08	Round Ponds	3-ND	4A-M	3-ND	3-ND
NHLAK600030707-09	L*09	Unnamed Pond	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-01	R*01	Perkins Brook - Thru Round Pond To Mendums Pond	5-P	4A-M	3-ND	3-ND

NHRIV600030707-02	R*02	Howe Brook	5-P	4A-M	3-ND	3-ND
NHRIV600030707-03	R*03	Little River	5-M	4A-M	3-ND	3-ND
NHRIV600030707-04	R*04	Unnamed Brook - Thru Cyrus & Langley Ponds To Cedar Waters	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-05	R*05	Pea Porridge Brook	3-PAS	4A-M	3-ND	3-ND
NHRIV600030707-07	R*07	Little River	5-M	4A-M	4A-M	3-ND
NHRIV600030707-08	R*08	Unnamed Brook	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-09	R*09	Unnamed Brook	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-10	R*10	Unnamed Brook	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-11	R*11	Unnamed Brook	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-12	R*12	Unnamed Brook	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-13	R*13	Mcdanial Brook - To Mendums Pond	5-P	4A-M	3-ND	3-ND
NHRIV600030707-14	R*14	Unnamed Brook	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-15	R*15	Unnamed Brook	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-16	R*16	Unnamed Brook	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-17	R*17	Unnamed Brook	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-18	R*18	Wood Road Brook	3-ND	4A-M	3-ND	3-ND
NHRIV600030707-19	R*19	Powerline Brook	3-ND	4A-M	3-ND	3-ND

Assessment Unit ID: NHLAK600030707-02Size: 34.6Assessment Unit Name: Nottingham LakeAssessmeTown(s) Primary Town is Listed First:Beach: NNottingham

Size: 34.6670 ACRES Assessment Unit Category: 3-ND

Draft 2020, 305(b)/303(d) - All Reviewed Parameters by Assessment Unit

Designated Use Description	Desig. Use Category	Parameter Name	Parameter Threatened (Y/N)	Last Sample	Last Exceed	Parameter Category	TMDL Priority
Aquatic Life Integrity	3-ND	Chlorophyll-a	Z	N/A	NLV	3-ND	
		Dissolved oxygen saturation	Z			3-ND	
		Oxygen, Dissolved	Z			3-ND	
		Н	z			3-ND	
Fish Consumption	4A-M	MERCURY - FISH CONSUMPTION ADVISORY	z			4A-M	
Potential Drinking Water Supply	2-G						
Primary Contact Recreation	3-ND	Escherichia coli	Z			3-ND	
Secondary Contact Recreation	3-ND	Escherichia coli	Z			3-ND	
Wildlife	3-ND						

Good	Marginal	Likely Good	No Current Data	Likely Bad	Poor	Severe
Meets water quality	Meets water quality	Limited data available. The Insufficient information Limited data available The Not meeting water quality	Insufficient information	Limited data available The	Not meeting water quality	Not meeting water
dards/thresholds by	standards/thresholds by standards/thresholds but	data that is available	to make an assessment	data that is available	standards/thresholds. The	quality
a relatively large	only marginally.	suggests that the	decision.	suggests that the	impairment is marginal.	standards/thresholds
margin.		parameter is Potentially		parameter is Potentially		The impairment is more
		Attaining Standards (PAS)		Not Supporting (PNS)		severe and causes poor
				water quality standards.		water quality.

4 of 31

10/16/2020

Town(s) Primary Town is Listed First: Barrington, Beach: N Assessment Unit ID: NHRIV600030707-03 Assessment Unit Name: Little River Nottingham

Assessment Unit Category: 5-M Size: 10.3150 MILES

Reviewed Parameters by Assessment Draft 2020, 305(b)/303(d) - All Unit

Designated Use Description	Desig. Use Category	Parameter Name	Parameter Threatened (Y/N)	Last Sample	Last Exceed	Parameter Category	TMDL Priority
Aquatic Life Integrity	5-M	Benthic-Macroinvertebrate Bioassessments (Streams)	z			3-ND	
		CHLORIDE	z	2019	N/A	3-PAS	
		DISSOLVED OXYGEN SATURATION	z	2019	N/A	2-G	
		Fishes Bioassessments (Streams)	z			3-ND	
		OXYGEN, DISSOLVED	Z	2019	2016	3-PNS	
		Н	z	2019	2019	5-M	LOW
		PHOSPHORUS (TOTAL)		2007	NLV	3-ND	
		TURBIDITY	Z	2019	N/A	3-PAS	
Fish Consumption	4A-M	MERCURY - FISH CONSUMPTION ADVISORY	Z			4A-M	
Potential Drinking Water Supply	2-G						
Primary Contact Recreation	3-ND	Escherichia coli	Z			3-ND	
Secondary Contact Recreation	3-ND	Escherichia coli	Z			3-ND	
Wildlife	3-ND						

	Marginal	Likely Good	No Current Data	Likely Bad	Poor	Severe
Meets water quality Meets	Meets water quality	Limited data available. The	Insufficient information	Limited data available The	available. The Insufficient information Limited data available The Not meeting water quality	Not meeting water
standards/thresholds by standards/thresholds but	ls/thresholds but	data that is available	to make an assessment	data that is available	standards/thresholds. The	quality
a relatively large only	only marginally.	suggests that the	decision.	suggests that the	impairment is marginal.	standards/thresholds
margin.		parameter is Potentially		parameter is Potentially		The impairment is more
		Attaining Standards (PAS)		Not Supporting (PNS)		severe and causes poor
				water quality standards.		water quality.

re or

10/16/2020

14 of 31

Control of Invasive Plants

New Hampshire Department of Agriculture, Markets & Food Douglas Cygan 603-271-3488 doug.cygan@agr.nh.gov

This guide lists garden plants and weeds which are already causing significant changes to natural areas in the Mid-Atlantic. Measures for controlling each species are indicated by number, e.g., (3), in the text with a full explanation at the end of this article. Click on the word <u>Control</u>: to jump to that section. Then click your "back" button to return to the text. Following each section suggested alternative plants are given. These alternatives are native plants, well adapted and needing little care, attractive to birds and butterflies, and an important part of the food web for our indigenous species.

INVASIVE TREES

NORWAY MAPLE (*Acer platanoides*) has large leaves similar to sugar maple. To easily confirm that the plant is Norway maple, break off a leaf and if it's truly Norway maple it will exude milky white sap. Fall foliage is yellow. (Exception: cultivars such as 'Crimson King,' which have red leaves in spring or summer, may have red autumn leaves.) The leaves turn color late, usually in late October after native trees have dropped their foliage. This tree suppresses growth of grass, garden plants, and forest understory beneath it, at least as far as the drip-line. Its wind-borne seeds can germinate and grow in deep shade. The presence of young Norway maples in our woodlands is increasing.

Control: (1); (7), (8), (9), or (10); (11) in mid-October to early November, before the leaves turn color.

TREE OF HEAVEN (*Ailanthus altissima*), is incredibly tough and can grow in the poorest conditions. It produces huge quantities of wind-borne seeds, grows rapidly, and secretes a toxin that kills other plants. Its long compound leaves, with 11-25 lance-shaped leaflets, smell like peanut butter or burnt coffee when crushed. Once established, this tree cannot be removed by mechanical means alone.

<u>Control</u>: (1) - seedlings only. Herbicide - use Garlon 3a (9) with no more than a 1[°] gap between cuts, or (10); plus (11) on re-growth. Or paint bottom 12[°] of bark with Garlon 4 Ultra (in February or March to protect surrounding plants). USE MAXIMUM STRENGTH SPECIFIED ON LABEL for all herbicide applications on Ailanthus. Glyphosate is not effective against Ailanthus.

INVASIVE SHRUBS

AUTUMN OLIVE (*Eleagnus umbellata*): Formerly recommended for erosion control and wildlife value, these have proved highly invasive and diminish the overall quality of wildlife habitat.

<u>*Control*</u>: (1) - up to 4⁺ diameter trunks; (7) or (10) or bury stump. Do not mow.

MULTIFLORA ROSE (*Rosa multiflora*), formerly recommended for erosion control, hedges, and wildlife habitat, becomes a huge shrub that chokes out all other vegetation and is too dense for many species of birds to nest in, though a few favor it. In shade, it grows up trees like a vine. It is covered with white flowers in June. (Our native roses have fewer flowers, mostly pink.) Distinguish multiflora by its size, and by the presence of very hard, curved thorns, and a fringed edge to the leaf stalk.

<u>Control</u>: (1) - pull seedlings, dig out larger plants at least 6" from the crown and 6" down; (4) on extensive infestations; (10) or (11). It may remain green in winter, so herbicide may applied when other plants are dormant. For foliar application, mix Rodeo with extra sticker-spreader, or use Roundup Sure Shot Foam on small plants.

BUSH HONEYSUCKLES (*Lonicera spp.*), including Belle, Amur, Morrow's, and Tatarian honeysuckle. (In our region, assume that any honeysuckle is exotic unless it is a scarlet-flowered vine). Bush honeysuckles create denser shade than native shrubs, reducing plant diversity and eliminating nest sites for many forest interior species.

<u>Control</u>: (2) on ornamentals; (1); on shady sites only, brush cut in early spring and again in early fall (3); (4) during the growing season; (7); or (10) late in the growing season.

BLUNT-LEAVED PRIVET (Ligustrum obtusifolium). <u>Control</u>: (1); (7) or (10); or trim off all flowers. Do not cut back or mow.

BURNING BUSH, WINGED EUONYMUS (*Euonymus alatus*), identified by wide, corky wings on the branches. <u>*Control:*</u> (1); (7) or (10); or trim off all flowers.

JAPANESE BARBERRY (*Berberis thunbergii*), and all cultivars and varieties. <u>*Control:*</u> (1); (7) or (10); or trim off all flowers.

INVASIVE WOODY VINES

All of these vines shade out the shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle. DO NOT PLANT NEXT TO OPEN SPACE.

JAPANESE HONEYSUCKLE (*Lonicera japonica*), including Hall's honeysuckle, has gold-and-white flowers with a heavenly scent and sweet nectar in June. This is probably the familiar honeysuckle of your childhood. It is a rampant grower that spirals around trees, often strangling them. <u>Control:</u> (1); (3); (10); (11) in fall or early spring when native vegetation is dormant. Plan to re-treat repeatedly.

ORIENTAL BITTERSWEET (*Celastrus orbiculatus*) has almost completely displaced American bittersweet (*C. scandens*). The Asian plant has its flowers and bright orange seed capsules in clusters all along the stem, while the native species bears them only at the branch tips. <u>Control:</u> (1); keep ornamental plants cut back, remove all fruits as soon as they open, and bag or burn fruits; to eradicate use Garlon 3a (10).

JAPANESE KNOTWEED, MEXICAN BAMBOO (*Polygonum cuspidatum*) can grow in shade. The stems have knotty joints, reminiscent of bamboo. It grows 6-10' tall and has large pointed oval or triangular leaves.

Control: Cut at least 3 times each growing season and/or treat with Rodeo (10) or (11). In gardens, heavy mulch or dense shade may kill it.

INVASIVE HERBACEOUS PLANTS

GARLIC MUSTARD (*Alliaria petiolata*, *A. officinalis*), a white-flowered biennial with rough, scalloped leaves (kidney-, heart- or arrow-shaped), recognizable by the smell of garlic and taste of mustard when its leaves are crushed. (The odor fades by fall.)

<u>Control</u>: Pull before it flowers in spring (1), removing crown and roots. Tamp down soil afterwards. Once it has flowered, cut (2), being careful not to scatter seed, then bag and burn or send to the landfill. (11) may be appropriate in some settings.

JAPANESE STILT GRASS (*Microstegium vimineum*) can be identified by its lime-green color and a line of silvery hairs down the middle of the 2-3" long blade. It tolerates sun or dense shade and quickly invades areas left bare or disturbed by tilling or flooding. An annual grass, it builds up a large seed bank in the soil.

<u>Control</u>: Easily pulled in early to mid-summer (1) - be sure to pull before it goes to seed. If seeds have formed, bag and burn or send to landfill. Mowing weekly or when it has just begun to flower may prevent it from setting seed (3). Use glyphosate (11) or herbicidal soap (less effective) on large infestations. Follow up with (5) in spring.

MILE-A-MINUTE VINE, DEVIL'S TAIL TEARTHUMB (*Polygonum perfoliatum*), a rapidly growing annual vine with triangular leaves, barbed stems, and turquoise berries in August which are spread by birds. It quickly covers and shades out herbaceous plants. <u>Control</u>: same as for stilt grass.

SPOTTED KNAPWEED (Centaurea maculosa), a biennial with thistle-like flowers.

<u>Control</u>: Do NOT pull (1) unless the plant is young and the ground is very soft - the tap root will break off and produce several new plants. Wear sturdy gloves. (2); (6); (10) or (11).

CONTROL MEASURES

(1) PULL seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs.

(2) DEADHEAD to prevent spread of seeds of invasive plants. Cut off seeds or fruits before they ripen. Bag, and burn or send to a landfill.

(3) MOW or CUTTING at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year.

(4) CONTROLLED BURNING during the spring, repeated over several years, allows native vegetation to compete more effectively with the invasive species. This requires a permit. Spot treatment with glyphosate in late fall can be used to make this method more effective.

(5) Use a CORN-BASED PRE-EMERGENCE HERBICIDE on annual weeds. This product is also an organic fertilizer, i.e., it can stimulate growth of existing plants, including weeds, so it is appropriate for lawns and gardens but may not be appropriate in woodlands.

(6) In lawns, SPOT TREAT with BROAD-LEAF WEEDKILLER. Good lawn-care practices (test soil; use lime and fertilizer only when soil test shows a need; mow high and frequently; leave clippings on lawn) reduce weed infestations.

(7) CUT DOWN the tree. Grind out the stump, or clip off re-growth.

(8) GIRDLE tree: cut through the bark and growing layer (cambium) all around the trunk, about 6" above the ground. Girdling is most effective in spring when the sap is rising, and from middle to late summer when the tree is sending down food to the roots. Clip off sucker sprouts.

(9) FRILL: Using a machete, hatchet or similar device, hack scars (several holes in larger trees) downward into the cambium layer, and squirt in glyphosate (or triclopyr if recommended in text above). Follow label directions for Injection and Frill Applications. This is most effective from middle to late summer. Clip off any sucker sprouts or treat with glyphosate.

(10) CUT STEM / CUT STUMP WITH GLYPHOSATE (or triclopyr if specified above). Follow label directions for Cut Stump Application. Clip off sucker sprouts or paint with glyphosate. See Note on Herbicides.

(II) FOLIAR SPRAY WITH GLYPHOSATE herbicide (see Note on Herbicides). Use a backpack or garden sprayer or mist blower, following label directions. Avoid overspray and/or dripping onto non-target plants, because glyphosate kills most plants except moss. If it rolls off waxy or grass-like foliage, use additional sticker-spreader. Deciduous trees, shrubs, and perennials move nutrients down to the roots in late summer. Glyphosate is particularly effective at this time and when plants have just gone out of flowering. Several invasive species retain their foliage after native plants have lost theirs, and resume growth earlier in spring than most natives. This allows you to treat them without harming the natives. However, the plant must be actively growing for the herbicide to work. Retreatments may be necessary the following year if suckering occurs or the plant hasn't been entirely killed.

<u>NOTE ON HERBICIDES</u>: It is highly recommended that small populations try to be controlled using non-chemical methods wherever feasible. However, for large infestations, and for a few plants specified above, herbicide use is essential. Apply herbicides carefully to avoid non-target plants, glyphosate is the least environmentally damaging herbicide in most cases. Add food coloring for visibility, and a soap-based sticker such as Cide-Kick. Glyphosate is ineffective on some

plants; for these, triclopyr (Garlon) may be indicated. When using herbicides, read the entire label and observe all precautions listed, including proper disposal. If in doubt, call your local Cooperative Extension Service.

Section 1:

filtrexx[®] LAND IMPROVEMENT SYSTE

Erosion & Sediment Control – Construction Activities

SWPPP Cut Sheet:

Filtrexx® Inlet Protection

Sediment & Perimeter Control Technology

PURPOSE & DESCRIPTION

Filtrexx[®] Inlet protection is a three-dimensional tubular sediment control and storm water runoff filtration device typically used for storm drain inlet protection of sediment and soluble pollutants (such as phosphorus and petroleum hydrocarbons) on and around construction activities.

APPLICATION

Drain inlets are located in areas that receive runoff from surrounding lands, often exposed and disturbed soils, and are located at a low point, or in a sump. Inlet protection used around drain inlets (or Drain Inlet protection) should completely enclose the circumference of the drain and where possible should not be placed on a grade or slope. Inlet protection used around drain inlets should never be the only form of site sediment control and should be accompanied by erosion control/slope stabilization practices, such as Slope protection or rolled erosion control blankets (RECB). Inlet protection should never be placed where they divert runoff flow from the drain inlet, or on top of the inlet, which can cause flooding. Under high runoff and sediment loading conditions placement of 1-2 in (25-50 mm) diameter rock (AASHTO #2) may be placed around the outer circumference of the Inlet protection up to 1/2 the height of the Inlet protection. This will slow runoff velocity as it contacts the Inlet protection and will reduce sediment build-up and clogging of the Inlet protection.

Curb inlets are generally located on paved surfaces and are designed to rapidly drain storm runoff from roadways to prevent flooding that poses a hazard to vehicular traffic. Inlet protection devices should be placed in a manner which intercepts runoff prior to entering the inlet, but does not block or divert runoff from the inlet. To prevent diversion of runoff, Inlet protection used around curbs (or Curb

Inlet protection) should be used in low points, or sumps, and minor slopes or grades. Inlet protection should never be placed in or on the curb inlet drain, or placed in a manner than obstructs vehicular traffic. Inlet protection height should be at least 1 in (25 mm) lower than top of curb inlet to allow for overflow into the drain and not over the curb. Maximum sediment removal efficiency occurs when minor ponding exists behind Inlet protection but should never lead to flooding.

Curb sediment containment systems are used to reduce the sediment and pollutant load flowing to a curb inlet. They are generally placed on paved surfaces perpendicular to runoff flow and should be lower than the height of the curb. Curb sediment containment systems should never cause flooding or placed where they are a hazard to vehicular traffic. Inlet protection used for curb sediment containment (or Curb Sediment Containment Inlet protection) can be placed on a grade but should never be placed directly upslope from curb inlet where it may inadvertently divert runoff from entering curb inlet.

INSTALLATION

- 1. Inlet protection used for inlet protection to reduce sediment and soluble pollutants entering storm drains shall meet Filtrexx® FilterSoxxTM Material Specifications and use Certified Filtrexx[®] FilterMedia[™].
- 2. Contractor is required to be a Filtrexx[®] Certified[™] Installer as determined by Filtrexx[®] International, LLC (440-926-2607 or visit web site at Filtrexx.com). Certification shall be considered current if appropriate identification is shown during time of bid or at time of application (current list of installers can be found at www.filtrexx.com). Look for the Filtrexx® Certified[™] Installer Seal.

- **3.** Filtrexx[®] Inlet protection shall be placed at locations indicated on plans as directed by the Engineer. Inlet protection should be installed in a pattern that allows complete protection of the inlet area.
- 4. Installation of curb Inlet protection will ensure a minimal overlap of at least 1 ft (300mm) on either side of the opening being protected. The Inlet protection will be anchored to the soil behind the curb using staples, stakes or other devices capable of holding the Inlet protection in place.
- 5. Standard Inlet protection for curb inlet protection and curb sediment containment will use 8 in (200mm) diameter Inlet protection, and drain inlets on soil will use 12 in (300mm) or 18 in (450mm) diameter Inlet protection. In severe flow situations, larger Inlet protection may be specified by the Engineer. During curb installation, Inlet protection shall be compacted to be slightly shorter than curb height.
- 6. If Inlet protection becomes clogged with debris and sediment, they shall be maintained so as to assure proper drainage and water flow into the storm drain. In severe storm events, overflow of the Inlet protection may be acceptable in order to keep the area from flooding.
- 7. Curb and drain Inlet protection shall be positioned so as to provide a permeable physical barrier to the drain itself, allowing sediment to collect on the outside of the Inlet protection.
- 8. For drains and inlets that have only curb cuts, without street grates, a spacer is required in order to keep the Inlet protection away from the drain opening. This spacer should be a hog wire screen bent to overlap the grate opening and keep the sock from falling into the opening. Use at least one spacer for every 4 ft (1.2m) of curb drain opening. The wire grid also prevents other floatable waste from passing over the Inlet protection.
- 9. Stakes shall be installed through the middle of the drain Inlet protection on 5 ft (1.5m) centers, using 2 in (50mm) x 2 in (50mm) x 3 ft (1m) wood stakes.
- **10.** Staking depth for sand and silt loam soils shall be 12 in (300mm), and 8 in (200mm) for clay soils.

INSPECTION AND MAINTENANCE

Routine inspection should be conducted within 24 hrs of a runoff event or as designated by the regulating authority. Inlet protection should be regularly inspected to make sure they maintain their

shape and are producing adequate hydraulic flowthrough. If ponding becomes excessive, additional Inlet protection may be required or sediment removal may be necessary. Inlet protection shall be inspected until contributing drainage area has been permanently stabilized and construction activity has ceased

- 1. The Contractor shall maintain the Inlet protection in a functional condition at all times and it shall be routinely inspected.
- 2. If the Inlet protection has been damaged, it shall be repaired, or replaced if beyond repair.
- 3. The Contractor shall remove sediment at the base of the upslope side of the Inlet protection when accumulation has reached 1/2 of the effective height of the Inlet protection, or as directed by the Engineer. Alternatively, for drain Inlet protection a new Soxx™ may be placed on top of the original increasing the sediment storage capacity without soil disturbance.
- **4.** Inlet protection shall be maintained until disturbed area above or around the device has been permanently stabilized and construction activity has ceased.
- 5. Regular maintenance includes lifting the Inlet protection and cleaning around and under them as sediment collects.
- 6. The FilterMedia[™] will be removed from paved areas or dispersed on site soil or behind curb once disturbed area has been permanently stabilized, construction activity has ceased, or as determined by the Engineer.

Grade (%)	Spacing (ft)	Spacing (mm)
0.5	100	30
1.0	50	15
2.0	25	8
3.0	16	5
4.0	13	4
5.0	10	3

 Table 2.4 Spacing for Curb Sediment

 Containment Systems.

Source: Fifield, 2001.

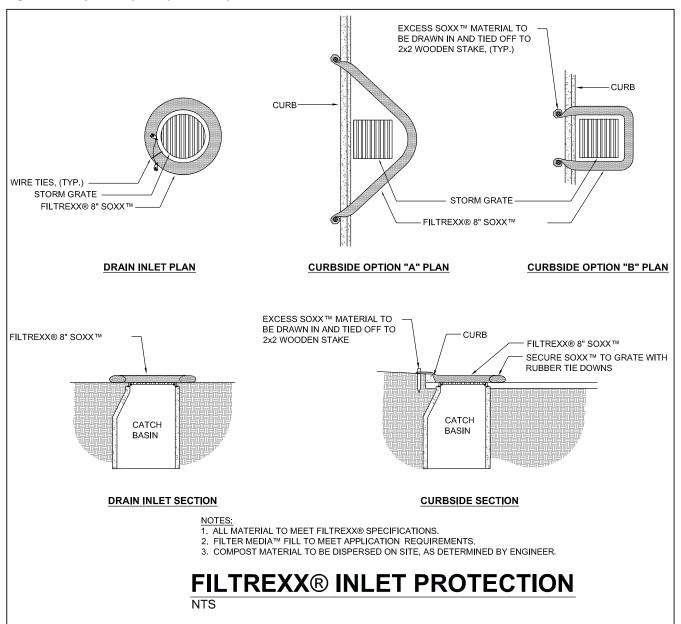
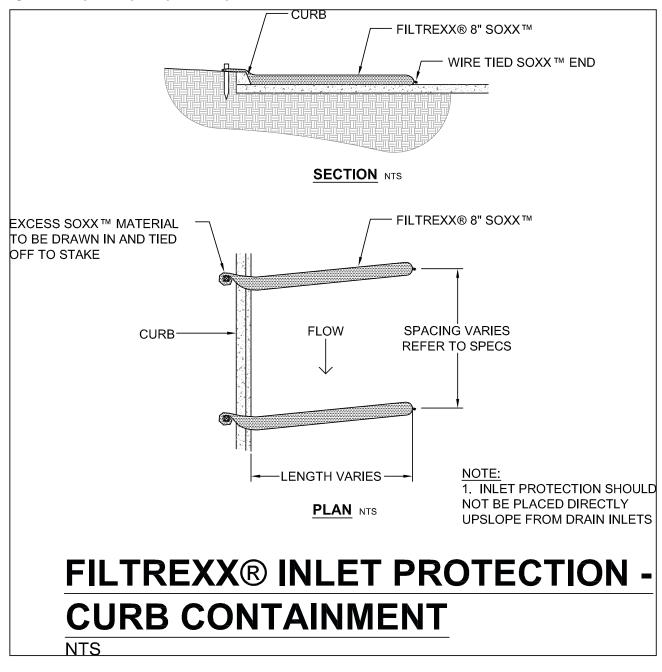



Figure 2.1. Engineering Design Drawing for Curb and Drain Inlet Protection

Section 1:

filtrexx[®] LAND IMPROVEMENT SYSTEMS

Erosion & Sediment Control – Construction Activities

SWPPP Cut Sheet: Filtrexx[®] Sediment Control

Sediment & Perimeter Control Technology

PURPOSE & DESCRIPTION

Filtrexx[®] Sediment control is a three-dimensional tubular sediment control and storm water runoff filtration device typically used for perimeter control of sediment and other soluble pollutants (such as phosphorus and petroleum hydrocarbons), on and around construction activities.

APPLICATION

Filtrexx® Sediment control is to be installed down slope of any disturbed area requiring erosion and sediment control and filtration of soluble pollutants from runoff. Sediment control is effective when installed perpendicular to sheet or low concentrated flow. Acceptable applications include:

- Site perimeters
- Above and below disturbed areas subject to sheet • runoff, interrill and rill erosion
- Above and below exposed and erodable slopes
- Around area drains or inlets located in a 'sump'
- On compacted soils where trenching of silt fence is difficult or impossible
- Around sensitive trees where trenching of silt fence is not beneficial for tree survival or may unnecessarily disturb established vegetation.
- On frozen ground where trenching of silt fence is impossible.
- On paved surfaces where trenching of silt fence is impossible.

INSTALLATION

- 1. Sediment control used for perimeter control of sediment and soluble pollutants in storm runoff shall meet Filtrexx[®] Soxx[™] Material Specifications and use Certified Filtrexx® FilterMediaTM.
- 2. Contractor is required to be Filtrexx[®] Certified[™], or use pre-filled Filtrexx® Sediment control

products manufactured by a Filtrexx® Certified Manufacturer[™] as determined by Filtrexx[®] International, LLC (440-926-2607 or visit www.filtrexx.com). Certification shall be considered current if appropriate identification is shown during time of bid or at time of application. Look for the Filtrexx[®] Certified[™] Seal.

- 3. Sediment control will be placed at locations indicated on plans as directed by the Engineer.
- 4. Sediment control should be installed parallel to the base of the slope or other disturbed area. In extreme conditions (i.e., 2:1 slopes), a second Sediment control shall be constructed at the top of the slope.
- 5. Effective Soxx[™] height in the field should be as follows: 8" Diameter Sediment control = 6.5" high, 12" Diameter Sediment control = 9.5" high, 18" Diameter SiltSoxx[™] = 14.5" high, 24" Diameter Sediment control = 19" high.
- 6. Stakes shall be installed through the middle of the Sediment control on 10 ft (3m) centers, using 2 in (50mm) by 2 in (50mm) by 3 ft (1m) hard wood stakes. In the event staking is not possible, i.e., when Sediment control is used on pavement, heavy concrete blocks shall be used behind the Sediment control to help stabilize during rainfall/runoff events.
- 7. Staking depth for sand and silt loam soils shall be 12 in (300mm), and 8 in (200mm) for clay soils.
- 8. Loose compost may be backfilled along the upslope side of the Sediment control, filling the seam between the soil surface and the device, improving filtration and sediment retention.
- 9. If the Sediment control is to be left as a permanent filter or part of the natural landscape, it may be seeded at time of installation for

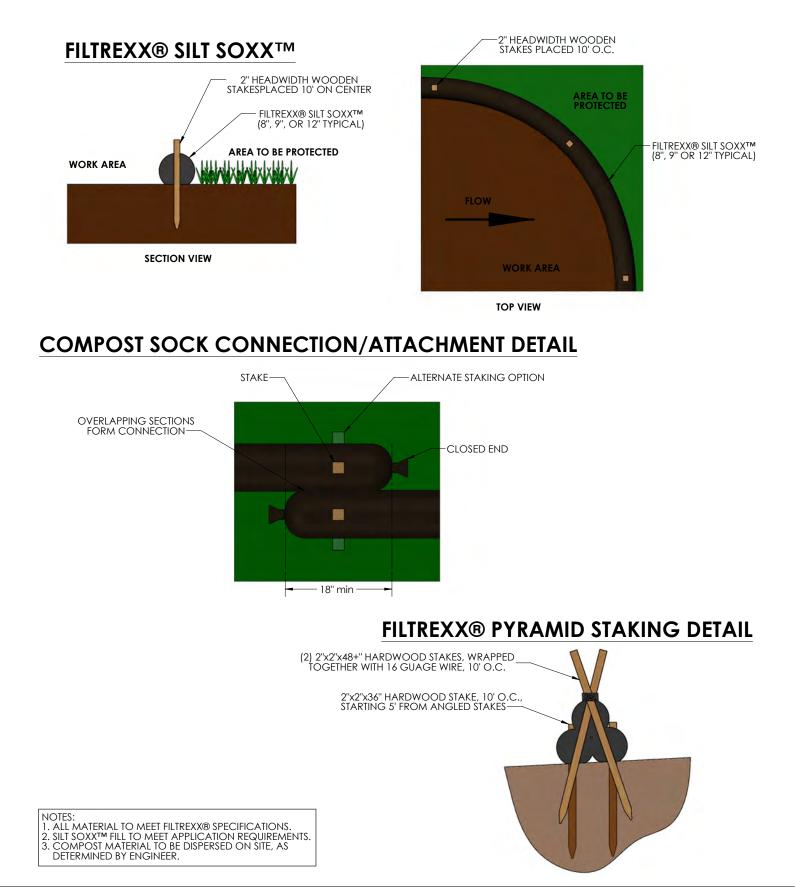
establishment of permanent vegetation. The Engineer will specify seed requirements.

 Filtrexx[®] Sediment control is not to be used in perennial, ephemeral, or intermittent streams.

See design drawing schematic for correct Filtrexx[®] Sediment control installation (Figure 1.1).

INSPECTION AND MAINTENANCE

Routine inspection should be conducted within 24 hrs of a runoff event or as designated by the regulating authority. Sediment control should be regularly inspected to make sure they maintain their shape and are producing adequate hydraulic flow-through. If ponding becomes excessive, additional Sediment control may be required to reduce effective slope length or sediment removal may be necessary. Sediment control shall be inspected until area above has been permanently stabilized and construction activity has ceased


- 1. The Contractor shall maintain the Sediment control in a functional condition at all times and it shall be routinely inspected.
- 2. If the Sediment control has been damaged, it shall be repaired, or replaced if beyond repair.

- **3.** The Contractor shall remove sediment at the base of the upslope side of the Sediment control when accumulation has reached 1/2 of the effective height of the Sediment control, or as directed by the Engineer. Alternatively, a new Sediment control can be placed on top of and slightly behind the original one creating more sediment storage capacity without soil disturbance.
- 4. Sediment control shall be maintained until disturbed area above the device has been permanently stabilized and construction activity has ceased.
- The FilterMedia[™] will be dispersed on site once disturbed area has been permanently stabilized, construction activity has ceased, or as determined by the Engineer.
- **6.** For long-term sediment and pollution control applications, Sediment control can be seeded at the time of installation to create a vegetative filtering system for prolonged and increased filtration of sediment and soluble pollutants (contained vegetative filter strip). The appropriate seed mix shall be determined by the Engineer.

		Maximum Slope Length	Above Sediment Control	in Feet (meters)*	
Slope Percent	8 in (200 mm) Sediment control	12 in (300 mm) Sediment control	18 in (450 mm) Sediment control	24 in (600mm) Sediment control	32 in (800mm) Sediment control
	6.5 in (160 mm)**	9.5 in (240 mm) **	14.5 in (360 mm) **	19 in (480 mm) **	26 in (650 mm) **
2 (or less)	600 (180)	750 (225)	1000 (300)	1300 (400)	1650 (500)
5	400 (120)	500 (150)	550 (165)	650 (200)	750 (225)
10	200 (60)	250 (75)	300 (90)	400 (120)	500 (150)
15	140 (40)	170 (50)	200 (60)	325 (100)	450 (140)
20	100 (30)	125 (38)	140 (42)	260 (80)	400 (120)
25	80 (24)	100 (30)	110 (33)	200 (60)	275 (85)
30	60 (18)	75 (23)	90 (27)	130 (40)	200 (60)
35	60 (18)	75 (23)	80 (24)	115 (35)	150 (45)
40	60 (18)	75 (23)	80 (24)	100 (30)	125 (38)
45	40 (12)	50 (15)	60 (18)	80 (24)	100 (30)
50	40 (12)	50 (15)	55 (17)	65 (20)	75 (23)

* Based on a failure point of 36 in (0.9 m) super silt fence (wire reinforced) at 1000 ft (303 m) of slope, watershed width equivalent to receiving length of sediment control device, 1 in/ 24 hr (25 mm/24 hr) rain event.

** Effective height of Sediment control after installation and with constant head from runoff as determined by Ohio State University.

Pavement			A	pplication Rate (l	bs/per 1000 sq.f	t.)
Temp. (°F) and Trend (↑↓)	Weather Condition	Maintenance Actions	Salt Prewetted/Pre treated with salt brine	Salt Prewetted/Pret reated with other blends	Dry salt	Winter sand
>30 个	Snow	Plow, treat intersections only				Not recommended
230 1	Frz. Rain	Apply chemical				Not recommended
30 ↓	Snow	Plow and apply chemical				Not recommended
30 1	Frz. Rain	Apply chemical				Not recommended
25 - 30 个	Snow	Plow and apply chemical				Not recommended
23 - 30 1	Frz. Rain	Apply chemical				Not recommended
25 - 30 ↓	Snow	Plow and apply chemical				Not recommended
	Frz. Rain	Apply chemical				3.25
20 - 25 个	Snow or frz. Rain	Plow and Apply chemical				3.25 for frz. Rain
20 - 25 ↓	Snow	Plow and apply chemical				Not recommended
	Frz. Rain	Apply chemical				3.25
15 - 20 个	Snow	Plow and apply chemical				Not recommended
	Frz. Rain	Apply chemical				3.25
15 - 20 ↓	Snow or Frz. Rain	Plow and apply chemical				3.25 for frz. Rain
0 to 15 个↓	Snow	Plow, treat with blends, sand hazardous areas	Not recommended		Not recommended	5.0 and spot- treat as needed
< 0	Snow	Plow, treat with blends, sand hazardous areas	Not recommended		Not recommended	5.0 and spot- treat as needed

Table 19. Application Rates for Deicing

These rates & table format are based on road application guidelines (Mn Snow & Ice Control Field Handbook, Manual 2005-1). Develop your own application rates by adjusting your current rates incrementally downward toward these guidelines. Where temperature categories overlap, select the rate most applicable to your situation.

Design and Maintenance of Subsurface Gravel Wetlands

February 4, 2015

The University of New Hampshire Stormwater Center conducted a design and maintenance review of subsurface gravel wetland systems for the New Hampshire Department of Transportation. The UNHSC utilized various NHDOT site and construction plans, construction photo documentation, cost and material specification sheets, and the NHDOT subsurface gravel wetland (SGW) design specification dated December 20, 2013. The UNHSC also conducted inspections of subsurface gravel wetland systems that were designed and installed by the NHDOT or its contractors in order to determine maintenance needs. The UNHSC prepared this report as a resource for SGW designers and installers to assist in the design, cost and material specification, and maintenance requirements to ensure a properly functioning SGW system.

Table of Contents

1.0	Introduction	. 2
2.0	Background	.2
	Implementation	
	Costs	
5.0	Maintenance	.8
Attach	ment A: Raw Item Costs	.9
Attach	ment B: Subsurface Gravel Wetland Inspection and Maintenance Guidance	23
Attach	ment C: Results of Subsurface Gravel Wetland Inspections	26

1.0 Introduction

The UNHSC appreciates the opportunity to provide Design and Maintenance Review services for the New Hampshire Department of Transportation. We have completed our review and site visits of NHDOT SGW installations and offer the following summary.

Information Reviewed:

- Various Site Plans prepared by NHDOT and various assisting engineering firms
- Construction Management photos provided by NHDOT
- Costs and material specifications compiled by NHDOT
- NHDOT Subsurface Gravel Wetland Design, dated December 20, 2013

2.0 Background

The subsurface gravel wetland (SGW) stormwater management system has been around for almost 20 years. It approximates the look and function of a natural wetland, effectively removing sediments and other pollutants commonly found in runoff while enhancing the visual appeal of the landscape by adding buffers or greenscape to urban areas. The SGW specification used by NHDOT represents the original specification developed by the University of New Hampshire Stormwater Center (UNHSC) and documented in the UNHSC SGW Design Specifications published in June of 2009. These specifications reflect findings from five years of study of the SGW originally designed and evaluated at UNHSC. The SGW is a horizontal-flow filtration system and should not be confused with stormwater wetlands that function more like ponds. Instead, the SGW includes a dense root mat in a wetland soil that forms a cover over crushed stone. The subsurface crushed stone is the primary flow path for stormwater and is an anaerobic microbe-rich environment for improving water quality. Like other filtration systems, it demonstrates a tremendous capacity to reduce runoff peak flows and improve water quality.

3.0 Implementation

Subsurface gravel wetlands can be used in many regions, with the exception of those that are too arid to support a wetland system. SGW systems have demonstrated exceptional stormwater quality treatment, in particular for nutrients, for a range of land uses including linear transportation environments. It should be noted that as implementation has progressed and coupled with an additional five years of research at the UNHSC, additional findings and design modifications have arisen. The initial design of the UNHSC SGW was to handle runoff from a commuter parking area, best represented by a high density commercial use. In such applications SGW systems are space intensive; however for linear transportation environments some flexibility is expected. Recommendations and comments provided herein reflect additional learning and research findings gathered since the original publication of the UNHSC 2009 SGW specification.

- 1.) The purpose of the NHDOT underdrain systems is to intercept and provide drainage for seasonal high ground water levels where deemed to be within 0.5' of the wetland soil surface elevation. The rationale is not well defined and requires justification. For systems that are installed within proximity to seasonal high groundwater (SHGW) it is unclear how the benefits of the flushing basins justify overall costs (average cost savings: \$1,069 per system). The SGW low flow orifice not only controls the stormwater flow through the system, by this hydraulic control will also ultimately control SHGW elevation in the vicinity of the SGW in the same manner. An SGW may have a portion of the system built below the SHGW. The original SGW at the UNHSC site in Durham, NH is a case in point. A caution is noted in that groundwater flows should not be significant compared to the stormwater flows. Significant groundwater inflows could prevent the formation of the anaerobic zone in the crushed stone.
- 2.) Overall system sizing for NHDOT systems appears to be based on the UNHSC 2009 SGW drainage design guidance with respect to overall length to width (L:W) ratio. In some locations L:W ratio dominates design orientation. UNHSC researchers recommend that this design criterion not be considered the most critical design element. The critical design element with respect to configuration is to size the system to treat the desired design rainfall depth from the contributing drainage area (1" Water Quality Volume). Linear systems are fine (higher L:W), provided the minimum WQV: Internal Storage Reservoir (ISR) capacity ratio is 4:1 or 25% (WQV:ISR) and the minimum flow path in the crushed stone in each cell is 15 feet.
- 3.) Most inspected forebays appear to function as wet basins rather than the more desirable dry basin. Dry forebays promote aerobic transformations of nitrogen which is an important first step prior to the anaerobic zone. It is recommended that if forebays cannot be economically installed to operate dry then concrete inlet structures such as off-line deep sump catch basins be used for pre-treatment as opposed to a forebay structure. A deep sump catch basin or other precast inlet structure may also be easier to maintain. A very important function of any SGW forebay is that it be aerobic in order to convert most forms of nitrogen to nitrate or nitrite.
- 4.) Most forebay outlets lack low flow conveyance which causes them to function as wet basins as opposed to dry basins. It is important that regardless of the configuration of the pretreatment structure that the SGW system forebay contain an outlet with an invert at the same level as the wetland surface to eliminate ponding behind the forebay berm such that obligate wetland plant colonization (cattails) and the potential for anaerobic conditions do not occur. Other options are to design the forebays to convey low flows that draw the fore bay water level down between storm events.
- 5.) Hydraulic inlets (leaching chambers) appear to be oversized. There are many hydraulic inlet design configurations that may be able to replace existing designs with better function and maintenance capacity and diminished costs. NHDOT SGW systems observed in this study, small and large, seem to use similar hydraulic inlet configurations

with the same number of structures regardless of watershed area size or design treatment volume. UNHSC research indicates the hydraulic inlet configuration can be flexible provided it has a greater hydraulic capacity/efficiency than the primary outlet orifice control. Recent experience in UNHSC designs have used slotted hydraulic inlet pipes as a backup inlet with a primary inlet composed of woven geotextile laid on the subsurface pea stone and covered in 6"-8" diameter stone around the outfall of the inlet pipe (see figures 1 and 2). This configuration protects the stone filter in the subsurface of the wetland system while also providing a more accessible and maintainable surface hydraulic inlet feature that will inevitably be easier and less costly to construct.

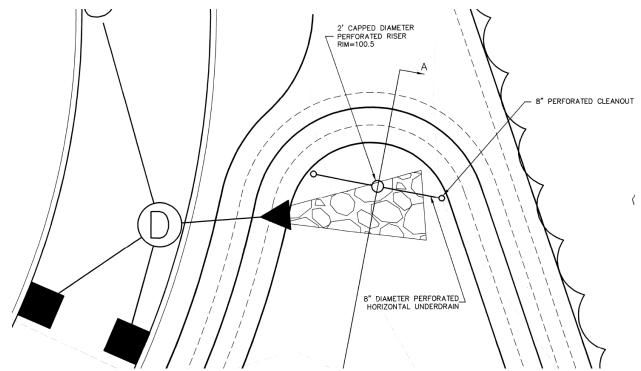


Figure 1: Typical plan view of multi-inlet configuration of a SGW system

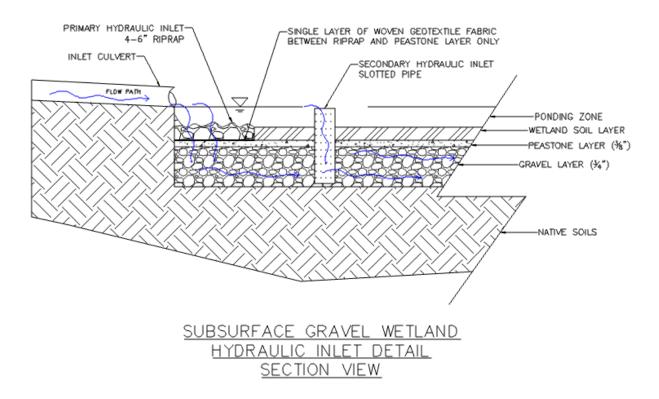


Figure 2: Typical profile view of multi-inlet configuration of a SGW system.

- 6.) Cleanout structures (leaching chambers) need not be as large since their primary function is for emergency access to the subsurface header pipe that directs flow either to the second wetland chamber or the outlet structure. Cleanout structures can be capped or be installed at the wetland surface grade with a manhole cover to ensure that the cleanouts are accessible, water tight, and does not short circuit system hydraulics.
- 7.) Some of the outlet control structures have slotted inlets (4" high by 12" wide) to allow for drainage of high flows. These slots need to be protected by covering them with 6-8" stone or some type of trash screen. This will prevent trash, leaves, or other debris from clogging the outlet orifice.

4.0 Costs

For this project NHDOT produced itemized costs associated with the bid prices for the materials and installation of thirteen SGW systems. In meetings with NHDOT personnel several items were determined to be irrelevant to this project and were thus eliminated from the spreadsheet. These items are itemized in the list below:

• 206.1 (Common Structure Excavation) and 206.2 (Rock Structure Excavation) were determined to be unique and not standard items and eliminated

- 209.1 (Granular Backfill) was determined to reflect typical stabilization for bedding material and were eliminated
- 593.331 (Geotextile, Stabilization, Class 3, Non-woven) was determined to be no longer used, and was replaced with Item 585.7 (Stone Fill, Class G) and thus eliminated
- 593.411 (Geotextile, Permeability Control, Class 1, Non-woven), 593.421 (Geotextile, Permeability Control, Class 2, Non-woven), 593.431 (Geotextile, Permeability Control, Class 3, Non-woven) were determined to be erosion control items and were eliminated
- 603.83206 (6" Plastic Pipe, Smooth Interior), 605.906 (6" Pipe Underdrain, Contractors' Option) were determined to be irrelevant to the SGW construction costs and were thus eliminated.

To compare costs, all original capital construction costs were converted to 2014 dollars using consumer price index inflation rates (USDOL, 2014). Average SGW materials and installation costs from the range of assessed projects (see attachment A for the raw costs) was \$32,462 per impervious acre treated (\$0.75/sf) with a maximum cost of \$68,893 per impervious acre treated (\$0.28/sf). As a comparison, for the SGW studied at the UNH field facility, costs were calculated at \$28,079 per impervious acre treated (\$0.64/sf). Cost details are illustrated in Table 1.

Total Price Statistics	Contributing Impervious Area (A)	C Im	ConstructionConstructionCost perCost perImperviousImperviousArea (\$/A)Area (\$/sf)		Cost per UNHSC Is Impervious Costs (\$/A)		С	NHSC osts 5/sf)
Minimum	1.90	\$	12,210	\$	0.28	-		-
Average	4.56	\$	32,462	\$	0.75	\$28,079	\$	0.64
Maximum	8.40	\$	63,893	\$	1.47	-		-

Table 1: Comparison of unit costs from all reviewed NHDOT SGW materials cost data and reference information documented by UNHSC. Note all costs are in 2014 dollars

Results of the cost assessment indicate room for potential savings with respect to design. In light of the detailed recommendations outlined in the Implementation section of this report, cost adjustments and justifications include:

Eliminate items 605.79 and 605.82251-24 (perimeter dewatering controls) for use if SHGW is within 0.5' of SGW surface. There is no data or clear rationale for any threat from SHGW in SGW systems. SHGW levels are often intermittent and would ultimately be controlled by the outlet orifice which is typically 0.5 to 0.67' below SGW surface. Therefore this item is redundant and further justification is necessary to validate the additional expense. Cost savings is estimated at 3.3% or \$1,069 per system.

Reduce the number of item numbers 604.921 and 604.922 (alt: 604.193, 604.393, and 604.912) leaching chambers. Hydraulic inlet controls could be reduced if not eliminated in the future as linear routing through the system is adapted in future designs. Other hydraulic inlet controls such as suggested in the Implementation section of this report may be less expensive and offer

greater maintainability. There is no clear rationale for these structures at the end of each wetland cell as their only function is to provide access to the perforated header pipe in the subsurface as a potential clean out. At the end of the wetland cell these can simply be solid risers capped at the wetland surface. At the upstream end of each wetland cell, hydraulic inlets should be reduced to two if not eliminated and replaced with alternative inlet structures. Hydraulic inlet capacity need only exceed that of the outlet orifice. Cost savings is estimated at 10% or \$3,201 per system.

Items 647.1 (Humus) and 647.29 (Wetland Humus) incurred high variability with respect to cost and in some systems had some of the largest percent costs (>12%) than any additional line items. There is no specification for the wetland humus in the NHDOT SGW design guidelines dated December 20, 2013 and the wetland soil specification in the UNHSC 2009 guidance is weak without sufficient detail to allow for accurate and cost effective bidding. Subsequent to this report UNHSC has worked to develop a particle size distribution for use in specifying wetland humus in future SGW systems. The proposed PSD for wetland humus is provided in Table 2 and reflects a poorly drained soil with a d50 of 0.15 mm and is a clay or silt loam in the soil textural triangle. We feel that this will allow for more cost effective bidding of appropriate soil types with the potential to even employ appropriate onsite excavated materials into select humus mixes thereby further reducing costs. We believe with these additional specifications it is not unrealistic to assume a future price of \$15/CY, which represents the 25% quartile cost of the original line item. Cost savings is estimated at 0.5% or \$164 per system.

US Standard Sieve Size in/mm	Percent Passing	Percent Passing Testing Tolerances
0.5/12.5	100	± 10.0
#10/2.00	90 - 75	± 5.0
#100/0.15	40-50	± 5.0
#200/0.75	25-50	± 5.0

Table 2: Particle size distribution and testing tolerances for wetland humus for the subsurfacegravel wetland system

Relative cost savings are summarized in table 3.

Table 3: Comparison of unit costs from all reviewed SGW materials cost data with projectedcost savings from recommended itemized design modifications. Note all costs are amortizedto reflect 2014 dollars.

Total Price Statistics	Contributing Impervious Area (A)	Co Imj	ConstructionConstructionCost perCost perImperviousImperviousArea (\$/A)Area (\$/sf)		UNHSC Costs (\$/A)	UNHSC Costs (\$/sf)	
Minimum	1.90	\$	7,895	\$	0.18	-	-
Average	4.56	\$	27,320	\$	0.63	\$28,079	\$0.64
Maximum	8.40	\$	53,780	\$	1.23	-	-

5.0 Maintenance

Inspection and maintenance is a critical component of the long term function and effectiveness of any stormwater control measure. Overall the UNHSC inspections of the facilities proved that the SGW systems were largely functioning properly and were well designed and constructed. The UNHSC has produced operation and maintenance guidelines as well as an inspection checklist which have been provided in attachment A of this report. Inspection is critical to assess as built functionality in addition to identifying unique maintenance tasks that may be less general in nature and more site specific. Overall the inspections conducted and provided as an attachment to this report (attachment B) indicates that routine biannual inspection (annual as a minimum) should be initiated at these facilities as a standard of practice. Post construction inspections are critical just after newly constructed SGW system is placed online. While some long-term maintenance items are due to system aging and processing of polluted runoff, some operation issues are a result of construction and installation practices not fully aligned with design specifications. These items are often quickly identifiable. In our assessment of eight NHDOT SGW systems two main issues were identified associated with installation or construction. First numerous pre-treatment forebays in observed systems held ponding water. This impacts the overall chemical function and processing of dissolved inorganic nitrogen species as these ponded forebay areas often turn into anaerobic areas of obligate wetland plants. Second on one particular system (NHDOT # 14633F BMP 19) three to five inches of standing water was observed within the entire system. The final water elevation was being controlled by an outlet pipe invert that was installed above the overall wetland soil elevation. This has resulted in sparse vegetation and likely was not part of the original design.

Beyond construction and installation issues the primary maintenance need identified through these inspections is simple maintenance of the established wetland vegetation. Numerous facilities are in need of this type of maintenance which involves cutting the existing plants down to the base and removing it from the system to prevent breakdown and rerelease of nitrogen. **Attachment A: Raw Item Costs**

12/3/2013

SUBSURFACE GRAVEL WETLANDS (13933C/ DB 920)					
Item	Quantity	Bid Price	Total		
Item 203.1 - Common Excavation (CY)	16,603	\$4.75	\$78,864.25		
Item 203.6 - Embankment-in-Place (CY)	245	\$8.95	\$2,192.75		
Item 203. 52 - Impervious Material (CY)	500	\$14.00	\$7,000.00		
Item 585.3- Stone Fill, Class C (CY)	83	\$18.00	\$1,494.00		
Item 585.5 - Stone Fill, Class E (CY)	900	\$18.00	\$16,200.00		
Item 585.7 - Stone Fill, Class G (CY)	120	\$24.00	\$2,880.00		
Item 593.411 - Geotextile, Perm. Control, Cl. 1, Non-woven (SY)	215	\$2.10	\$451.50		
Item 603.83212 - 12" Plastic Pipe (Smooth Interior) (LF)	283	\$33.00	\$9,339.00		
Item 604.91X - Outlet Control Structure (U)	2	\$5 <i>,</i> 800.00	\$11,600.00		
Item 604.193 - Special Catch Basin (3' Dia) (U)	8	\$3,300.00	\$26,400.00		
Item 604.393 - Specia Drain Manhole 3'x 3' (U)	3	\$2,600.00	\$7,800.00		
Item 605.508 - 8" Perf. Corr. Poly. Pipe Underdrain (LF)	592	\$22.00	\$13,024.00		
Item 605.79 - Underdrain Flushing Basins (EA)	10	\$660.00	\$6,600.00		
Item 605.906 - 6" Pipe Underdrain (Contractor's Option)	506	\$16.00	\$8,096.00		
Item 646.3 - Turf Establishment w/ Mulch & Tackifiers (A)	0.48	\$1,650.00	\$792.00		
Item 647.1 - Humus (CY)	1,900	\$15.00	\$28,500.00		
Item 647.29 - Wetland Humus (CY)	330	\$15.00	\$4,950.00		
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$225.00	\$225.00		
Total			\$226,408.50		

12/2/2013

SUBSURFACE GRAVEL WETLANDS (13455A/ GW)					
Item	Quantity	Bid Price	Total		
Item 203.1 - Common Excavation (CY)	5,776	\$9.75	\$56,316.00		
Item 203.2 - Rock Excavation (CY)	2,241	\$29.00	\$64,989.00		
Item 203.6 - Embankment-in-Place (CY)	317	\$6.25	\$1,981.25		
Item 203. 53 - Low Permeability Fill (CY)	255	\$8.80	\$2,244.00		
Item 520.1 - Concrete Class A (CY)	6	\$375.00	\$2,250.00		
Item 585.3- Stone Fill, Class C (CY)	131	\$34.50	\$4,519.50		
Item 585.5 - Stone Fill, Class E (CY)	370	\$31.00	\$11,470.00		
Item 585.7 - Stone Fill, Class G (CY)	62	\$34.25	\$2,123.50		
Item 593.421 - Geotextile, Perm. Control, Cl. 2, Non-woven (SY)	502	\$2.00	\$1,004.00		
Item 603.80012 - 12" Plastic Pipe (LF)	31	\$40.00	\$1,240.00		
Item 604.91X - Outlet Control Structure (U)	1	\$4,850.00	\$4,850.00		
Item 604.921 - Leaching Chamber, Type 1 (U)	6	\$1,700.00	\$10,200.00		
Item 604.922 - Leaching Chamber, Type 2 (U)	5	\$1,850.00	\$9,250.00		
Item 605.506 - 6" Perf. Corr. Poly. Pipe Underdrain (LF)	204	\$19.50	\$3,978.00		
Item 647.1 - Humus (CY)	244	\$14.00	\$3,416.00		
Item 647.29 - Wetland Humus (CY)	123	\$16.00	\$1,968.00		
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$250.00	\$250.00		
Total			\$182,049.25		

12/2/2013

SUBSURFACE GRAVEL WETLANDS (10620L/ GW)					
Item	Quantity	Bid Price	Total		
Item 203. 52 - Impervious Material (CY)	1,919	\$18.05	\$34,637.95		
Item 585.2 - Stone Fill, Class B (CY)	56	\$19.15	\$1,072.40		
Item 585.3- Stone Fill, Class C (CY)	278	\$40.25	\$11,189.50		
Item 585.5 - Stone Fill, Class E (CY)	46	\$45.90	\$2,111.40		
Item 593.431 - Geotextile, Perm. Control, Cl. 3, Non-woven (SY)	200	\$6.00	\$1,200.00		
Item 603.83212 - 12" Plastic Pipe (Smooth Interior) (LF)	50	\$32.15	\$1,607.50		
Item 604.91X - Outlet Control Structure (U)	1	\$2,045.00	\$2,045.00		
Item 604.921 - Leaching Chamber, Type 1 (U)	4	\$3,080.00	\$12,320.00		
Item 604.922 - Leaching Chamber, Type 2 (U)	4	\$2,950.00	\$11,800.00		
Item 605.512 - 12" Perf. Corr. Poly. Pipe Underdrain (LF)	187	\$15.75	\$2,945.25		
Item 647.29 - Wetland Humus (CY)	93	\$35.00	\$3,255.00		
Total			\$84,184.00		

There was no earthwork specifcally attributable to the gravel wetland. It is essentially constructed on top of the existing ground between the Rte. 16 NB slope work and the Exit 15 on ramp slope work.

12/2/2013

SUBSURFACE GRAVEL WETLANDS (10418G/GW)					
ltem	Quantity	Bid Price	Total		
Item 203.1 - Common Excavation (CY)	5,978	\$8.00	\$47,824.00		
Item 203.6 - Embankment-in-Place (CY)	8	\$5.00	\$40.00		
Item 203. 52 - Impervious Material (CY)	1,415	\$18.00	\$25,470.00		
Item 206.1 - Common Structure Excavation (CY)	1,225	\$16.00	\$19,600.00		
Item 585.3- Stone Fill, Class C (CY)	21	\$30.00	\$630.00		
Item 585.5 - Stone Fill, Class E (CY)	1,141	\$30.00	\$34,230.00		
Item 593.331 - Geotextile, Stabilization, Cl. 3, Non-woven (SY)	1,711	\$3.00	\$5,133.00		
Item 603.83206 - 6" Plastic Pipe (Smooth Interior) (LF)	55	\$24.00	\$1,320.00		
Item 604.91X - Outlet Control Structure (U)	1	\$2,400.00	\$2,400.00		
Item 604.921 - Leaching Chamber, Type 1 (U)	4	\$3,000.00	\$12,000.00		
Item 604.922 - Leaching Chamber, Type 2 (U)	2	\$3,000.00	\$6,000.00		
Item 605.906 - 6" Pipe Underdrain (Contractors Option) (LF)	602	\$16.00	\$9,632.00		
Item 605.79 - Underdrain Flushing Basins (EA)	8	\$600.00	\$4,800.00		
Item 647.29 - Wetland Humus (CY)	380	\$25.00	\$9,500.00		
Total			\$178,579.00		

12/3/2013

SUBSURFACE GRAVEL WETLANDS (11238L/ BMP 1590)					
ltem	Quantity	Bid Price	Total		
Item 203.1 - Common Excavation (CY)	3,933	\$4.00	\$15,732.00		
ltem 203.6 - Embankment-in-Place (CY)	184	\$2.00	\$368.00		
Item 203. 52 - Impervious Material (CY)	1,530	\$15.00	\$22 <i>,</i> 950.00		
Item 206.2- Rock Structure Excavation (CY)	27	\$30.00	\$810.00		
Item 520.1 - Concrete Class A (CY)	5	\$500.00	\$2,700.00		
Item 585.3- Stone Fill, Class C (CY)	90	\$30.00	\$2,700.00		
Item 585.5 - Stone Fill, Class E (CY)	182	\$28.00	\$5 <i>,</i> 096.00		
Item 585.7 - Stone Fill, Class G (CY)	30	\$40.00	\$1,200.00		
ltem 593.411 - Geotextile, Perm. Control, Cl. 1, Non-woven (SY)	192	\$2.25	\$432.00		
ltem 603.83212 - 12" Plastic Pipe (Smooth Interior) (LF)	20	\$32.00	\$640.00		
Item 604.91X - Outlet Control Structure (U)	1	\$3,000.00	\$3,000.00		
ltem 604.921 - Leaching Chamber, Type 1 (U)	6	\$1,250.00	\$7,500.00		
Item 604.922 - Leaching Chamber, Type 2 (U)	5	\$1,250.00	\$6 <i>,</i> 250.00		
ltem 605.512 - 12" Perf. Corr. Poly. Pipe Underdrain (LF)	125	\$25.00	\$3,125.00		
ltem 646.31 - Turf Establishment w/ Mulch & Tackifiers (SY)	1,482	\$0.35	\$518.70		
Item 647.1 - Humus (CY)	78	\$20.00	\$1,560.00		
Item 647.29 - Wetland Humus (CY)	103	\$35.00	\$3,605.00		
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$500.00	\$500.00		
Total			\$78,686.70		

12/3/2013

SUBSURFACE GRAVEL WETLANDS (11238L/ BMP 922)					
ltem	Quantity	Bid Price	Total		
Item 203.1 - Common Excavation (CY)	3,822	\$4.00	\$15,288.00		
Item 203.6 - Embankment-in-Place (CY)	467	\$2.00	\$934.00		
Item 206.1 - Common Structure Excavation (CY)	5	\$30.00	\$150.00		
Item 520.1 - Concrete Class A (CY)	4	\$500.00	\$2,000.00		
Item 585.3- Stone Fill, Class C (CY)	22	\$30.00	\$660.00		
Item 585.5 - Stone Fill, Class E (CY)	420	\$28.00	\$11,760.00		
Item 585.7 - Stone Fill, Class G (CY)	69	\$40.00	\$2,760.00		
Item 593.411 - Geotextile, Perm. Control, Cl. 1, Non-woven (SY)	96	\$2.25	\$216.00		
Item 603.83212 - 12" Plastic Pipe (Smooth Interior) (LF)	41	\$32.00	\$1,312.00		
Item 604.91X - Outlet Control Structure (U)	1	\$3,000.00	\$3,000.00		
Item 604.921 - Leaching Chamber, Type 1 (U)	6	\$1,250.00	\$7,500.00		
Item 604.922 - Leaching Chamber, Type 2 (U)	6	\$1,250.00	\$7,500.00		
Item 605.512 - 12" Perf. Corr. Poly. Pipe Underdrain (LF)	306	\$25.00	\$7,650.00		
Item 605.79 - Underdrain Flushing Basins (EA)	2	\$500.00	\$1,000.00		
Item 605.82251 - 24" Agg. Und. Type 2 w/ 6" Perf. Corr. PE Pipe (LF)	565	\$25.00	\$14,125.00		
Item 646.31 - Turf Establishment w/ Mulch & Tackifiers (SY)	3,262	\$0.35	\$1,141.70		
Item 647.1 - Humus (CY)	89	\$20.00	\$1,780.00		
Item 647.29 - Wetland Humus (CY)	304	\$35.00	\$10,640.00		
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$500.00	\$500.00		
Total			\$89,916.70		

12/2/2013

SUBSURFACE GRAVEL WETLANDS (14633F/ BMP 19)				
ltem	Quantity	Bid Price	Total	
Item 203.1 - Common Excavation (CY)	2,396	\$4.00	\$9,584.00	
Item 203.6 - Embankment-in-Place (CY)	468	\$3.15	\$1,474.20	
ltem 203. 52 - Impervious Material (CY)	582	\$15.00	\$8,730.00	
Item 520.1 - Concrete Class A (CY)	10	\$180.00	\$1,800.00	
Item 585.3- Stone Fill, Class C (CY)	108	\$26.00	\$2,808.00	
Item 585.5 - Stone Fill, Class E (CY)	267	\$25.00	\$6,675.00	
Item 585.7 - Stone Fill, Class G (CY)	44	\$35.00	\$1,540.00	
ltem 593.431 - Geotextile, Perm. Control, Cl. 3, Non-woven (SY)	281	\$3.00	\$843.00	
Item 603.83212 - 12" Plastic Pipe (Smooth Interior) (LF)	50	\$21.00	\$1,050.00	
Item 604.91X - Outlet Control Structure (U)	1	\$4,000.00	\$4,000.00	
Item 604.921 - Leaching Chamber, Type 1 (U)	6	\$980.00	\$5 <i>,</i> 880.00	
Item 604.922 - Leaching Chamber, Type 2 (U)	5	\$960.00	\$4,800.00	
ltem 605.506 - 6" Perf. Corr. Poly. Pipe Underdrain (LF)	192	\$15.00	\$2,880.00	
Item 605.79 - Underdrain Flushing Basins (EA)	2	\$300.00	\$600.00	
Item 605.82251 - 24" Agg. Und. Type 2 w/ 6" Perf. Corr. PE Pipe (LF)	429	\$20.00	\$8,580.00	
Item 647.1 - Humus (CY)	233	\$20.00	\$4,660.00	
Item 647.29 - Wetland Humus (CY)	292	\$12.50	\$3,650.00	
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$110.00	\$110.00	
Total			\$69,664.20	

12/2/2013

SUBSURFACE GRAVEL WETLANDS (14633E/ BMP 17)				
Item	Quantity	Bid Price	Total	
Item 203.1 - Common Excavation (CY)	7,638	\$3.75	\$28,642.50	
Item 203.2 - Rock Excavation (CY)	1,923	\$10.75	\$20,672.25	
ltem 203.6 - Embankment-in-Place (CY)	4,211	\$4.90	\$20,633.90	
ltem 203. 52 - Impervious Material (CY)	1,746	\$12.00	\$20,952.00	
Item 520.1 - Concrete Class A (CY)	23	\$525.00	\$12,075.00	
Item 585.3- Stone Fill, Class C (CY)	194	\$25.00	\$4,850.00	
Item 585.5 - Stone Fill, Class E (CY)	317	\$30.00	\$9,510.00	
Item 585.7 - Stone Fill, Class G (CY)	52	\$40.00	\$2,080.00	
Item 593.431 - Geotextile, Perm. Control, Cl. 3, Non-woven (SY)	580	\$2.00	\$1,160.00	
Item 603.83212 - 12" Plastic Pipe (Smooth Interior) (LF)	38	\$24.00	\$912.00	
Item 604.91X - Outlet Control Structure (U)	1	\$2,900.00	\$2,900.00	
Item 604.921 - Leaching Chamber, Type 1 (U)	6	\$1,115.00	\$6,690.00	
Item 604.922 - Leaching Chamber, Type 2 (U)	5	\$1,070.00	\$5,350.00	
Item 605.506 - 6" Perf. Corr. Poly. Pipe Underdrain (LF)	369	\$10.50	\$3,874.50	
Item 605.79 - Underdrain Flushing Basins (EA)	6	\$240.00	\$1,440.00	
Item 605.82251 - 24" Agg. Und. Type 2 w/ 6" Perf. Corr. PE Pipe (LF)	718	\$21.00	\$15,078.00	
Item 647.29 - Wetland Humus (CY)	289	\$20.00	\$5,780.00	
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$500.00	\$500.00	
Total			\$163,100.15	

12/2/2013	
-----------	--

SUBSURFACE GRAVEL WETLANDS (14633F/ BMP 16)				
ltem	Quantity	Bid Price	Total	
Item 203.1 - Common Excavation (CY)	3,498	\$4.00	\$13,992.00	
Item 203.2 - Rock Excavation (CY)	3,532	\$9.00	\$31,788.00	
Item 203.6 - Embankment-in-Place (CY)	25	\$3.15	\$78.75	
Item 203. 52 - Impervious Material (CY)	3,435	\$15.00	\$51,525.00	
Item 206.2- Rock Structure Excavation (CY)	39	\$17.00	\$663.00	
ltem 209.1 - Granular Backfill (CY)	7	\$28.00	\$196.00	
Item 520.1 - Concrete Class A (CY)	7	\$180.00	\$1,260.00	
Item 585.2 - Stone Fill, Class B (CY)	202	\$20.00	\$4,040.00	
Item 585.3- Stone Fill, Class C (CY)	106	\$26.00	\$2,756.00	
Item 585.5 - Stone Fill, Class E (CY)	667	\$25.00	\$16,675.00	
Item 585.7 - Stone Fill, Class G (CY)	111	\$35.00	\$3,885.00	
ltem 593.411 - Geotextile, Perm. Control, Cl. 1, Non-woven (SY)	222	\$3.00	\$666.00	
ltem 593.431 - Geotextile, Perm. Control, Cl. 3, Non-woven (SY)	273	\$3.00	\$819.00	
Item 603.83212 - 12" Plastic Pipe (Smooth Interior) (LF)	72	\$21.00	\$1,512.00	
Item 604.91X - Outlet Control Structure (U)	2	\$4,000.00	\$8,000.00	
Item 604.921 - Leaching Chamber, Type 1 (U)	6	\$980.00	\$5,880.00	
ltem 604.922 - Leaching Chamber, Type 2 (U)	5	\$960.00	\$4,800.00	
ltem 605.506 - 6" Perf. Corr. Poly. Pipe Underdrain (LF)	360	\$15.00	\$5,400.00	
Item 605.79 - Underdrain Flushing Basins (EA)	6	\$300.00	\$1,800.00	
ltem 605.82251 - 24" Agg. Und. Type 2 w/ 6" Perf. Corr. PE Pipe (LF)	1,016	\$20.00	\$20,320.00	
Item 647.1 - Humus (CY)	434	\$20.00	\$8,680.00	
Item 647.29 - Wetland Humus (CY)	314	\$12.50	\$3,925.00	
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$110.00	\$110.00	
Total			\$188,770.75	

12/2/2013

SUBSURFACE GRAVEL WETLANDS (14633E/ BMP 14)				
ltem	Quantity	Bid Price	Total	
Item 203.1 - Common Excavation (CY)	4,570	\$3.75	\$17,137.50	
Item 203.2 - Rock Excavation (CY)	572	\$10.75	\$6,149.00	
ltem 203.6 - Embankment-in-Place (CY)	23	\$4.90	\$112.70	
ltem 203. 52 - Impervious Material (CY)	1,049	\$12.00	\$12,588.00	
Item 520.1 - Concrete Class A (CY)	16	\$525.00	\$8,400.00	
Item 585.3- Stone Fill, Class C (CY)	183	\$25.00	\$4,575.00	
Item 585.5 - Stone Fill, Class E (CY)	210	\$30.00	\$6,300.00	
Item 585.7 - Stone Fill, Class G (CY)	35	\$40.00	\$1,400.00	
Item 593.431 - Geotextile, Perm. Control, Cl. 3, Non-woven (SY)	550	\$2.00	\$1,100.00	
Item 603.83212 - 12" Plastic Pipe (Smooth Interior) (LF)	34	\$24.00	\$816.00	
Item 604.91X - Outlet Control Structure (U)	1	\$2,900.00	\$2,900.00	
Item 604.921 - Leaching Chamber, Type 1 (U)	6	\$1,115.00	\$6,690.00	
Item 604.922 - Leaching Chamber, Type 2 (U)	5	\$1,070.00	\$5,350.00	
Item 605.506 - 6" Perf. Corr. Poly. Pipe Underdrain (LF)	296	\$10.50	\$3,108.00	
Item 605.79 - Underdrain Flushing Basins (EA)	2	\$240.00	\$480.00	
Item 605.82251 - 24" Agg. Und. Type 2 w/ 6" Perf. Corr. PE Pipe (LF)	256	\$21.00	\$5,376.00	
Item 647.29 - Wetland Humus (CY)	106	\$20.00	\$2,120.00	
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$500.00	\$500.00	
Total			\$85,102.20	

SUBSURFACE GRAVEL WETLANDS (14633F/ BMP 13)				
ltem	Quantity	Bid Price	Total	
Item 203.1 - Common Excavation (CY)	8,865	\$4.00	\$35,460.00	
Item 203.2 - Rock Excavation (CY)	1,679	\$9.00	\$15,111.00	
Item 203.6 - Embankment-in-Place (CY)	568	\$3.15	\$1,789.20	
Item 203. 52 - Impervious Material (CY)	4,102	\$15.00	\$61,530.00	
Item 206.2- Rock Structure Excavation (CY)	64	\$17.00	\$1,088.00	
ltem 209.1 - Granular Backfill (CY)	9	\$28.00	\$252.00	
Item 520.1 - Concrete Class A (CY)	8	\$180.00	\$1,440.00	
Item 585.3- Stone Fill, Class C (CY)	159	\$26.00	\$4,134.00	
Item 585.5 - Stone Fill, Class E (CY)	922	\$25.00	\$23,050.00	
Item 585.7 - Stone Fill, Class G (CY)	165	\$35.00	\$5,775.00	
ltem 593.431 - Geotextile, Perm. Control, Cl. 3, Non-woven (SY)	447	\$3.00	\$1,341.00	
ltem 603.83212 - 12" Plastic Pipe (Smooth Interior) (LF)	72	\$21.00	\$1,512.00	
Item 604.91X - Outlet Control Structure (U)	2	\$4,000.00	\$8,000.00	
ltem 604.921 - Leaching Chamber, Type 1 (U)	6	\$980.00	\$5,880.00	
ltem 604.922 - Leaching Chamber, Type 2 (U)	5	\$960.00	\$4,800.00	
ltem 605.506 - 6" Perf. Corr. Poly. Pipe Underdrain (LF)	384	\$15.00	\$5,760.00	
Item 605.79 - Underdrain Flushing Basins (EA)	5	\$300.00	\$1,500.00	
Item 605.82251 - 24" Agg. Und. Type 2 w/ 6" Perf. Corr. PE Pipe (LF)	994	\$20.00	\$19,880.00	
Item 647.1 - Humus (CY)	640	\$20.00	\$12,800.00	
Item 647.29 - Wetland Humus (CY)	467	\$12.50	\$5,837.50	
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$110.00	\$110.00	
Total			\$217,049.70	

12/3/2013

SUBSURFACE GRAVEL WETLANDS (13742B/ GW #2)				
ltem	Quantity	Bid Price	Total	
Item 203.1 - Common Excavation (CY)	2,172	\$5.00	\$10,860.00	
Item 203.6 - Embankment-in-Place (CY)	51	\$5.00	\$255.00	
Item 203. 52 - Impervious Material (CY)	462	\$14.00	\$6,468.00	
Item 585.3- Stone Fill, Class C (CY)	93	\$27.00	\$2,511.00	
Item 585.5 - Stone Fill, Class E (CY)	82	\$34.00	\$2,788.00	
Item 585.7 - Stone Fill, Class G (CY)	14	\$51.00	\$714.00	
Item 593.421 - Geotextile, Perm. Control, Cl. 2, Non-woven (SY)	314	\$2.50	\$785.00	
Item 603.80012 - 12" Plastic Pipe (LF)	36	\$27.00	\$972.00	
Item 604.91X - Outlet Control Structure (U)	1	\$4,000.00	\$4,000.00	
Item 604.921 - Leaching Chamber Type 1 (U)	6	\$1,350.00	\$8,100.00	
Item 604.912 - Leaching Chamber Type 2 (U)	5	\$1,350.00	\$6,750.00	
Item 605.506 - 6" Perf. Corr. Poly. Pipe Underdrain (LF)	109	\$15.50	\$1,689.50	
Item 646.3 - Turf Establishment w/ Mulch & Tackifiers (A)	0.50	\$1,775.00	\$887.50	
Item 647.29 - Wetland Humus (CY)	256	\$19.00	\$4,864.00	
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$170.00	\$170.00	
Total			\$51,814.00	

12/3/2013

SUBSURFACE GRAVEL WETLANDS (13742B/ GW #1)				
Item	Quantity	Bid Price	Total	
Item 203.1 - Common Excavation (CY)	1,150	\$5.00	\$5,750.00	
ltem 203.6 - Embankment-in-Place (CY)	831	\$5.00	\$4,155.00	
Item 203. 52 - Impervious Material (CY)	924	\$14.00	\$12,936.00	
Item 585.3- Stone Fill, Class C (CY)	98	\$27.00	\$2,646.00	
Item 585.5 - Stone Fill, Class E (CY)	178	\$34.00	\$6,052.00	
Item 585.7 - Stone Fill, Class G (CY)	30	\$51.00	\$1,530.00	
Item 593.421 - Geotextile, Perm. Control, Cl. 2, Non-woven (SY)	333	\$2.50	\$832.50	
Item 603.80012 - 12" Plastic Pipe (LF)	28	\$27.00	\$756.00	
Item 604.91X - Outlet Control Structure (U)	1	\$4,000.00	\$4,000.00	
Item 604.921 - Leaching Chamber Type 1 (U)	6	\$1,350.00	\$8,100.00	
Item 604.912 - Leaching Chamber Type 2 (U)	5	\$1,350.00	\$6,750.00	
Item 605.506 - 6" Perf. Corr. Poly. Pipe Underdrain (LF)	188	\$15.50	\$2,914.00	
Item 646.3 - Turf Establishment w/ Mulch & Tackifiers (A)	0.40	\$1,775.00	\$710.00	
Item 647.1 - Humus (CY)	330	\$18.00	\$5,940.00	
Item 647.29 - Wetland Humus (CY)	60	\$19.00	\$1,140.00	
Item 670.01 - Sediment Sump Measuring Post (EA)	1	\$170.00	\$170.00	
Total			\$64,381.50	

Attachment B: Subsurface Gravel Wetland Inspection and Maintenance Guidance

Regular Inspection and Maintenance Guidance for

Gravel Wetland Stormwater Management Device

Regular inspection and maintenance is critical to the effective operation of Gravel Wetland systems. It is the responsibility of the owner to maintain the Gravel Wetland in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and any changes or redevelopment in the upstream land use.

ACTIVITIES

Visual inspections are routine for system maintenance. This includes looking for standing water, accumulated leaves, holes in the soil media, signs of plant distress, and debris and sediment accumulation in the system. Vegetation coverage is integral to the performance of the system and vegetation care is important to system productivity and health. A gravel wetland is a subsurface horizontal filtration system and does not rely upon the surface soils for treatment. As such, surface infiltration rates are expected to be low and not a criterion for cleaning. Rather, stormwater access to subsurface treatment is by way of inlet standpipes. It is important to ensure these inlets are performing properly.

1ST YEAR POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check that plants have adequate water, are well established and healthy. Remedy: Water plants as necessary, remove or treat diseased vegetation as necessary and revegetate poorly established plants as necessary Check for engine in the curters and chect circuiting (heales) in the curfese wetlend coils. 	After every major storm in the first few months, then	
 Check for erosion in the system and short circuiting (holes) in the surface wetland soils. Remedy: Soil piping, erosion, and holes should be filled, lightly compacted, and reseeded. 	biannually.	
POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check inlets outlets and stand pipes for leaves and debris. Remedy: Rake in and around the system to clear it of debris. Also, clear the inlet, outlets and standpipes if obstructed. 		
 Check for animal burrows and short circuiting in the system. Remedy: Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted 	Quarterly initially,	
 Check that the depth of accumulated sediment in the sedimentation chamber is less than 12 inches or 10 percent of the pretreatment volume. Remedy: The sedimentation chamber, forebay, and treatment cells outlet devices should be cleaned when drawdown times exceed 36 hours. Remove material with rakes where possible rather than heavy construction equipment to avoid compaction of the gravel wetland surface. Heavy equipment could be used if the system is designed with dimensions that allow equipment to be located outside the gravel wetland, while a backhoe shovel reaches inside the gravel wetland to remove sediment. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner. 	biannually, frequency adjusted as needed after 3 inspections	
 Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning. Remedy: Repair or replace any damaged structural parts, inlets and outlets. 	Annually	
 Check for robust vegetation coverage throughout the system. Remedy: If at least 50 % vegetation coverage is not established after 2 years, reinforcement planting should be performed. 		
 Cut and remove vegetation from the Gravel Wetland System and forebay in order to maintain nitrogen removal performance. Remedy: The vegetation should be cut and removed from the system to prevent nitrogen from cycling back into the system. 	Once every 3 years	

CHECKLIST FOR INSPECTION OF GRAVEL WETLAND				
Location:	Inspector:			
Date: Time:	Si	te Condition	S:	
Date Since Last Rain Event:				
Inspection Items		tory (S) or factory (U)	Comments/Corrective Action	
1 st Year Post-Construction Monitoring (After every major storm	for the fi	rst three mo	nths)	
Plants are stable, roots not exposed	S	U		
Vegetation is established and thriving	S	U		
No evidence of holes in the wetland soil causing short-circuiting	S	U		
No evidence of erosion at inlet and outlet structures	S	U		
Post-Construction Routine Monitoring (at least every 6 months Requirements. Inspection frequency can be reduced to annual of sediment accumulation is less than cleaning criteria listed b	following			
1. Standing Water				
Gravel wetland surface is free of standing water or other evidence of clogging, such as discolored or accumulated sediments	S	U		
2. Short Circuiting & Erosion				
No evidence of animal burrows or other holes	S	U		
No evidence of erosion	S	U]	
3. Drought Conditions (As needed)				
Water plants as needed	S	U]	
Dead or dying plants	S	U]	
4. Sedimentation Chamber or Forebay Inlet Inspection				
No evidence of sediment accumulation, trash, and debris.	S	U	1	
Good condition, no need for repair	S	U]	
5. Vegetation Coverage				
50 % coverage established throughout system by first year	S	U	1	
Robust coverage by year 2 or later	S	U]	
6. Inlet and Outlet Controls				
Flow is unobstructed in openings (grates, orifices, etc)	S	U	1	
Structures are operational with no evidence of deterioration	S	U	1	
7. Vegetation removal (once every 3 years)				
Prune dead, diseased, or decaying plants	S	U	1	
Corrective Action Needed			Due Date	
1.				
2.				
3.				

10/25/2011, University of New Hampshire Stormwater Center

Attachment C: Results of Subsurface Gravel Wetland Inspections

Regular Inspection and Maintenance Guidance for

Gravel Wetland Stormwater Management Device

Regular inspection and maintenance is critical to the effective operation of Gravel Wetland systems. It is the responsibility of the owner to maintain the Gravel Wetland in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and any changes or redevelopment in the upstream land use.

ACTIVITIES

Visual inspections are routine for system maintenance. This includes looking for standing water, accumulated leaves, holes in the soil media, signs of plant distress, and debris and sediment accumulation in the system. Vegetation coverage is integral to the performance of the system and vegetation care is important to system productivity and health. A gravel wetland is a subsurface horizontal filtration system and does not rely upon the surface soils for treatment. As such, surface infiltration rates are expected to be low and not a criterion for cleaning. Rather, stormwater access to subsurface treatment is by way of inlet standpipes. It is important to ensure these inlets are performing properly.

1ST YEAR POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check that plants have adequate water, are well established and healthy. Remedy: Water plants as necessary, remove or treat diseased vegetation as necessary and revegetate poorly established plants as necessary 	After every major storm in the first few months, then	
2. Check for erosion in the system and short circuiting (holes) in the surface wetland soils. Remedy: Soil piping, erosion, and holes should be filled, lightly compacted, and reseeded.	biannually.	
POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check inlets outlets and stand pipes for leaves and debris. Remedy: Rake in and around the system to clear it of debris. Also, clear the inlet, outlets and standpipes if obstructed. 		
 Check for animal burrows and short circuiting in the system. Remedy: Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted 	Quarterly initially, biannually,	
 Check that the depth of accumulated sediment in the sedimentation chamber is less than 12 inches or 10 percent of the pretreatment volume. Remedy: The sedimentation chamber, forebay, and treatment cells outlet devices should be cleaned when drawdown times exceed 36 hours. Remove material with rakes where possible rather than heavy construction equipment to avoid compaction of the gravel wetland surface. Heavy equipment could be used if the system is designed with dimensions that allow equipment to be located outside the gravel wetland, while a backhoe shovel reaches inside the gravel wetland to remove sediment. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner. 	frequency adjusted as needed after 3 inspections	
 Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning. Remedy: Repair or replace any damaged structural parts, inlets and outlets. 	Annually	
 Check for robust vegetation coverage throughout the system. Remedy: If at least 50 % vegetation coverage is not established after 2 years, reinforcement planting should be performed. 	, undany	
 Cut and remove vegetation from the Gravel Wetland System and forebay in order to maintain nitrogen removal performance. Remedy: The vegetation should be cut and removed from the system to prevent nitrogen from cycling back into the system. 	Once every 3 years	

CHECKLIST FOR INSPECTION	OF GR/	AVEL WI	ETLAND
Location: I93 NB & SB Exit 5 Area DOT#: 14633F BMP 19 Date: 7/18/14 Time: 1:00PM Date of Last Rain Event: 7/16/14		spector: Ti Conditions	
Inspection Items	Satisfacto Unsatisfa		Comments/Corrective Action
1 st Year Post-Construction Monitoring (After every major storm	for the firs	st three mo	nths)
Plants are stable, roots not exposed	S	U	Constructed 2013-2014
Vegetation is established and thriving	S	U	
No evidence of holes in the wetland soil causing short-circuiting	S	U	
No evidence of erosion at inlet and outlet structures	S	U	
Post-Construction Routine Monitoring (at least every 6 months Requirements. Inspection frequency can be reduced to annual of sediment accumulation is less than cleaning criteria listed b	following 2		
1. Standing Water			
Gravel wetland surface is free of standing water or other evidence of clogging, such as discolored or accumulated sediments	S	U	Standing water in fore bay & both cells, approx. 3-5"
2. Short Circuiting & Erosion			
No evidence of animal burrows or other holes	S	U	
No evidence of erosion	S	U	
3. Drought Conditions (As needed)			Too much water. Plants are
Water plants as needed	S	U	thin in areas where water has been pooling.
Dead or dying plants	S	U	
4. Sedimentation Chamber or Forebay Inlet Inspection			
No evidence of sediment accumulation, trash, and debris.	s	U	
Good condition, no need for repair	S	U	
5. Vegetation Coverage			
50 % coverage established throughout system by first year	S	U	NA
Robust coverage by year 2 or later	S	U	NA
6. Inlet and Outlet Controls:			
Flow is unobstructed in openings (grates, orifices, etc)	S	U	
Structures are operational with no evidence of deterioration	S	U	
7. Vegetation removal (once every 3 years)			
Prune dead, diseased, or decaying plants	S	U	NA
Corrective Action Needed			Due Date
1. Outlet pipe invert is above the wetland soil elevation which keep Could bring the soil up another 6-8".	os the syste	m flooded.	ASAP
COMMENT: Area of system is smaller than other BMPs but has the structures.	same num	ber of	

10/25/2011, University of New Hampshire Stormwater Center

Regular Inspection and Maintenance Guidance for

Gravel Wetland Stormwater Management Device

Regular inspection and maintenance is critical to the effective operation of Gravel Wetland systems. It is the responsibility of the owner to maintain the Gravel Wetland in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and any changes or redevelopment in the upstream land use.

ACTIVITIES

Visual inspections are routine for system maintenance. This includes looking for standing water, accumulated leaves, holes in the soil media, signs of plant distress, and debris and sediment accumulation in the system. Vegetation coverage is integral to the performance of the system and vegetation care is important to system productivity and health. A gravel wetland is a subsurface horizontal filtration system and does not rely upon the surface soils for treatment. As such, surface infiltration rates are expected to be low and not a criterion for cleaning. Rather, stormwater access to subsurface treatment is by way of inlet standpipes. It is important to ensure these inlets are performing properly.

1ST YEAR POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check that plants have adequate water, are well established and healthy. Remedy: Water plants as necessary, remove or treat diseased vegetation as necessary and revegetate poorly established plants as necessary 	After every major storm in the first few months, then biannually.	
2. Check for erosion in the system and short circuiting (holes) in the surface wetland soils. Remedy: Soil piping, erosion, and holes should be filled, lightly compacted, and reseeded.		
POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check inlets outlets and stand pipes for leaves and debris. Remedy: Rake in and around the system to clear it of debris. Also, clear the inlet, outlets and standpipes if obstructed. 	Quarterly initially, biannually, frequency adjusted as needed after 3 inspections	
 Check for animal burrows and short circuiting in the system. Remedy: Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted 		
5. Check that the depth of accumulated sediment in the sedimentation chamber is less than 12 inches or 10 percent of the pretreatment volume. Remedy: The sedimentation chamber, forebay, and treatment cells outlet devices should be cleaned when drawdown times exceed 36 hours. Remove material with rakes where possible rather than heavy construction equipment to avoid compaction of the gravel wetland surface. Heavy equipment could be used if the system is designed with dimensions that allow equipment to be located outside the gravel wetland, while a backhoe shovel reaches inside the gravel wetland to remove sediment. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner.		
 Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning. Remedy: Repair or replace any damaged structural parts, inlets and outlets. 	Annually	
 Check for robust vegetation coverage throughout the system. Remedy: If at least 50 % vegetation coverage is not established after 2 years, reinforcement planting should be performed. 		
 Cut and remove vegetation from the Gravel Wetland System and forebay in order to maintain nitrogen removal performance. Remedy: The vegetation should be cut and removed from the system to prevent nitrogen from cycling back into the system. 	Once every 3 years	

CHECKLIST FOR INSPECTION OF GRAVEL WETLAND				
Location: I93 NB, East side DOT#: 14633F BMP 18 Date: 7/18/14 Time: 1:45PM Date of Last Rain Event: 7/16/14	Inspector: Tim Puls Site Conditions: Fair, Draining			
Inspection Items	Satisfacto Unsatisfa		Comments/Corrective Action	
1 st Year Post-Construction Monitoring (After every major storm for the first three months)				
Plants are stable, roots not exposed	S	U	Constructed 2013-2014	
Vegetation is established and thriving	S	U		
No evidence of holes in the wetland soil causing short-circuiting	S	U		
No evidence of erosion at inlet and outlet structures	S	U		
Post-Construction Routine Monitoring (at least every 6 months thereafter as per USEPA Good House-Keeping Requirements. Inspection frequency can be reduced to annual following 2 years of monitoring indicating the rate of sediment accumulation is less than cleaning criteria listed below.)				
1. Standing Water				
Gravel wetland surface is free of standing water or other evidence of clogging, such as discolored or accumulated sediments	S	U	Standing water in fore bay & both cells, approx. 3-5"	
2. Short Circuiting & Erosion				
No evidence of animal burrows or other holes	S	U		
No evidence of erosion	S	U		
3. Drought Conditions (As needed)			Too much water. Plants are thin in areas where water has been pooling.	
Water plants as needed	S	U		
Dead or dying plants	S	U		
4. Sedimentation Chamber or Forebay Inlet Inspection				
No evidence of sediment accumulation, trash, and debris.	S	U		
Good condition, no need for repair	S	U		
5. Vegetation Coverage				
50 % coverage established throughout system by first year	S	U	NA	
Robust coverage by year 2 or later	S	U	NA	
6. Inlet and Outlet Controls:			A piece of trash was blocking	
Flow is unobstructed in openings (grates, orifices, etc)	S	U	outlet orifice. Blockage cleared and system began to drain.	
Structures are operational with no evidence of deterioration	S	U		
7. Vegetation removal (once every 3 years)				
Prune dead, diseased, or decaying plants	S	U	NA	
Corrective Action Needed			Due Date	
1. Outlet control structure has slotted inlets (4" x 12") that are unput up over the inlet slots to keep trash out of structure.	rotected. Bri	ing rip rap	ASAP	
COMMENT: Area of system is smaller than other BMPs but has the structures.	same num	ber of		

10/25/2011, University of New Hampshire Stormwater Center

Gravel Wetland Stormwater Management Device

Regular inspection and maintenance is critical to the effective operation of Gravel Wetland systems. It is the responsibility of the owner to maintain the Gravel Wetland in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and any changes or redevelopment in the upstream land use.

ACTIVITIES

1ST YEAR POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check that plants have adequate water, are well established and healthy. Remedy: Water plants as necessary, remove or treat diseased vegetation as necessary and revegetate poorly established plants as necessary 	After every major storm in the first few months, then	
2. Check for erosion in the system and short circuiting (holes) in the surface wetland soils. Remedy: Soil piping, erosion, and holes should be filled, lightly compacted, and reseeded.	biannually.	
POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check inlets outlets and stand pipes for leaves and debris. Remedy: Rake in and around the system to clear it of debris. Also, clear the inlet, outlets and standpipes if obstructed. 		
 Check for animal burrows and short circuiting in the system. Remedy: Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted 	Quarterly initially,	
 Check that the depth of accumulated sediment in the sedimentation chamber is less than 12 inches or 10 percent of the pretreatment volume. Remedy: The sedimentation chamber, forebay, and treatment cells outlet devices should be cleaned when drawdown times exceed 36 hours. Remove material with rakes where possible rather than heavy construction equipment to avoid compaction of the gravel wetland surface. Heavy equipment could be used if the system is designed with dimensions that allow equipment to be located outside the gravel wetland, while a backhoe shovel reaches inside the gravel wetland to remove sediment. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner. 	biannually, frequency adjusted as needed after 3 inspections	
 Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning. Remedy: Repair or replace any damaged structural parts, inlets and outlets. 	Annually	
 Check for robust vegetation coverage throughout the system. Remedy: If at least 50 % vegetation coverage is not established after 2 years, reinforcement planting should be performed. 	· · · · · · · · · · · · · · · · · · ·	
 Cut and remove vegetation from the Gravel Wetland System and forebay in order to maintain nitrogen removal performance. Remedy: The vegetation should be cut and removed from the system to prevent nitrogen from cycling back into the system. 	Once every 3 years	

CHECKLIST FOR INSPECTION	OF GRA		ETLAND
Location: I93 Exit 5 NB Off Ramp Area DOT#: 14633F	Inspector: Tim Puls		
Date: 7/18/14 Time: 12:30AM	Site Conditions: Very Good		•
Date of Last Rain Event: 7/16/14	Tv	vo systems	6 – BMP 13, BMP 16
Inspection Items	Satisfacto Unsatisfa		Comments/Corrective Action
1 st Year Post-Construction Monitoring (After every major storm	for the firs	t three mor	nths)
Plants are stable, roots not exposed	S	U	New systems – BMP 13
Vegetation is established and thriving	S	U	approx. 1.5 years old and BMP 16 is approx. 6 months. GC is
No evidence of holes in the wetland soil causing short-circuiting	S	U	Severino Construction
No evidence of erosion at inlet and outlet structures	S	U	
Post-Construction Routine Monitoring (at least every 6 months Requirements. Inspection frequency can be reduced to annual of sediment accumulation is less than cleaning criteria listed b	following 2	as per USE years of m	PA Good House-Keeping conitoring indicating the rate
1. Standing Water			
Gravel wetland surface is free of standing water or other evidence of clogging, such as discolored or accumulated sediments	S	U	None
2. Short Circuiting & Erosion			
No evidence of animal burrows or other holes	S	U	
No evidence of erosion	S	U	
3. Drought Conditions (As needed)			
Water plants as needed	S	U	
Dead or dying plants	S	U	
4. Sedimentation Chamber or Forebay Inlet Inspection			
No evidence of sediment accumulation, trash, and debris.	S	U	
Good condition, no need for repair	S	U	
5. Vegetation Coverage			
50 % coverage established throughout system by first year	S	U	
Robust coverage by year 2 or later	S	U	
6. Inlet and Outlet Controls:			
Flow is unobstructed in openings (grates, orifices, etc)	S	U	
Structures are operational with no evidence of deterioration	S	U	
7. Vegetation removal (once every 3 years)			
Prune dead, diseased, or decaying plants	S	U	
Corrective Action Needed			Due Date
COMMENT: Both BMPs drain to a central 48" line. Could reduce n inlets and cleanout structures.	umber of hy	draulic	

Gravel Wetland Stormwater Management Device

Regular inspection and maintenance is critical to the effective operation of Gravel Wetland systems. It is the responsibility of the owner to maintain the Gravel Wetland in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and any changes or redevelopment in the upstream land use.

ACTIVITIES

1ST YEAR POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check that plants have adequate water, are well established and healthy. Remedy: Water plants as necessary, remove or treat diseased vegetation as necessary and revegetate poorly established plants as necessary 	After every major storm in the first few months, then	
2. Check for erosion in the system and short circuiting (holes) in the surface wetland soils. Remedy: Soil piping, erosion, and holes should be filled, lightly compacted, and reseeded.	biannually.	
POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check inlets outlets and stand pipes for leaves and debris. Remedy: Rake in and around the system to clear it of debris. Also, clear the inlet, outlets and standpipes if obstructed. 		
 Check for animal burrows and short circuiting in the system. Remedy: Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted 	Quarterly initially,	
 Check that the depth of accumulated sediment in the sedimentation chamber is less than 12 inches or 10 percent of the pretreatment volume. Remedy: The sedimentation chamber, forebay, and treatment cells outlet devices should be cleaned when drawdown times exceed 36 hours. Remove material with rakes where possible rather than heavy construction equipment to avoid compaction of the gravel wetland surface. Heavy equipment could be used if the system is designed with dimensions that allow equipment to be located outside the gravel wetland, while a backhoe shovel reaches inside the gravel wetland to remove sediment. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner. 	biannually, frequency adjusted as needed after 3 inspections	
 Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning. Remedy: Repair or replace any damaged structural parts, inlets and outlets. 	Annually	
 Check for robust vegetation coverage throughout the system. Remedy: If at least 50 % vegetation coverage is not established after 2 years, reinforcement planting should be performed. 	· · · · · · · · · · · · · · · · · · ·	
 Cut and remove vegetation from the Gravel Wetland System and forebay in order to maintain nitrogen removal performance. Remedy: The vegetation should be cut and removed from the system to prevent nitrogen from cycling back into the system. 	Once every 3 years	

CHECKLIST FOR INSPECTION OF GRAVEL WETLAND			
Location: I93 Exit 5 NB On Ramp DOT#: 14633E BMP 17 Date: 7/18/14 Time: 1:30PM Date of Last Rain Event: 7/16/14	Site	Inspector: Conditions	
Inspection Items		ory (S) or actory (U)	Comments/Corrective Action
1 st Year Post-Construction Monitoring (After every major storm	for the fir	st three mor	nths)
Plants are stable, roots not exposed	S	U	NA
Vegetation is established and thriving	S	U	System constructed in 2008- 2009
No evidence of holes in the wetland soil causing short-circuiting	S	U	2000
No evidence of erosion at inlet and outlet structures	S	U	
Post-Construction Routine Monitoring (at least every 6 months Requirements. Inspection frequency can be reduced to annual of sediment accumulation is less than cleaning criteria listed b	following		
1. Standing Water			
Gravel wetland surface is free of standing water or other evidence of clogging, such as discolored or accumulated sediments	S	U	Fore bay has pooled water. Full of cattails.
2. Short Circuiting & Erosion			
No evidence of animal burrows or other holes	S	U	
No evidence of erosion	S	U	
3. Drought Conditions (As needed)			
Water plants as needed	S	U	
Dead or dying plants	S	U	
4. Sedimentation Chamber or Forebay Inlet Inspection			
No evidence of sediment accumulation, trash, and debris.	S	U	
Good condition, no need for repair	S	U	
5. Vegetation Coverage			
50 % coverage established throughout system by first year	S	U	
Robust coverage by year 2 or later	S	U	
6. Inlet and Outlet Controls:	-		
Flow is unobstructed in openings (grates, orifices, etc)	S	U	
Structures are operational with no evidence of deterioration	S	U	
7. Vegetation removal (once every 3 years)			No maintenance has been
Prune dead, diseased, or decaying plants	S	U	done to date.
Corrective Action Needed			Due Date
1. Cut vegetation down to base and remove from system.			ASAP
COMMENT: Area of system is larger than other BMPs but has the s structures. 6 hydraulic inlets, 5 leach basins, 1 outlet	same numb	per of	

Gravel Wetland Stormwater Management Device

Regular inspection and maintenance is critical to the effective operation of Gravel Wetland systems. It is the responsibility of the owner to maintain the Gravel Wetland in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and any changes or redevelopment in the upstream land use.

ACTIVITIES

1ST YEAR POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check that plants have adequate water, are well established and healthy. Remedy: Water plants as necessary, remove or treat diseased vegetation as necessary and revegetate poorly established plants as necessary 	After every major storm in the first few months, then	
2. Check for erosion in the system and short circuiting (holes) in the surface wetland soils. Remedy: Soil piping, erosion, and holes should be filled, lightly compacted, and reseeded.	biannually.	
POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check inlets outlets and stand pipes for leaves and debris. Remedy: Rake in and around the system to clear it of debris. Also, clear the inlet, outlets and standpipes if obstructed. 		
 Check for animal burrows and short circuiting in the system. Remedy: Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted 	Quarterly initially,	
 Check that the depth of accumulated sediment in the sedimentation chamber is less than 12 inches or 10 percent of the pretreatment volume. Remedy: The sedimentation chamber, forebay, and treatment cells outlet devices should be cleaned when drawdown times exceed 36 hours. Remove material with rakes where possible rather than heavy construction equipment to avoid compaction of the gravel wetland surface. Heavy equipment could be used if the system is designed with dimensions that allow equipment to be located outside the gravel wetland, while a backhoe shovel reaches inside the gravel wetland to remove sediment. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner. 	biannually, frequency adjusted as needed after 3 inspections	
 Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning. Remedy: Repair or replace any damaged structural parts, inlets and outlets. 	Annually	
 Check for robust vegetation coverage throughout the system. Remedy: If at least 50 % vegetation coverage is not established after 2 years, reinforcement planting should be performed. 	· · · · · · · · · · · · · · · · · · ·	
 Cut and remove vegetation from the Gravel Wetland System and forebay in order to maintain nitrogen removal performance. Remedy: The vegetation should be cut and removed from the system to prevent nitrogen from cycling back into the system. 	Once every 3 years	

CHECKLIST FOR INSPECTION OF GRAVEL WETLAND			
Location: I93 Exit 5 SB On Ramp DOT#: 14633E BMP 14		Insp	ector: Tim Puls
Date: 7/18/14 Time: 1:20PM	Site	Conditions	Good
Date of Last Rain Event: 7/16/14			
Inspection Items	Satisfacto Unsatisfa		Comments/Corrective Action
1 st Year Post-Construction Monitoring (After every major storm	for the firs	st three mor	nths)
Plants are stable, roots not exposed	S	U	NA
Vegetation is established and thriving	S	U	System constructed in 2008- 2009
No evidence of holes in the wetland soil causing short-circuiting	S	U	2000
No evidence of erosion at inlet and outlet structures	S	U	
Post-Construction Routine Monitoring (at least every 6 months Requirements. Inspection frequency can be reduced to annual of sediment accumulation is less than cleaning criteria listed b	following 2		
1. Standing Water			
Gravel wetland surface is free of standing water or other evidence of clogging, such as discolored or accumulated sediments	S	U	Fore bay is dry
2. Short Circuiting & Erosion			
No evidence of animal burrows or other holes	S	U	
No evidence of erosion	S	U	
3. Drought Conditions (As needed)			
Water plants as needed	S	U	
Dead or dying plants	S	U	
4. Sedimentation Chamber or Forebay Inlet Inspection			
No evidence of sediment accumulation, trash, and debris.	S	U	
Good condition, no need for repair	S	U	
5. Vegetation Coverage			
50 % coverage established throughout system by first year	S	U	
Robust coverage by year 2 or later	S	U	
6. Inlet and Outlet Controls:			
Flow is unobstructed in openings (grates, orifices, etc)	S	U	
Structures are operational with no evidence of deterioration	S	U	
7. Vegetation removal (once every 3 years)			No maintenance has been
Prune dead, diseased, or decaying plants	S	U	done to date.
Corrective Action Needed			Due Date
1. Cut vegetation down to base and remove from system.			ASAP
COMMENT: Area of system is smaller than other BMPs but has the structures. 6 hydraulic inlets, 5 leach basins, 1 outlet	same num	ber of	

Gravel Wetland Stormwater Management Device

Regular inspection and maintenance is critical to the effective operation of Gravel Wetland systems. It is the responsibility of the owner to maintain the Gravel Wetland in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and any changes or redevelopment in the upstream land use.

ACTIVITIES

1ST YEAR POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check that plants have adequate water, are well established and healthy. Remedy: Water plants as necessary, remove or treat diseased vegetation as necessary and revegetate poorly established plants as necessary 	After every major storm in the first few months, then	
2. Check for erosion in the system and short circuiting (holes) in the surface wetland soils. Remedy: Soil piping, erosion, and holes should be filled, lightly compacted, and reseeded.	biannually.	
POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check inlets outlets and stand pipes for leaves and debris. Remedy: Rake in and around the system to clear it of debris. Also, clear the inlet, outlets and standpipes if obstructed. 		
 Check for animal burrows and short circuiting in the system. Remedy: Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted 	Quarterly initially,	
 Check that the depth of accumulated sediment in the sedimentation chamber is less than 12 inches or 10 percent of the pretreatment volume. Remedy: The sedimentation chamber, forebay, and treatment cells outlet devices should be cleaned when drawdown times exceed 36 hours. Remove material with rakes where possible rather than heavy construction equipment to avoid compaction of the gravel wetland surface. Heavy equipment could be used if the system is designed with dimensions that allow equipment to be located outside the gravel wetland, while a backhoe shovel reaches inside the gravel wetland to remove sediment. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner. 	biannually, frequency adjusted as needed after 3 inspections	
 Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning. Remedy: Repair or replace any damaged structural parts, inlets and outlets. 	Annually	
 Check for robust vegetation coverage throughout the system. Remedy: If at least 50 % vegetation coverage is not established after 2 years, reinforcement planting should be performed. 	· · · · · · · · · · · · · · · · · · ·	
 Cut and remove vegetation from the Gravel Wetland System and forebay in order to maintain nitrogen removal performance. Remedy: The vegetation should be cut and removed from the system to prevent nitrogen from cycling back into the system. 	Once every 3 years	

CHECKLIST FOR INSPECTION	OF GR	AVEL WE	ETLAND
Location: I93 Exit 1 NB Off Ramp DOT#: 13933C	Inspector: Tim Puls		
Date: 7/18/14 Time: 11:00AM	Site Conditions: Very Good		s: Very Good
Date of Last Rain Event: 7/16/14			•
Inspection Items	Satisfacto Unsatisfa		Comments/Corrective Action
1 st Year Post-Construction Monitoring (After every major storm	for the firs	st three mo	nths)
Plants are stable, roots not exposed	s	U	NA – This system was
Vegetation is established and thriving	s	U	constructed in 2007
No evidence of holes in the wetland soil causing short-circuiting	s	U	
No evidence of erosion at inlet and outlet structures	s	U	
Post-Construction Routine Monitoring (at least every 6 months Requirements. Inspection frequency can be reduced to annual of sediment accumulation is less than cleaning criteria listed be	following 2		
1. Standing Water			
Gravel wetland surface is free of standing water or other evidence of clogging, such as discolored or accumulated sediments	S	U	None
2. Short Circuiting & Erosion	-		
No evidence of animal burrows or other holes	S	U	
No evidence of erosion	S	U	
3. Drought Conditions (As needed)			
Water plants as needed	s	U	
Dead or dying plants	S	U	
4. Sedimentation Chamber or Forebay Inlet Inspection			Some trash has accumulated
No evidence of sediment accumulation, trash, and debris.	S	U	
Good condition, no need for repair	S	U	1
5. Vegetation Coverage			Plants are in good condition.
50 % coverage established throughout system by first year	S	U	Treatment cells are densely vegetated.
Robust coverage by year 2 or later	S	U	vegetateu.
6. Inlet and Outlet Controls:			Concrete outlet structure 8' x
Flow is unobstructed in openings (grates, orifices, etc)	S	U	10'
Structures are operational with no evidence of deterioration	S	U	1
7. Vegetation removal (once every 3 years)		~	No maintenance has been
Prune dead, diseased, or decaying plants	S	U	done to date.
Corrective Action Needed			Due Date
1. Maintain vegetation = cut down to base of plant and remove veg	getation fror	m system	
COMMENT: This is an extremely large system. RRoseen advised the Stone" with 3/8" pea stone during construction.	nem to repla	ace "E	

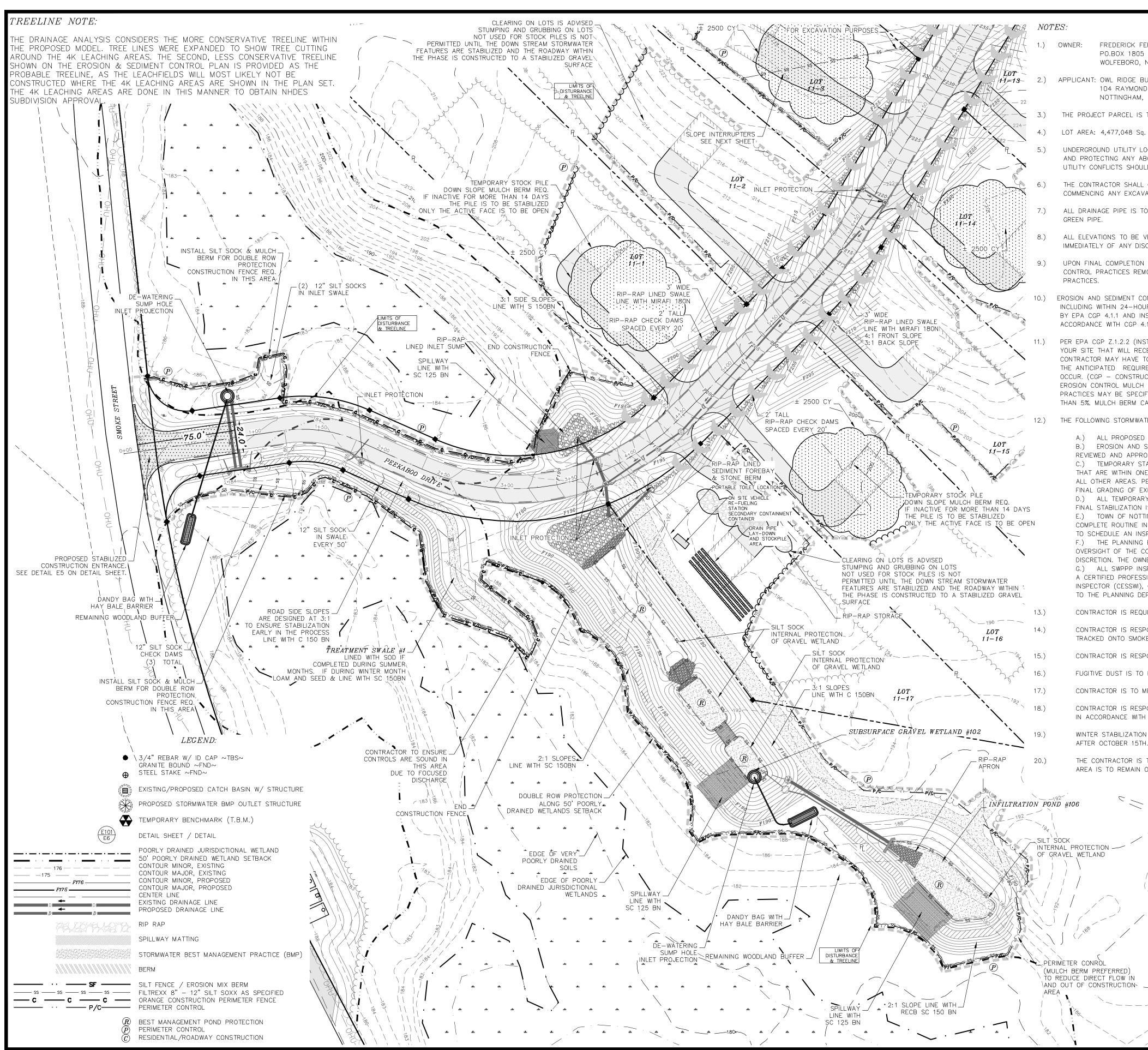
Gravel Wetland Stormwater Management Device

Regular inspection and maintenance is critical to the effective operation of Gravel Wetland systems. It is the responsibility of the owner to maintain the Gravel Wetland in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and any changes or redevelopment in the upstream land use.

ACTIVITIES

1ST YEAR POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check that plants have adequate water, are well established and healthy. Remedy: Water plants as necessary, remove or treat diseased vegetation as necessary and revegetate poorly established plants as necessary 	After every major storm in the first few months, then	
2. Check for erosion in the system and short circuiting (holes) in the surface wetland soils. Remedy: Soil piping, erosion, and holes should be filled, lightly compacted, and reseeded.	biannually.	
POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check inlets outlets and stand pipes for leaves and debris. Remedy: Rake in and around the system to clear it of debris. Also, clear the inlet, outlets and standpipes if obstructed. 		
 Check for animal burrows and short circuiting in the system. Remedy: Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted 	Quarterly initially,	
 Check that the depth of accumulated sediment in the sedimentation chamber is less than 12 inches or 10 percent of the pretreatment volume. Remedy: The sedimentation chamber, forebay, and treatment cells outlet devices should be cleaned when drawdown times exceed 36 hours. Remove material with rakes where possible rather than heavy construction equipment to avoid compaction of the gravel wetland surface. Heavy equipment could be used if the system is designed with dimensions that allow equipment to be located outside the gravel wetland, while a backhoe shovel reaches inside the gravel wetland to remove sediment. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner. 	biannually, frequency adjusted as needed after 3 inspections	
 Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning. Remedy: Repair or replace any damaged structural parts, inlets and outlets. 	Annually	
 Check for robust vegetation coverage throughout the system. Remedy: If at least 50 % vegetation coverage is not established after 2 years, reinforcement planting should be performed. 	· · · · · · · · · · · · · · · · · · ·	
 Cut and remove vegetation from the Gravel Wetland System and forebay in order to maintain nitrogen removal performance. Remedy: The vegetation should be cut and removed from the system to prevent nitrogen from cycling back into the system. 	Once every 3 years	

CHECKLIST FOR INSPECTION	OF GRA	VEL WE	TLAND
Location: Rt. 16 NB Exit 5 Date: 6/20/14 Time: 10:00AM Date of Last Rain Event: 6/13/14 (0.75")		spector: Jar Condition	mie Houle, Tim Puls s: Good
Inspection Items	Satisfacto Unsatisfa		Comments/Corrective Action
1 st Year Post-Construction Monitoring (After every major storm	for the firs	st three mor	nths)
Plants are stable, roots not exposed	S	U	NA
Vegetation is established and thriving	S	U	System constructed in 2010- 2011
No evidence of holes in the wetland soil causing short-circuiting	S	U	2011
No evidence of erosion at inlet and outlet structures	S	U	
Post-Construction Routine Monitoring (at least every 6 months Requirements. Inspection frequency can be reduced to annual of sediment accumulation is less than cleaning criteria listed b	following 2		
1. Standing Water			
Gravel wetland surface is free of standing water or other evidence of clogging, such as discolored or accumulated sediments	S	U	Fore bay has pooled water. Some cattails.
2. Short Circuiting & Erosion	-		
No evidence of animal burrows or other holes	S	U	
No evidence of erosion	S	U	
3. Drought Conditions (As needed)			
Water plants as needed	S	U	
Dead or dying plants	S	U	
4. Sedimentation Chamber or Forebay Inlet Inspection	-		Wet fore bay w/ evidence of
No evidence of sediment accumulation, trash, and debris.	S	U	anaerobic conditions, i.e. standing water, cattails, and
Good condition, no need for repair	S	U	algae.
5. Vegetation Coverage			
50 % coverage established throughout system by first year	S	U	
Robust coverage by year 2 or later	S	U	
6. Inlet and Outlet Controls:	-		Inlet is obstructed due to high
Flow is unobstructed in openings (grates, orifices, etc)	S	U	elevation of fore bay control. Need low flow outlet from fore
Structures are operational with no evidence of deterioration	S	U	bay.
7. Vegetation removal (once every 3 years)			
Prune dead, diseased, or decaying plants	S	U	
Corrective Action Needed			Due Date
1. Fore bay needs to be drained. 2.2ft of standing water.			ASAP
COMMENT:			


Gravel Wetland Stormwater Management Device

Regular inspection and maintenance is critical to the effective operation of Gravel Wetland systems. It is the responsibility of the owner to maintain the Gravel Wetland in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and any changes or redevelopment in the upstream land use.

ACTIVITIES

1ST YEAR POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check that plants have adequate water, are well established and healthy. Remedy: Water plants as necessary, remove or treat diseased vegetation as necessary and revegetate poorly established plants as necessary 	After every major storm in the first few months, then	
2. Check for erosion in the system and short circuiting (holes) in the surface wetland soils. Remedy: Soil piping, erosion, and holes should be filled, lightly compacted, and reseeded.	biannually.	
POST-CONSTRUCTION ACTIVITY	FREQUENCY	
 Check inlets outlets and stand pipes for leaves and debris. Remedy: Rake in and around the system to clear it of debris. Also, clear the inlet, outlets and standpipes if obstructed. 		
 Check for animal burrows and short circuiting in the system. Remedy: Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted 	Quarterly initially,	
 Check that the depth of accumulated sediment in the sedimentation chamber is less than 12 inches or 10 percent of the pretreatment volume. Remedy: The sedimentation chamber, forebay, and treatment cells outlet devices should be cleaned when drawdown times exceed 36 hours. Remove material with rakes where possible rather than heavy construction equipment to avoid compaction of the gravel wetland surface. Heavy equipment could be used if the system is designed with dimensions that allow equipment to be located outside the gravel wetland, while a backhoe shovel reaches inside the gravel wetland to remove sediment. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner. 	biannually, frequency adjusted as needed after 3 inspections	
 Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning. Remedy: Repair or replace any damaged structural parts, inlets and outlets. 	Annually	
 Check for robust vegetation coverage throughout the system. Remedy: If at least 50 % vegetation coverage is not established after 2 years, reinforcement planting should be performed. 	· · · · · · · · · · · · · · · · · · ·	
 Cut and remove vegetation from the Gravel Wetland System and forebay in order to maintain nitrogen removal performance. Remedy: The vegetation should be cut and removed from the system to prevent nitrogen from cycling back into the system. 	Once every 3 years	

CHECKLIST FOR INSPECTION OF GRAVEL WETLAND			
Location: I93 Exit 2 Park & Ride. DOT#: 10418G Date: 7/18/14 Time: 10:30AM	Inspector: Tim Puls Site Conditions: Very Good		
Date of Last Rain Event: 7/16/14			
Inspection Items	Satisfactory (S) or Unsatisfactory (U)		Comments/Corrective Action
1 st Year Post-Construction Monitoring (After every major storm	for the fire	st three mo	nths)
Plants are stable, roots not exposed	S	U	NA – This system was
Vegetation is established and thriving	S	U	constructed in 2007
No evidence of holes in the wetland soil causing short-circuiting	S	U	
No evidence of erosion at inlet and outlet structures	S	U	
Post-Construction Routine Monitoring (at least every 6 months Requirements. Inspection frequency can be reduced to annual of sediment accumulation is less than cleaning criteria listed b	following 2		
1. Standing Water			
Gravel wetland surface is free of standing water or other evidence of clogging, such as discolored or accumulated sediments	S	U	Plunge pools around the 3 inlet locations
2. Short Circuiting & Erosion			
No evidence of animal burrows or other holes	S	U	
No evidence of erosion	S	U	
3. Drought Conditions (As needed)			
Water plants as needed	S	U	
Dead or dying plants	S	U	
4. Sedimentation Chamber or Forebay Inlet Inspection			Some trash has accumulated
No evidence of sediment accumulation, trash, and debris.	S	U	
Good condition, no need for repair	S	U	
5. Vegetation Coverage			Plants are in good condition.
50 % coverage established throughout system by first year	S	U	Forebay is >95% cattails. Treatment cells are densely
Robust coverage by year 2 or later	S	U	vegetated.
6. Inlet and Outlet Controls			
Flow is unobstructed in openings (grates, orifices, etc)	S	U	
Structures are operational with no evidence of deterioration	S	U	
7. Vegetation removal (once every 3 years)	•		No maintenance has been
Prune dead, diseased, or decaying plants	S	U	done to date.
Corrective Action Needed Due Date			Due Date
1. Maintain vegetation = cut down to base of plant and remove veg	getation fror	m system	
COMMENT: Perimeter ground water drainage is a 6" PUD in 2'x3's directed to inlets.	tone trench	n. Flow is	

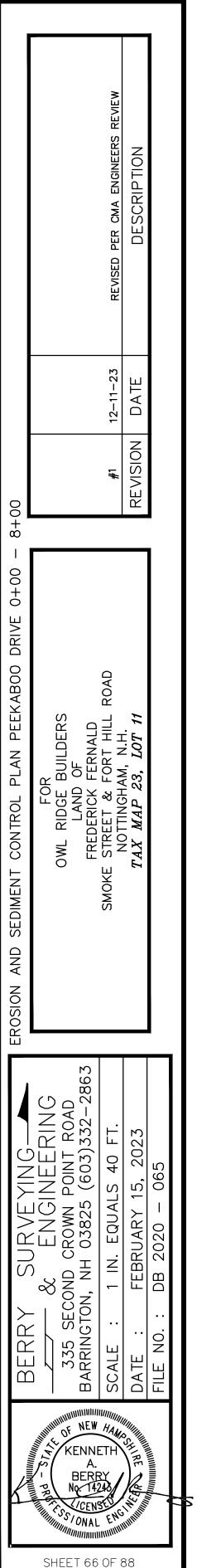
1.)	OWNER:	FREDERICK FERNALD PO.BOX 1805 40 WOLFEBORO, NH 03894		
2.)	APPLICANT:	OWL RIDGE BUILDERS 104 RAYMOND ROAD NOTTINGHAM, NH 03290		
3.)	THE PROJE	CT PARCEL IS TAX MAP 23, LOT 11		
4.)	LOT AREA:	4,477,048 Sq. Ft., 102.77 ACRES		
5.)	AND PROT	UND UTILITY LOCATIONS ARE BASED UPON BES ECTING ANY ABOVE AND BELOW GROUND UTILI INFLICTS SHOULD BE REPORTED IMMEDIATELY T		
6.)		E CONTRACTOR SHALL CALL AND COORDINATE WITH D MMENCING ANY EXCAVATION ON PUBLIC OR PRIVATE F		
7.)	ALL DRAIN GREEN PIP	L DRAINAGE PIPE IS TO BE HDPE N—12. INDIVIDUAL I EEN PIPE.		
8.)		TIONS TO BE VERIFIED BY THE CONTRACTOR P Y OF ANY DISCREPANCY. TEMPORARY BENCH		
9.)		AL COMPLETION AND 85% STABILIZATION, THE D PRACTICES REMOVED AND DISPOSED OF PROPE		
10.)	INCLUDING BY EPA CG	D SEDIMENT CONTROL INSPECTIONS TO BE CON WITHIN 24-HOURS OF A 0.25 INCH RAIN EVEN P 4.1.1 AND INSPECTION REPORTS SUBMITTED CE WITH CGP 4.1.7 AND MAINTAINED BY THE O		
11.)	YOUR SITE CONTRACTO THE ANTICIF OCCUR. (CO EROSION CO PRACTICES	GP Z.1.2.2 (INSTALL PERIMETER CONTROL), "YO THAT WILL RECEIVE STORMWATER FROM EARTH R MAY HAVE TO EXPAND PERIMETER CONTROL PATED REQUIREMENTS AND IT THE CONTRACTO OP – CONSTRUCTION GENERAL PERMIT) PERIME DNTROL MULCH BERM. CONTRACTOR CAN USE MAY BE SPECIFIED, SEE PLAN. SILT FENCE OR MULCH BERM CAN BE USED WHEN THE UPGRAD		
12.)	THE FOLLON	WING STORMWATER MEASURES ARE REQUIRED:		
S EN	B.) REVIEW C.) THAT , ALL O FINAL D.) FINAL E.) COMPL TO SCI F.) OVERS DISCRE G.) A CER INSPEC	ALL PROPOSED BMPs WILL CONFORM TO THE MEROSION AND SEDIMENT CONTROL MEASURES S (ED AND APPROVED BY COMMUNITY SERVICE. TEMPORARY STABILIZATION MEASURES SHOULD ARE WITHIN ONE HUNDRED FEET OF A SURFACT THER AREAS. PERMANENT STABILIZATION SHOUL GRADING OF EXPOSED SOIL AREAS. ALL TEMPORARY EROSION AND SEDIMENT CONT STABILIZATION IS ACCOMPLISHED. TOWN OF NOTTINGHAM TECHNICAL EMPLOYEES ETE ROUTINE INSPECTIONS AND SHALL BE NOT HEDULE AN INSPECTION, DURING NORMAL WORK THE PLANNING BOARD REQUIRES THE DESIGN E IGHT OF THE CONSTRUCTION OF STORMWATER TION. THE OWNER / APPLICANT IS RESPONSIBI ALL SWPPP INSPECTIONS MUST BE CONDUCTED TIFIED PROFESSIONAL IN EROSION AND SEDIMENT CTOR (CESSWI), OR A CERTIFIED PROFESSIONAL E PLANNING DEPARTMENT / LAND USE OFFICE.		
13.)	CONTR	ACTOR IS REQUIRED TO HAVE A CONSTRUCTION		
14.)		ACTOR IS RESPONSIBLE FOR SWEEPING THE RC ED ONTO SMOKE STREET.		
15.)	CONTR	ACTOR IS RESPONSIBLE FOR CLEANING AND MA		
16.)	FUGITIN	E DUST IS TO BE CONTROLLED THROUGHOUT		
17.)	CONTR	ACTOR IS TO MEET THE REQUIREMENTS SPECIF		
18.)		ACTOR IS RESPONSIBLE FOR PROTECTING THE CORDANCE WITH ENV-WQ 1507, IN ORDER TO F		
19.)		STABILIZATION NOTES ARE INCLUDED ON SHE OCTOBER 15TH.		
20.)	AREA	ONTRACTOR IS TO NOTE THE REQUIRED PHASIN IS TO REMAIN ONSITE, SCREENED AND REPLAC		
\	-192	\sim		

SOILS & DEWATERIN

 \sim

2	– HINCKLEY LOAMY SAND	K = 0.17
13	- CANTON FINE SANDY LOAM	K = 0.24
37	- PAXTON FINE SANDY LOAM	K = 0.43
40	- CHATFIELD-HOLLIS-CANTON COMPLEX	K = 0.24
313	- DEERFIELD LOAMY FINE SAND	K = 0.17
547	– WALPOLE VERY FINE SANDY LOAM, VERY STONY	

SEE SITE SPECIFIC SOILS MAP (SSSM) SEE WEBSOIL USDA-NRCS ERODIBILITY FACTOR - K, CPESC MANUAL, ENVIROCERT INTERNATIONAL INC. & ROCKINGHAM COUNTTY SOIL SURVEY, ROCKWEB SOIL ATTRIBUTES.


CONTRACTOR TO BE AWARE OF THE SOIL PROFILES AND ENSURE THAT PROPER EROSION PREVENTION AND SEDIMENT CONTROL MEASURES ARE TAKEN AT ALL TIMES. ANY DEWATERING REQUIREMENTS IN NEW HAMPSHIRE REQUIRE SPECIAL PROVISIONS IN ACCORDANCE WITH THE "CLARIFICATION OF SECTION 9.1.2 (STATE OF NEW HAMPSHIRE CONDITIONS) AND OTHER NH SPECIFIC INFORMATION FOR THE U.S. EPA 2022 NPDES CONSTRUCTION GENERAL PERMIT (CGP)" DATED FEBRUARY 17, 2022 INCLUDED IN THE SWPPP.

COVER MANAGEMENT DURING CONSTRUCTION FOR EXPOSED SOIL WILL INCLUDE HAY / STRAW APPLIED AT A RATE OF 2.0 TONS PER ACRE, TEMPORARY SEEDING OF ANNUAL RYE GRASS, AND PERMANENT SEEDING AT THE EARLIES OPPORTUNITY. SEE ADDITIONAL REQUIREMENT FOR STABILIZATION ON THE EROSION AND SEDIMENT CONTROL DETAIL SHEETS, E-101 AND E-102.

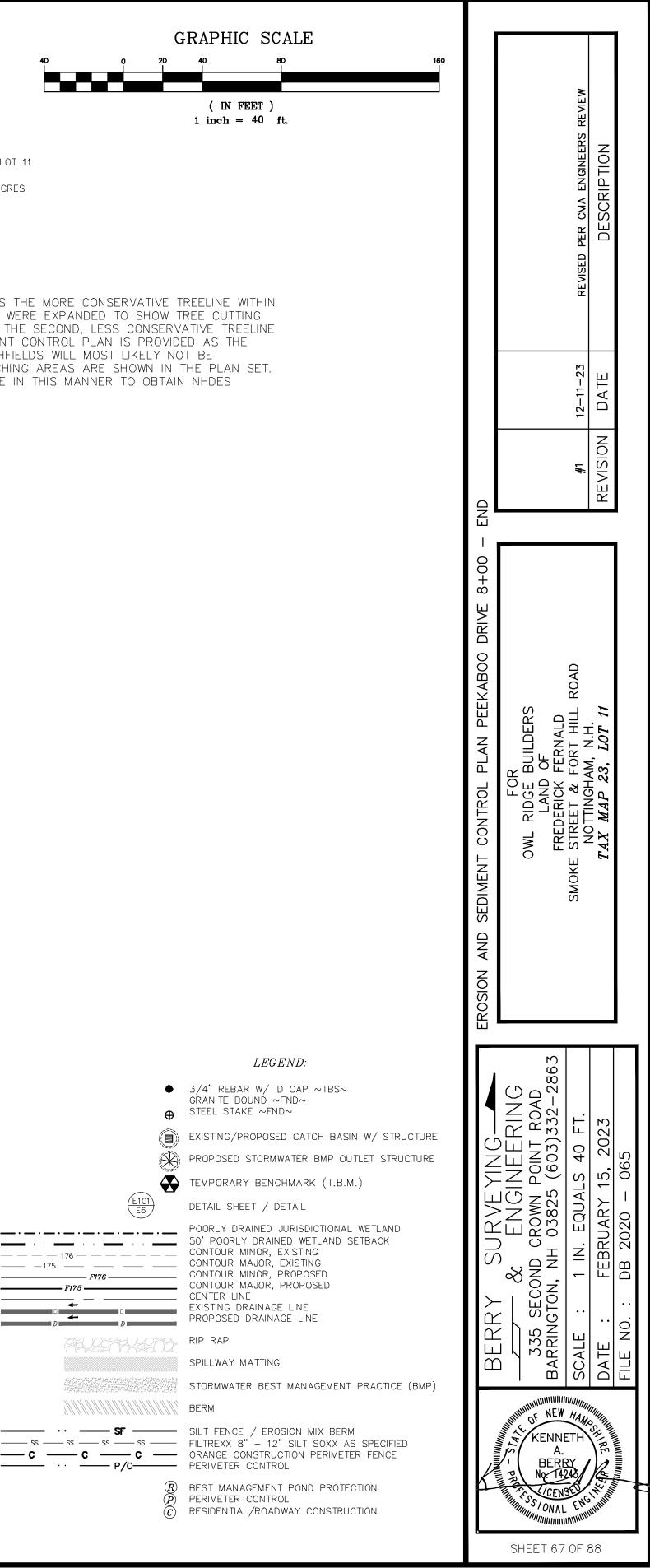
THE CONSTRUCTION SCHEDULE WILL BE MANAGED SO THAT ALL STORMWATER STRUCTURES WILL BE BUILT AND STABILIZED PRIOR TO RECEIVING SURFACE WATER RUNOFF. CONTRACTOR TO BE RESPONSIBLE FOR ALL DIVERSIONS DURING CONSTRUCTION AND FOR INTERIM SEDIMENT AND EROSION CONTROL MEASURES.

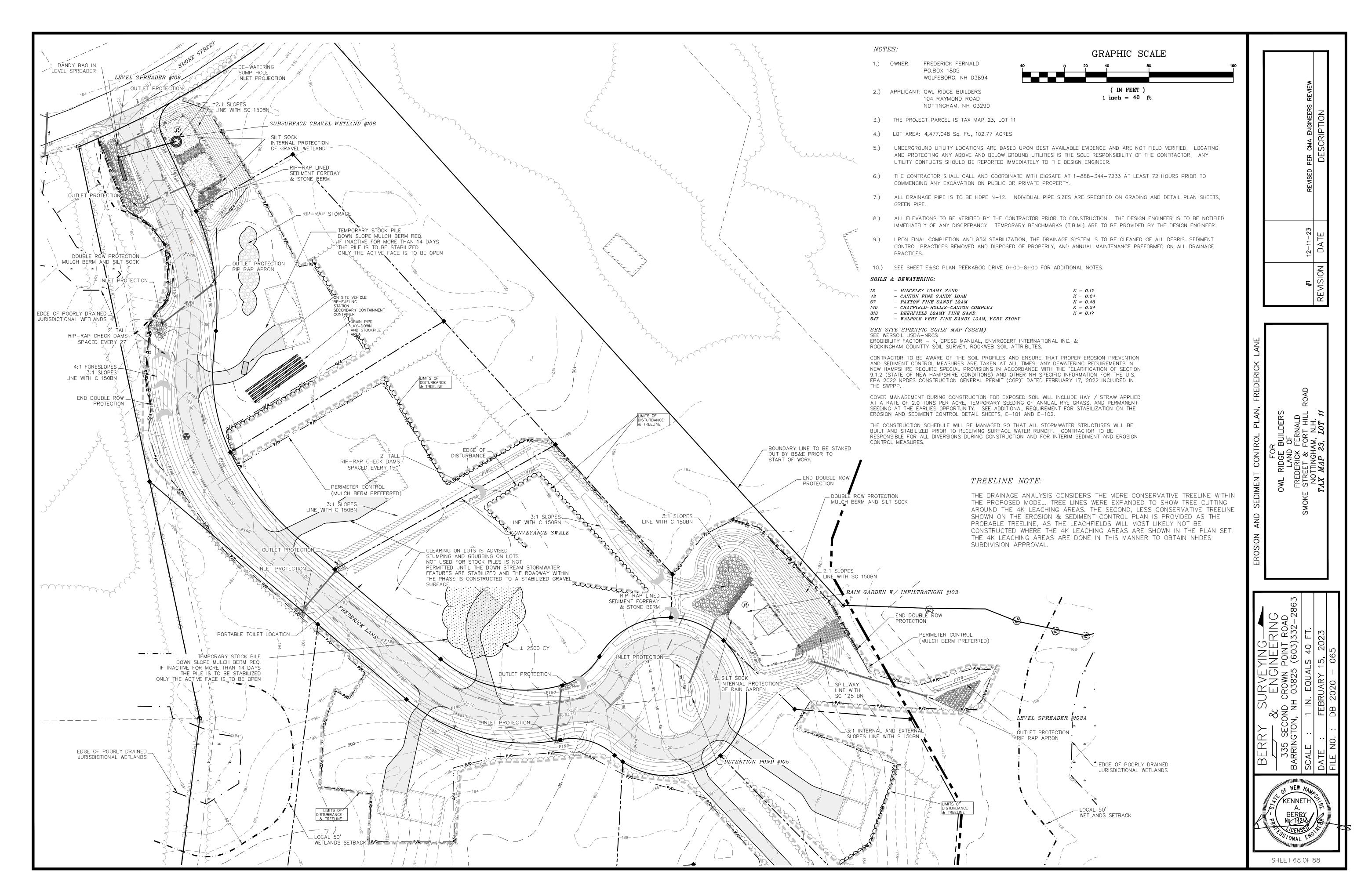
GRAPHIC SCALE (IN FEET) 1 inch = 40 ft.ST AVAILABLE EVIDENCE AND ARE NOT FIELD VERIFIED. LOCATING ITIES IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR. ANY TO THE DESIGN ENGINEER. DIGSAFE AT 1-888-344-7233 AT LEAST 72 HOURS PRIOR TO PROPERTY. PIPE SIZES ARE SPECIFIED ON GRADING AND DETAIL PLAN SHEETS, PRIOR TO CONSTRUCTION. THE DESIGN ENGINEER IS TO BE NOTIFIED HMARKS (T.B.M.) ARE TO BE PROVIDED BY THE DESIGN ENGINEER. DRAINAGE SYSTEM IS TO BE CLEANED OF ALL DEBRIS. SEDIMENT ERLY, AND ANNUAL MAINTENANCE PREFORMED ON ALL DRAINAGE NDUCTED ONCE PER EVERY SEVEN DAYS AND AT AN INCREASED FREQUENCY NT. INSPECTIONS TO BE CONDUCTED BY A "QUALIFIED PERSON" AS DEFINED TO THE TOWN OF NOTTINGHAM PLANNING DEPARTMENT WITHIN 24 HOURS IN OWNER FOR A PERIOD OF THREE YEARS AFTER THE PROJECT IS COMPLETED. OU MUST INSTALL SEDIMENT CONTROLS ALONG THOSE PERIMETER AREAS OF H DISTURBING ACTIVITIES." AS A RESULT OF SWPPP INSPECTIONS, THE LS TO MEET THIS REQUIREMENT. THE E&SC PLAN IS INITIAL GUIDANCE AS TO TORS RESPONSIBILITY TO ENSURE THAT STORMWATER VIOLATION DO NOT ETER CONTROL IS SEDIMENT CONTROL E.G.; SILT FENCE, SILT SOXX, OR SILT FENCE, SILT SOXX, OR MULCH BERM FOR PERIMETER CONTROL. SPECIFIC SILT SOXX ARE REQUIRED WHEN UPGRADIENT DISTURBED SOIL IS GREATER DIENT DISTURBED SOIL IS 5% OR LESS. NH STORMWATER MANUAL VOLUME 3. SHALL BE INSTALLED PRIOR TO ANY SOIL LAND DISTURBANCE AND MUST BE BE IN PLACE WITHIN SEVEN CALENDAR DAYS FOR EXPOSED SOILS AREAS CE WATER BODY OR A WETLAND AND NO MORE THAN 14 CALENDAR DAYS FOR JLD BE IN PLACE WITHIN THREE CALENDAR DAYS FOLLOWING COMPLETION OF ITROL MEASURES SHALL BE MAINTAINED IN FUNCTIONING CONDITION UNTIL OR THEIR DESIGNATED AGENT SHALL HAVE ACCESS TO THE SITE TO TIFIED 24-HOURS PRIOR TO INSTALLATION OF A STORMWATER BMP IN ORDER KING HOURS. ENGINEER AND/OR AN INDEPENDENT, THIRD-PARTY INSPECTION AND MANAGEMENT FACILITIES AND EROSION AND SEDIMENT CONTROL AT THEIR BLE FOR ALL FEES ASSOCIATED WITH INSPECTIONS. D BY A QUALIFIED PROFESSIONAL SUCH AS A PROFESSIONAL ENGINEER (PE), INT CONTROL (CPESC), A CERTIFIED EROSION SEDIMENT AND STORMWATER L IN STORMWATER QUALITY (CPSWQ). INSPECTION REPORTS WILL BE SUBMITTED ON ENTRANCE. 3" ANGULAR STONE IS REQUIRED. OADWAY, AND ANYTHING DISTURBED, TO ENSURE THAT NO SEDIMENT IS BEING AINTAINING THE INLET PROTECTION ONCE INSTALLED. THE CONSTRUCTION PROCESS IN ACCORDANCE WITH ENV-A 1000. FIED IN RSA 430:51-57 AND AGR 3800, RELATING TO INVASIVE SPECIES. WATER QUALITY FROM ANY RUN OFF DURING THE CONSTRUCTION PROCESS, PREVENT VIOLATIONS OF THE STORM WATER QUALITY STANDARDS. EET E-102 TO INCLUDE THE LIMIT OF ONE ACRE OF UN-STABILIZED SOIL NG PLAN. DURING THE EXCAVATION PERIOD THE LOAM WITH THE EXCAVATED CED FOR STABILIZATION.

7	G	!	•	

NOTES:

WNER:	FREDERICK FERNALD
	PO.BOX 1805
	WOLFEBORO, NH 03894


- 2.) APPLICANT: OWL RIDGE BUILDERS 104 RAYMOND ROAD NOTTINGHAM, NH 03290
- 3.) THE PROJECT PARCEL IS TAX MAP 23, LOT 11
- 4.) LOT AREA: 4,477,048 Sq. Ft., 102.77 ACRES
- 5.) SEE SHEET 66 FOR OTHER E+SC NOTES


TREELINE NOTE:

THE DRAINAGE ANALYSIS CONSIDERS THE MORE CONSERVATIVE TREELINE WITHIN THE PROPOSED MODEL. TREE LINES WERE EXPANDED TO SHOW TREE CUTTING AROUND THE 4K LEACHING AREAS. THE SECOND, LESS CONSERVATIVE TREELINE SHOWN ON THE EROSION & SEDIMENT CONTROL PLAN IS PROVIDED AS THE PROBABLE TREELINE, AS THE LEACHFIELDS WILL MOST LIKELY NOT BE CONSTRUCTED WHERE THE 4K LEACHING AREAS ARE SHOWN IN THE PLAN SET. THE 4K LEACHING AREAS ARE DONE IN THIS MANNER TO OBTAIN NHDES SUBDIVISION APPROVAL.

